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Transformations of Ising Models
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The "star-triangle" and "decoration" transformations are generalized so as to apply to arbitrary mechani-
cal systems coupled to the spins of a standard Ising net. This leads to exact solutions for further plane Ising
nets and also for lattices in which the spins on alternate sites have a magnitude greater than S=—,. A general
class of antiferromagnetic Ising models is constructed; exact closed expressions can be derived for all the
thermodynamic and magnetic properties of these models in an arbitrary magnetic field.

The magnetizations and susceptibilities of Ising nets in which different spins have different magnetic
moments are investigated and a valuable relation between the susceptibilities of the honeycomb and tri-
angular lattices is derived. It is shown how correlation functions involving a given spin can be expressed in
terms of correlations involving the nearest-neighbor spins instead.

1. INTRODUCTION

'HE critical point (Curie temperature) of the
square-lattice Ising model of a ferromagnet was

originally located by Kramers and |A'annier' who
noticed a symmetry property of the partition function
in the absence of a magnetic 6eld. Onsager showed how
this symmetry arose because the square net is topo-
logically "self-dual. '" More generally the partition
function in zero magnetic field for a given net is re-
ciprocally related to the partition function (in zero
field) of its dual net; thus the partition function of the
honeycomb (plane hexagonal) net is derivable from
that of the triangular net by the dual transformation
and vice versa.

Onsager' further discovered a "star-triangle" trans-
formation whereby a "star" consisting of a central spin
coupled to three neighboring spins could be transformed
into a triangle of three spins coupled to each other
(see Fig. 1).This leads to a further connection between
the triangular and honeycomb nets which enables their
critical points to be located (see Wannier, reference 2).
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FIG. 1. The star-triangle transformation.

The star-triangle transformation is essentially
algebraic and is not restricted to plane nets, whereas the
dual transformation depends on a topological property
of those nets that can be developed onto a two-
dimensional manifold without any crossing bonds.
Another algebraic transformation is the "decoration"
or "iteration" transformation. This enables a central
spin coupled to tao neighboring spins to be replaced

'H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252
(1941).' G. H. Wannier, Revs. Modern Phys. 17, 50 (1945).

s L. Onsager, Phys. Rev. 65, 117 (1944).

by a single bond connecting the two outer spins (see
Fig. 2). This transformation has the advantage that it
holds even with a magnetic field present. With its aid
Naya' derived expressions for the spontaneous magneti-
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FIG. 2. The decoration or iteration transformation.

FIG. 3. The decorated square
net. The spins on the bonds may
have different magnetic moments
from those on the vertices of the
basic square net.

4 S. Naya, Progr. Theoret. Phys. Japan 11, 53 (1954).' R. 3.Potts, Phys. Rev. 88, 352 (1952).
I. Syozi and H. Nakano, Progr. Theoret. Phys. Japan 13, 69

(1955).

zations of the honeycomb and Kagome lattices from
Potts' formula5 for the magnetization of the triangular
net. The transformation was also used by Syozi and
Nakano' who discussed the magnetization of ferri-
magnetic decorated lattices such as the decorated
square net (Fig. 3) where spins on the bonds have
diferent magnetic moments from those at the vertices
of the net.

In this note we show how the two algebraic trans-
formations of the Ising model —the star-triangle and
the decoration transformation —can be considerably
generalized. In fact, the central spin which is removed
by these transformations may be replaced by an
arbitrary statistical nsechaeical sysferfl. This system may
consist of any number of "spins" and other entities
which are coupled to the two, or three, outer spins and
it may also depend, on the magnetic 6eld or other
external variables.

These generalizations .lead to exact solutions for a
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large number of new Ising models. Thus many further
plane nets may be discussed; for example, the
"expanded Kagome lattice" which has the same
coordination number as the honeycomb lattice but a
diferent critical point. Certain models with spiris
greater than 2 can also be solved; for example, the
honeycomb lattice in which the spins or alternate sites
have magnitude —,

' and S, where S is arbitrary Lsee

Fig. 7(a)j. The dependence of the Curie temperature
on 5, the magnitude of the spin, has been determined
for this and two similar lattices.

The generalized transformations also apply to 6nite
clusters of spins. Thus, for example, the partition
function of the truncated tetrahedron (four triangular
and four hexagonal faces) can be derived easily from
that of the tetrahedron. As shown by Bomb and Sykes, '
the study of such finite clusters is useful in obtaining
exact series expansions for the susceptibilities of two-
and three-dimensional Ising lattices.

By placing "complementary" spin systems on alter-
nate bonds of simple Ising lattices one discovers a
general class of antiferroygag22etic Ising models. These
models are especially interesting since they can be solved

completely in the presence of u 2lagneticpeld, so yielding
closed expressions for the susceptibility, the magnetiza-
tion, etc. as functions of the field strength and the
temperature. '

Finally we consider the transformation of expressions
for the susceptibility and correlation functions of
various lattices. Naya' and Syozi and Nakano' discussed
the magnetization of certain loose-packed lattices (the
honeycomb and the square net) in which the spins on
alternate sites had digering magnetic moments. We
show that for such lattices (including their three-
dimensional counterparts like the simple cubic lattice),
relations for the susceptibility can also be derived.
Furthermore, if the susceptibility of the honeycomb
is known, then the susceptibility of the triangular
net may be derived from it. (This result is not, of course,
included in the standard star-triangle relation between
these lattices, since this only holds in zero magnetic
field and does not apply to the magnetization or
susceptibility. ) At present no exact solutions for the

susceptibility of any Ising lattice are known, but series

expansions may be obtained, by counting configurations.
This is exceedingly laborious on the triangular lattice,
but relatively easy on the honeycomb because of its
loose-packed structure and low coordination number.

Consequently the transformation theorem has proved
very useful. With its aid, and using a special "cluster-
expansion" theorem for the susceptibility, ' Sykes has
been able to derive and check the first twelve terms in

the high-temperature expansion of the susceptibility

' C. Domb and M. F. Sykep, PhiL Mag. 2, 755 (1957).
Detailed discussion of the physical properties of these models

is being reserved for another paper.
'M. F. Sykes and M. E. Fisher, Phys. Rev. Letters 1, 321

(1958).

of the triangular net. The theorem further enables one
to calculate the susceptibility of the antiferromagnetic
triangular lattice at temperatures below the corre-
sponding ferromagnetic Curie point. This is valuable
since the normal series for the triangular lattice diverges
in this region and no "low-temperature" series can be
derived because of the high degeneracy of the anti-
ferromagnetic ground state.

The correlation functions of the triangular and
honeycomb lattices are also related to one another.
This is established by showing that on any lattice a
correlation function involving a particular spin can be
expressed as a linear function of correlations involving
the nearest neighbors of the given spin instead.

2. BOND AND VERTEX DECORATION

We consider the generalization of the decoration or
iteration process erst since it is simpler than the star-
triangle transformation. The Ising partition function
ZD of a decorated lattice containing bonds decorated
with a single spin, as in Fig. 2, involves summations
over the spin states of the decorating spins. These
summations may be performed individually and before
the summations over the states of the vertex spins. A
summation over the two states sp=~i of a typical
decorating spin sp will have the form

Zo= p exp(E1$0$1+E2$0$2+L0$0)
80=+1

where

E1 Ipl/k&, E2=&02/kT, Lo =IJ0H/kT, (2)

Jp& and Jp2 being the interaction energies between the
spin sp and its neighbors s~ and s2, pp being the magnetic
moment of sp, H being the magnetic field, and T the
temperature. In the standard way we may now intro-
duce a modified interaction parameter E' by

cosh(E1+E2+I.p) cosh(E1+E2 Lp)e4E'— (3)
cosll(E1—E2+Lp) cosll(E2 —K1+Lp)

and increments bp~=kT81-i and A@2——kTOJ-2 to the
magnetic moments of spins 1 and 2 by

cosh(E1+E2+Lo) cosh (E1—E2+Lp)
~48Lg— (4)

cosh(E1+E2 Lo) cosh(E$ E2 Lp)
and

cosh(E2+E2+Lo) cosh(E2 —E1+Lo)
~45Lg (~)

cosh(E1+E'2 Lp) cosh(E2 E2 Lp)

The sum Zp may then be written as a simple exponential
factor

Zp =—f exp(E's1s2+6L1sq+8L2s2), (6)

where the identity holds for the 2'=4 possible joint
spin states of spins 1 and 2 t i.e., (s1,s2)= (+,+),
(+,—), (—,+), (—,—)].The function f is independent
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where X~ is the number of decorated bonds and
Z(K', L') is the partition function of the original basic
lattice but with suitably modified interactions E', and
modified magnetic moments y'=kTL'=y+Q py, the
sum Q 5y including all the increments from the deco-
rated bonds meeting at a single vertex. (If all the bonds
are decorated symmetrically then bp, &=8@2=5p, and

Q |ly=q8y where q is the coordination number of the
basic lattice; in this case EI1 1Vq/2, th——ere being 1V

sites on the basic lattice. )
To generalize the above transformation suppose that

the central, decorating spin in Fig. 2 is replaced by an
arbitrary mechanical system which interacts with the
spins 1 and 2 and with the external magnetic field
(and possibly other external influences). This system
will have a set of energy levels E; depending on the
spins s~ and s2 and on the field H. The factor Zo in the
total partition function now becomes a sum over the
internal energy states of the decorating system, namely

Zo ——P; exp{—(1/kT)Z, (s„s„H)}. (9)

This is essentially the partition function of the
decorating system for fixed s& and s2 and may be written

lit ($1 $2,H) =g; exp{—(1/kT)E;($1,$2,H)}. (10)

To express Zo as a simple exponential factor as in Eq.
(6) it is now only necessary to generalize the definitions
of K', BL1, bL2, and f as follows:

e'"'=0 A—/0+ —0-,
e4"'=0++0+ /0 0 +, e4"'=-0+—+0 —+/4 0+ , (12)-—-
and

f'=4++4 4+ 4 +, —--(13)

where f++ P(+1, +1;H) a——nd so on. With these
definitions, (9) may be represented identically in the
"single-bond" form (6).

Thus even when the bonds of the basic lattice are
decorated with arbitrary systems the complete partition
function Z& of the resulting lattice may be derived, by
(8), from the partition function Z of the original lattice.
Evidently the transformation is in no way restricted to
two-dimensional nets. It also holds in the presence of a
magnetic field. When the decorating system is a single

of all spin variables and is defined by

f'= 16 cosh(K1+K2+Lp) cosh(E1+E2 —Lo)

Xcosh(K1—E2+Lp) cosh(E2 —K1+Lp). (7)

The form of (6) corresponds to a direct single bond from
spin 1 to spin 2 of energy J» ——kTE', and implies that
the magnetic moments p~ and p2 of the decorated lattice
have been increased by bp& and bp&, respectively. The
partition function ZD is thus reduced to a summation
over the spins of the original undecorated lattice only,
so that

Zp-—-p; exp{—(1/kT)E, ($1,$2,$2)},

which we want to write in the simple form

(16)

&o=f exp(K1'$2$2+K2 $3$1+Kp $1$2) (17)

corresponding to the triangle in Fig. 1. Now there are
2'=8 distinct joint spin states of the three neighboring
spins, but there are only four independent parameters
in (17), namely f, E1', E2', and Kp'. Consequently,
unless certain restrictions are imposed, it is not possible
to write (17) as an identity valid for all $1, $2, and $2.
At first sight it seems the situation might be improved
by including the magnetic coupling terms 6L,&s&, 5L2s2,
and 5Lpsp in the exponential of (17). This, however,
yields only three extra parameters (8L1, tlL2, and 8L2),
whereas another f024r are required to ensure complete
generality. Instead we assume that the partition
function

lit ($1 $2 $3) =g, exp{—(1/kT)E, ($1,$2,$2)}, (18)

for the central, "decorating" system is invariant under
the operation of total spin inversion

sy ~ sy) $2 ~ $2) s3 ~ $3.

Essentially this means that there is no preferred
direction for any of the spins in the decorating system.
Equivalently one may suppose that the spins in the
decorating system have no magnetic moment or that
the external field does not act on them. With this
restriction we have

0(+,+,+)=|t (—,—,—) =A,
0(—,+,+)=0(+,—,

—)=6,
0(+ —+)=lt'I( —+ —) =A,
4(+ + —) =4'(——+)=A.

simple spin we have

f($1&$2,H) = 2 COSh(E1$1+K2$2+Lo) y

and the general formulas (11), (12), and (13) reduce to
those given previously. Other special cases will be
discussed below

If the decorating system is only coupled to one spin
or, in other words, if it is "hooked" onto a single vertex,
the transformations simplify and may be written

e2 bI —
ltl /p (14)

f'=0+0 (15)

for each decorated vertex. No modification of the
coupling energies between the basic lattice spins is
necessary.

3. STAR-TRIANGLE TRANSFORMATION

To generalize the star-triangle transformation sup-
pose that the central spin in the star of Fig. 1 represents
an arbitrary mechanical system with energy states
depending on the three neighboring spins. The total
partition function for the resulting (star) lattice then
includes the factor
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The transformed parameters may now be defined by

0 1 2 3y

parameters 8L; must be set equal to zero (to preserve
the symmetry) and so the appropriate inequality is

-,'ts(N —1)+1~&2"—'. (25)

and with these values (17) becomes an identity. The
partition function ZB of the "starred ' lattice is then
related to the partition function Z of the basic "triangle"
lattice by

provided

Zs(K "Ls,Lr) =f~'Z(K' Lr),

LB=0

(22)

(23)

4. FURTHER TRANSFORMATIONS

It is natural to enquire whether the arguments above
can be extended to cover models in which each arbitrary
decorating system interacts with four or more spins.
That this, unfortunately, is not possible except in very
special cases can be shown as follows. If the decorating
system is coupled to n spins of the basic lattice then
its partition function lf (st, ,s„) will assume 2"
independent values corresponding to the 2" distinct
joint spin states of the n lattice spins. If bonds between
all pairs of the e spins are allowed, and if it is supposed
that each spin can have a magnetic moment, then there
are ~sN(N —1)+I+1 parameters, E;, oL;, and j,
available. These will be sufficient to represent an
arbitrary decorating system only if the inequality

—,'e(ts —1)+ts+1~)2" (24)

is satisfied. The only solutions of this inequality are
n=1 and n=2 and these correspond to the vertex and
bond decoration processes discussed above.

On the other hand, if spin inversion symmetry,
corresponding to zero magnetic moments, is imposed,
the number of independent values of lt(st, ~,s„) is
reduced to ~~2"=2" '. In this case, however, the

» R. M. F. Hontappel, Physica 16, 425 (1950).

where Lg and L~ are the magnetic parameters for the
star-vertices and triangle-vertices, respectively, and Ez
is the number of star-vertices.

%hen the decorating system is a single nonmagnetic
spin we have

lP(st, ss,ss) = 2 cosh(Etst+Esss+Esss),

which is symmetric under total spin inversion as
required for the validity of the transformation. The
formulas (20) and (21) then reduce to the standard
forms given by Houtappel" in his discussion of the
simple hexagonal and triangular lattices.

Although the generalized star-triangle transformation
is restricted to lattices in which the decorating systems
on the star-vertices have zero magnetic moments, it
applies equally to Qnite clusters of spins and lattices
in three or more dimensions as to plane nets.

The largest solution of this is n =3, corresponding to the
generalized star-triangle transformation. Evidently any
transformations with n greater than or equal to 4 wi11
involve considerable further restrictions on the structure
of the decorating system and are likely to be of little
interest.

If the spins of the basic lattice have a magnitude S
greater than 5=2, as assumed above, the right-hand
sides of the inequalities (24) and (25) become (25+1)"
and s~(2S+1)"+sr, resPectively. In no case can these
inequalities be satisfied with S~& 1 and n&~ 1.

S. ISING NETS DERIVABLE BY THE
TRANS FORMATIONS

In this section we point out how the generalized
transformations lead easily to exact solutions for a
number of further Ising nets. As shown by Naya' the
complete (HWO) partition function of the Kagome
lattice may be derived from that of the honeycomb.
All the bonds of the honeycomb lattice are decorated
with magnetic spins leaving nonmagnetic spins on the
original vertices Lsee Fig. 4(a)j. The nonmagnetic
star-vertices are then transformed into triangles to
yield the (fully magnetic) Kagome lattice /see Fig.
4(a)j. The main interest in this lattice lies in the fact
that it has the same coordination number, q=4, as
the square net but possesses a different topological
structure. This leads to a slightly diferent critical
point and also modifies the other thermodynamic and
magnetic properties.

A very similar lattice to the Kagome lattice may be
derived by decorating each bond of the honeycomb
with a chain of tteo magnetic spins 1 see Fig. 4(b)j.The

(a)

(b)

Fro. 4. (a) Transformation of the honeycomb lattice into the
Kagomd lattice by means of the decoration and star-triangle
processes. (b) Transformation of the honeycomb into the "ex-
panded Kagome lattice. " The bonds of the honeycomb net are
decorated with two spins in a row.
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FIG. 5. Some Ising lattices of mixed coordination number: (a)
the "diced" lattice with q= 3 and 6, (b) a lattice of heptagons and
triangles with q=3 and 4, (c) a lattice of triangles and quadri-
laterals with q=3, 4, and 9, (d) a lattice of hexagons, quadri-
laterals, and triangles with q= 3 and 8.

appropriate transformations are derived from

f (sr,ss,H) =28 cosh (Erst+ Esss+ 2L)
+2e x cosh(Erst —Esss).

Application of the star-triangle transformation then
leads to the "expanded Kagome lattice" Lshown on the
right of Fig. 4(b)j which has the same coordination
number as the honeycomb (q =3) but a different
topological structure. The critical point of this new
lattice is given by

coth(J/kT, )= 1.67548 (expanded Kagome, q= 3),

and the corresponding Curie temperature is lower than
that of the honeycomb for which

coth(J/kT. ) =3'*=1.73205 (honeycomb, q=3).

The relationship between the square and Kagome
lattices is similar; the corresponding results are

coth(J/kT, )=2.29663 (Kagome, q=4),

=1+2&=2.41421 (square, g=4).

The dual lattice to the Kagome lattice is the "diced
lattice" Lsee Fig. 5(a)). This is a lattice of mixed
coordination number, q=3 and q=6, which may be
derived from the triangular lattice by converting all
the triangles into stars. Some other lattices with mixed
coordination number which can be derived in a similar
way are shown in Figs. 5(b), (c), and (d). In all these
cases the partition functions derived from the triangular
lattice apply only to zero field.

The partition functions and corresponding thermo-
dynamic and magnetic properties of finite clusters of

spins can always be written down in closed form. For
all but the smallest clusters, however, this entails
considerable labor. On the other hand, the thermo-
dynamic and magnetic properties of a simple cluster
such as the tetrahedron (four spins linked to one
another) can easily be transformed to yield the corre-
sponding properties of more complex clusters. Thus by
the same sequence of transformations illustrated in
Figs. 4(a) and 4(b), the properties of the octahedron
and truncated tetrahedron may be derived from those of
the tetrahedron, and those of the cuboctahedron and the
truncated cube from those of the cube. The zero-field
partition function of the cube may, in turn, be derived
by applying the star-triangle transformation to all
faces of the tetrahedron. The zero-field partition
function of the rhombic dodecahedron can be derived
from the octahedron in a similar way. These trans-
formations are illustrated in Fig. 6."As pointed out in
the introduction, the study of such finite clusters is
useful in calculating and checking the various "lattice
constants" that arise in the derivation of series expan-
sions for three-dimensional lattices, etc.'

The structures of possible decorating systems are
not restricted to nearest-neighbor interactions or to
topologies that that can be projected. onto a plane
without crossing bonds. Similarly the decorating
systems need not contain only a finite number of spins.
Thus, infinite "chains, " "ladders, " or "triangular
tubes" may be attached to vertices, bonds, or triangles
of a basic lattice. For the most part, however, these

e

f

FIG. 6. Some 6nite clusters which can be derived from the
tetrahedron by the decoration and star-triangle transformations:
(a) tetrahedron, (b) octahedron, (c) rhombic dodecahedron, (d)
truncated tetrahedron, (e) cube, (f) cuboctahedron, (g) truncated
cube.

"lVote added irl proof.—I. Syozi has noted some of these trans-
formations and describes further applications of the simple decora-
tion process in Statistics of Two-DimerfsiorraI, Lattices II, Rev.
Kobe Univ. Merchantile Marine (Japan) 21 (1955).
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extra possibilities seem to be of relatively little physical
interest.

2.5- -25

{). MODELS WITH SPIN GREATER THAN —',

In the standard Ising model the magnitude of all

spins is taken to be 5=—,'and the variables s; can only
assume the 2S+1=2 values, —1 or +1.By using the
generalized transformations, however, we may replace
a fraction of the spins on certain lattices by "anoma-
lous" spins of arbitrary magnitude. Thus for a spin of
magnitude 5 interacting symmetrically with three
standard spins of magnitude ~~, the transformations are
derived from

s
I

s
f(sr, ss, ss) = P exp

~

E—(si+ss+ss)
s=S

a)

X~~X X

X

i-

X

(c) "~x—x~„

x

X

2S+1= Sinh E(Si+Ss+Ss)
25

0.5-

I ~ t ~ . ] I V
7/j 4.

SPIN

-05

1
sinh —E'(sr+ ss+ss), (26)

25

FxG. 8. The critical temperatures of the lattices of Fig. 7 as a
function of S, the magnitude of the "anomalous" spins.

where the interaction energy J=kTE has been normal-
ized so as to equal one-half the maximum change in
coupling energy between the "anomalous" spin and one
standard spin. The energy parameter of the correspond-
ing triangle formed from the three standard spins is
given by

o'o'=(1+2 o hj (2oSo+1)IC/S])/

L1+2 cosh(E/S) g. (27)

Using this formula (and the corresponding expression

I I I

g 'oV

+q p jf~
(a)

FIG. 7, Some soluble Ising
lattices in which a fraction of the
spins have an arbitrary magnitude
S: (a) alternate honeycomb, (b)
alternate diced lattice, (c) deco-
rated honeycomb. The standard
(S=-,') spins are indicated by solid
dots, while the "anomalous" (S
arbitrary) spins are indicated by
stars.

for f) we may derive the exact partition function
(in zero field) of the lattice shown in Fig. 7(a). This is a
honeycomb lattice in which spins on alternate sites have
magnitude ~ and a magnitude 5 which is arbitrary. It is
derived from the standard triangular lattice by trans-
forming alternate triangles. The same transformation
applied to all the triangles yields the "alternate diced
lattice" shown in Fig. 7(b). This has "anomalous"
spins on all vertices of coordination number 3. Finally,
from the Kagome lattice we can derive a honeycomb
lattice of "anomalous" spins in which all the bonds are
decorated with standard (S=s) spins. This is shown in
Fig. 7(c). The fractions of "anomalous" spins on these
three lattices are:

1V,/E= —,
' (alternate honeycomb)

=as (alternate diced lattice)
= s (decorated honeycomb).

The critical temperatures of the three lattices may be
calculated as functions of the spin S by solving (27) for
E and using the known critical values of E' for the
triangular and Kagome lattices. The results are plotted
in Fig. 8. As the magnitudes of the anomalous spins
are increased from 5=—,'to 5=1, the critical tempera-
tures fall by 10 to 15%.As S increases further and tends
to infinity the critical temperatures approach limiting
values T,(~) which are about two thirds the values at
5=-,'. The quantitative behavior is represented by

T'.(S)=L(2S+1)/2m{1—o(S ')}T'.(~). (2g)

The partition functions of the three lattices can be
found readily even if direct bonds are introduced
between all the standard spins (indicated by solid dots
in Fig. 7). It is not possible, however, to introduce
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direct interactions between the anomalous spins or to
eliminate all the standard spins from the networks.

It may be remarked at this point that the additive
term inf which appears in the expression derived from
(8) or (22), for the free energy of a decorated lattice, is
essentially the free energy of a decorated system
averaged over all the possible states of the basic lattice
spins to which it is coupled. Consequently this term
can give rise to critical behavior only if the individual
decorating systems exhibit critical behavior.

Ss

f(S~,SB,H) = P exp P E;;s;s,+s~ P K;~s;
sz=Sz

+sB p E;Bs,+L p —s;I, (29)
p,

where the leading summation is over all possible spin
states of the "internal" spins s;. (ii is a merely a standard
or reference magnetic moment. ) Since the s; are dummy
variables which run symmetrically from —S; to +S,
(by integral steps), the function p(s&,SB,H) is always
invariant under the operation of inversion of the internal
spins:

s;~ —s; (internal spin inversion).

Now suppose that the magnetic field H acting on the
decorated lattice is zero. In this case the argument of
the exponential in (29) is invariant under the combined
operations of internal spin inversion and external spin
inversion:

Sg ~ sA and sB~ —sB (external spin inversion).

It follows that

and so
'lp(s~ SB',0)=f( SA) SB,'0),

(0)=|t' (0) and P+ (0)=g (0),

(30)

(31)

'7. MAGNETIC SYMMETRIES OF THE BOND
DECORATION PROCESS

The star-triangle process cannot be used to transform
the magnetic properties of lattices (in particular, the
spontaneous magnetization and the susceptibility)
unless the star-vertices have zero magnetic moment as
was the case in the transformation from honeycomb
to Kagome described above. The bond (and vertex)
decoration process, on the other hand, may always .be
used. Furthermore this transformation has certain
general symmetry properties with respect to the mag-
netic field which simplify its application and suggest
new possibilities. These points will now be investigated.

Consider, for definiteness, a decorating system
consisting of a finite number of spins s;, of varying
magnitudes 5, and magnetic moments p;, which
interact with one another and with the two standard
spins s~ and s~ at the ends of the decorated bond. The
partition function of the system will be of the form

whence, by the transformation Eqs. (12),

BL~(0)=BULB(0)=0 (all E,; an'd T). (32)

This means that the magnetic parameter I.' for the
undecorated (transformed) lattice vanishes identically
at all temperatures; consequently the derivatives
BL'/BE, B'I.'/BE', etc. , also vanish. In other words zero
(decorated) magnetic field transforms to zero (un-
decorated) magnetic field.

When the magnetic field H is not zero, the argument
of the exponential in (29) is invariant under inversion
of the internal and external spins combined with
reversal of the magnetic field:

H -+ H, I.~— L(field—reversal).

Consequently

lP( sAy sB i H) = P(sg)sB jH))
and so

(33)

0++( H) =4 (H—) 4 —( H) =—4+—+(H)
(34)

whence, by the transformation Eqs. (12), (11), and
(13),

hLg ( H) = 8L—g (H), B—LB( H) =—KALB(—H), (35)

E'(—H) =E'(H), (36)
and

j( H) =f(H). — (3'1)

Thus L' is an odd function of H (or L) whose even-order
derivatives with respect to H (or L) vanish in zero field,
but E' and f are even functions of H (or L) whose
odd-order derivatives vanish in zero field. These sym-
metries considerably simplify the transformation equa-
tions for the zero-field properties of the lattices. On
defining the reduced energy per vertex by

e(E)= V(E)/N J, — (38)

the reduced spontaneous magnetization per vertex by

g (E)= I (E)/Np, (39)

and the "specific susceptibility" per vertex by

$(E)=kTy(K)/NIJ, ', (4o)

the transformation equations between the properties
of the decorated lattice (denoted by the subscript D)
per vertex of the basic lattice, and the properties of the
basic lattice can be written, for zero field (L=L'=0),

, BE B
wB(E) = w(E')+-,'d inf, (41)

BE BE
BI.'

a (E)= a(E'), (42)
BI.
(BL'q ' B'E' B'

$ (E).=
~ ~

$(E')+ 'tl, (E')y-', d 1 f (43).
E BL,) BL' BL'
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The coefficient d denotes the number of decorated bonds
meeting at each vertex of the basic lattice.

For any given decorating system f one can envisage
a "complementary" system Pf in which the signs of the
magnetic moments of all the internal spins have been
changed:

as p; ~ —ti;, all i (moment reversal).

The exponential in the formula for the complementary
partition function it) is then invariant under internal
spin inversion combined with a change of the signs of
the interactions with the two external spins sA and sB.
Thus the complementary system may equally well be
regarded as derived from the original system by the
operation

+iA ~ +iAp EiB~
all i (external interaction reversal),

no change being made in the sense of the magnetic
moments. Now if the sign of the magnetic parameter L
in the complementary partition function is altered,
ff(L) is restored to P(L), i.e.,

(44)

whence, by (35), (36), and (37),

SLED)= —8Lg) eLIi'f—=—5Lii, —(45)

(46)

(47)

where the identities hold for all H and all T. Thus the
complementary system transforms into a bond with the
same interaction E' as that derived from the original
system. The factor f is also identical. The only difFerence
between the two cases is the reversal of the signs of the
increments to the magnetic moments of the two
external spins A and B.

The foregoing results suggests a general model of an
antiferromagnet. Consider a decorated lattice in which
the spins on the vertices of the basic lattice have zero
magnetic moment, and suppose, furthermore, that
alternate bonds have been decorated with an arbitrary
magnetic system and its complementary system. The
arrangement is to be such that at each vertex the
magnetic increments 0L from the erst set of systems
are balanced by the increments 8L)= —8L from the
complementary systems. Consequently, when the
decorated lattice is transformed, the magnetic pa-
rameter L' of the resultant undecorated lattice will
be identica/ly sero, the identity holding for all values of
the original magnetic field H and temperature T. This
means that the thermodynamic and magnetic proper-
ties of the decorated lattice in an arbitrary magnetic keld
can be derived from the properties of the original lattice
in sero magnetic jield

The spins in a given system of such a decorated
lattice are coupled to those in the neighboring comple-

+L
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+
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+
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+

II
+
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+

+
II
+

+
II
+

FIG. 9. A model of an antiferro-
magnet which is soluble in the
presence of a magnetic field. Non-
magnetic spins are indicated by
open circles. The interaction
energy is positive for the vertical
bonds but negative for the hori-
zontal bonds.

Y Y T 1

mentary systems via a spin of the basic lattice. By the
definition of a complementary system (in terms of
reversed external interactions) the resultant interactions
are negative so that the spins in the complementary
set of systems tend to align antiparallel to their counter-
parts in the original set. Thus all such models will be
antiferromagnetic and will show no spontaneous
magnetization although long-range order will exist
below a critical temperature. One of the simplest
models of this type is the decorated square net shown
in Fig. 9. The spins on the vertices of this square net
have zero magnetic moment (open circles in the figure).
The magnitude of the interaction energy is the same for
all bonds, but is positive for the vertical bonds and
negative for the horizontal bonds. The energy, specific
heat, magnetization, and susceptibility as functions of
the magnetic 6eld and the temperature for this model
can be derived readily from Onsager's expressions for
the energy and specific heat of the simple square net. '
The model displays some features of considerable
physical interest but a detailed investigation and
discussion is to be published separately.

8. MAGNETIC MOMENT TRANSFORMATIONS

Two Ising lattices with the same topological structure
and the same interaction energies between their spins
may dier in that corresponding spins on the two
lattices have different magnetic moments. The zero-
field thermodynamic properties of two such lattices will

coincide but their magnetic properties will dier. In
this section we study the relationship between the
spontaneous magnetizations and susceptibilities of
corresponding models of this type. The argument is
mainly restricted to "loose-packed" lattices such as the
two-dimensional square and honeycomb lattices, and
the three-dimensional simple and body-centered cubic
lattices. Although all the vertices of a loose-packed
lattice are topologically identical, the lattice may be
divided into two congruent sublattices 2 and 8, such
that all the nearest neighbors of an A vertex are 8
vertices and vice-versa. In other words a state of
complete antiferromagnetic order is possible. It will be
supposed that the spins of the 2 sublattice have
magnetic moment pA while those of the 8 sublattice
have a different moment pB which may be positive,
negative, or zero.

A simple model of this type is the "semiferro-
magnetic" honeycomb lattice discussed by Naya, 4 in
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which alternate spins of a honeycomb lattice have zero
magnetic moment, i.e., p, &

——p, p&=0. By employing the
matrix representation of the Ising partition function
for zero field and performing a perturbation calculation,
Naya showed that the spontaneous magnetization per
spin of the semiferromagnetic honeycomb was just
half that of the normal ferromagnetic honeycomb
lattice, i.e.,

(o) —&I (o)ISemiferro g & Ferro (48)

Using this result Naya was able to relate the magneti-
zation of the normal honeycomb lattice to that of the
triangular lattice.

In a similar way Syozi and Nakano' discussed a
"ferrimagnetic square lattice" in which pz differed from

p& and the interaction energy J was negative. By
another somewhat lengthy matrix perturbation argu-
ment they showed that

IFerri p (i»A 1»B)/Ferro (49)

where JF„„&P& is the reduced spontaneous magneti-
zation per spin of the normal ferromagnetic square
lattice which has been given explicitly by Yang. "

The two results (48) and (49) are more or less obvious
on intuitive grounds. They seem to be merely special
cases of a general theorem which states that the
spontaneous magnetization of any lattice of similar
vertices (in two or more dimensions) which has different
magnetic moments on diferent vertices, is given by

I (0)=py(0) (50)

(51)r= 2 v»v»/ Z v»,

where the subscript m denotes the lattice with "mixed"
magnetic moments»r» (k=1, 2, , g) occurring in
proportions y» and were g&" is the reduced spontaneous
magnetization of the corresponding standard ferro-
magnetic Ising lattice.

In their arguments Syozi and Nakano, and Naya used
the "physical" definition of spontaneous magnetization
as the limit

Iis&= lim I(B),
H-+0+

(52)

where I(II) is the thermodynamic mean magnetization
in a field Lt. On the other hand, as shown for example
in the review article by Newell and Montroll, " the
spontaneous magnetization of a normal Ising lattice is
related to the "long-range order" by

where

L8"'1'=P"'/» 2= (s~-),

(sps„)= lim (sps»),

(53)

(sps») being the mean (zero-field) correlation between

"C.
¹ Yang, Phys. Rev. 85, 808 (1952).

'3 G. F. Newell and K. W. Montroll, Revs. Modern Phys. 25,
378 (1953).

Z= P exp(E+s, s,+Lgs;}, (55)

p 8
x(II)= ZLL f ZL)t

InZ= (56
XkT Z & Z )

where the subscripts I denote differentiation with
respect to L. The squared term (ZL/Z)' is essentially
the square of the magnetization. In the limit of zero
field it must be replaced by the long-range order
(sps„). On performing the diA'erentiations and letting
H and L tend to zero, we obtain

Eke =Py, P»»r'((s»s») —(s,s„)),

which expresses the susceptibility as a sum of all
possible pair correlations (s»s»). When the magnetic
moments vary from spin to spin, the formulas are
easily generalized and yield

&kTx =Z» Z»»»»»((s»s») —(sps. )). (58)

This expresses the susceptibility of a mixed lattice as a
sum over the same pair correlations as in (57) but with
the terms weighted by the factors p&p, &.

For the case (denoted by a subscript l) of a loose-
packed lattice with moments p~ and p~ on the two
congruent sublattices, (58) becomes

NkTXi s (PA +I»B )ZAA+6A6BZAB& (59)

where the sum Z~~ is over all the correlation functions
for which both spins are on the same sublattice, while

Z~~ consists of all those terms for which the two spins
are on different sublattices. Now for the standard
ferromagnetic lattice with interaction parameter E; we
have p~= pg=p and so the total specific susceptibility

the spins on sites 0 and h. This relation shows that the
spontaneous magnetization is not really a "magnetic
property" of the lattice but is essentially a reQection
of the thermodynamic correlations or order. In the case
where the magnetic moments are not all equal the
relation (53) may be generalized to

P-"'j'= p'(sps )

where p is the mean magnetic moment defined in (51).
This result confirms the general theorem (50). Naya's
formula (48) is recaptured by putting g=2, yi ——y2=-'„
p~

——p, and p2
——0, while Syozi's and Nakano's relation

(49) corresponds to g = 2, yi ——ys ———,', p, =pA, and
p2= —p~. The minus sign here takes account of the
antiferromagnetic interactions (see the discussion below
and in the previous section).

We now try to find a theorem similar to (50) for the
susceptibilities of a standard and "mixed moments"
lattice. The susceptibility per spin of a standard Ising
lattice is derived from the partition function
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may be written

g(E) = (Nkr/&2)x(E) =Z,+Z„. (60)

For the second derivative we have

Zl, r, (——coshE)**~' Q P P s~s~ g (1+s;s,v)
ss=+1 h It $j

On the other hand, the corresponding antiferromagnetic
lattice with interaction parameter —E is quite
equivalent to the mixed lattice with @~=p= —p~ and
interaction parameter +E. This 'equivalence follows
from the invariance of the partition function (55) under
change of sign of any of the dummy variables s;. A
reversal of the magnetic moments on one sublattice
and a change in the sign of the interaction thus leaves
the partition function unaltered since the changes can
be exactly compensated by altering the signs of all the
s, on the one sublattice. By (59) the total speci6c
susceptibility of the standard antiferromagnetic lattice
is thus

h.t;(E)=~(-E)= (»2'/")x(-E)
+AA ~AB (61)

Solving this equation with (60) for Zzz and Z&e and
substituting in (59) shows that the susceptibility of a
general "loose-packed mixed" lattice is related to the
susceptibility of the corresponding standard lattice by

= (coshE)t~& P g(r)v", (67)

where g(r) is the number of graphs of r bonds which
have two odd vertices. (The degenerate cases in which
these odd vertices coincide, and cancel one another,
must be included. ) For a loose-packed lattice all those
graphs in which the two odd vertices (corresponding
to sq and sI,) are on the same sublattice will have an
even number of bonds. Conversely in all graphs with
an odd number of bonds the two odd vertices will be on
different sublattices. Thus the even powers of v in the
expansion (67) correspond to "AA" correlations whilst
the odd powers correspond to "AB"correlations. Since
the expansion of Z has only even powers, the same
decomposition holds for Zl, z/Z=NkTx/p'. Conse-
quently, if the susceptibility of a standard lattice is
expanded in powers of v,

where

xi= 2 (t ~'+t e')x++t ~t ~x (62)
EkT

x= Q x(r)v",
r=0

(68)

x+= (1/2t ')Lx(E)+x(—E)j
x-= (1/2t ') Lx(E)—x(—E)j

(63)
and compared with (60), we see at once that the even
powers correspond to Z~~ and the odd powers to Z~~.
The general theorem (62) may thus be written

In the particular case of a semiferromagnetic lattice, for
which one sublattice has no magnetic moments, (62)
reduces to

', (p~'+tie') P-x(2t)v"
XkT C=O

xe= 2t 'x+= kLx(E)+x(—E)j. (64) +@/pe P g(2t+1)v '+ ) (69)
8=0

These results may be seen in another way by writing
the partition function in terms of the counting variable

v = tanhE.

In zero magnetic field

Z= (coshE)'*~& g g (1+s;stv)
ss=+l ij

(65)

= (coshE)&~& P e(r)v",
r=O

(66)

where rt(r) is the number of closed graphs of r bonds
that can be formed on the lattice Le(0) =1j.No bond
must be used more than once and the graphs must have
no "odd vertices, " i.e., an even number of bonds must
meet at each point. For a loose-packed lattice it follows
that the total number of bonds in any closed graph is
even so that (66) is an expansion in even powers of v

only. The first derivative Zl. has no expansion in v

since the zero-6eld magnetization vanishes identically
at high temperatures and v is a "high-temperature
variable" which tends to zero as T becomes infinite.

which, shows explicitly that if m terms of the standard,
susceptibility expansion (68) are known, say by
counting con6gurations, then the same number of terms
in the expansion of x~ for a mixed lattice can be written
dow'n at once. In particular the series for the corre-
sponding semiferromagnetic lattice consists of just the
even terms of the standard expansion. It is worth
noting that the theorem holds for three-dimensional
lattices and finite clusters as well as for the usual plane
lattices.

9. SUSCEPTIBILITIES OF THE HONEYCOMB
AND TRIANGULAR LATTICES

The susceptibilities of the honeycomb and triangular
lattices will now be related with the aid of the results
of the previous section. We follow the method used

by Naya4 in deducing the spontaneous magnetization
of the honeycomb from that of the triangular lattice.
Firstly we notice that the star-triangle transformation
may be used to connect the triangular lattice (subscript
T) in the presence of a magnetic Geld with the semi
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e4x'+1=2 cosh2E, (70b)

and where the honeycomb lattice has S spins and the
triangular —,'S spins. This leads to

x»(E) = 2xr(E') (71)

where x»(E) and yr(E') are the zero-field suscepti-
bilities Per sPi72 of the semiferromagnetic honeycomb
and triangular lattices, respectively. We now use the
theorems of the previous section to relate g8~ to the
susceptibility pII of the standard ferromagnetic honey-
comb lattice (H). Since only series expansions for the
susceptibilities are available at present, it is convenient
to express the Anal results in terms of the two counting
variables

v=tanhE and x=tanhE'. (72)

We find that the susceptibility of the triangular lattice
is given in terms of the honeycomb susceptibility by

p
x2 (24) =2px77(2)+xa( —2)7= p xa(2t)7", (73)

gpT s=o

where, in virtue of (70b),

71'= W (1+741)/ (1+W')

—751+2412 74|4 7175+7417+~8 74110 24tll+. . . (74)

or

25 (1+212)2

= 712 714+2718—4718+971—" 217112—

+512t'4 —1272|15+.. . (75)

Evidently the first 2m terms of the honeycomb expan-
sion, or the first ns even terms, are needed to calculate
the first 772 terms (odd and even) of the triangular
series. The relation between the susceptibilities of the
two lattices is not symmetric since from the triangular
expansion it is only possible to calculate half the terms
in the honeycomb series. In contrast, from the first e
terms of the susceptibility series for the Kagome
lattice one can calculate the first 72 terms (odd and even)
of the honeycomb expansion and vice-versa.

As explained in the Introduction, the relation (73)
is very useful in the actual calculation of the suscepti-
bility series for the triangular lattice. The counting
problems on the honeycomb are much easier than on the
triangular lattice and twenty-four terms of the expan-
sion for x& have been obtained. In this way the first

ferr0772ag72etic honeycomb lattice (SH) in the presence
of a field. (The transformation is applied only to the
nonmagnetic honeycomb vertices. ) Thus

Z»(E,L) =2' (cosh3E cosh'KP "Zr(K')L)) (70a)

where

twelve terms of the triangular susceptibility series have
been derived. '4

High-temperature expansions for the triangular
lattice with a72tiferr0772ag72etic interactions (241(0) only
converge for temperatures above the critical tempera-
ture of the corresponding ferro774ag74et2c lattice even
though the energy, susceptibility, etc. of the antiferro-
magnetic lattice are analytic at all temperatures. The
high-temperature series will not, therefore, yield
numerical values for the susceptibility of the anti-
ferromagnetic triangular lattice at low temperatures.
Now, through the transformations (74) and (75), the
antiferromagnetic triangular lattice corresponds to the
honeycomb lattice with an imaginary energy parameter
(negative v2). The corresponding honeycomb series,
however, converges for the whole temperature range of
the antiferromagnetic triangular lattice since for
—1&+&0 the modulus of v is always less than e„;t,„&.
Consequently it is possible to obtain numerical values
of the susceptibility of the antiferromagnetic triangular
lattice at temperatures below the ferromagnetic Curie
point, by summing the terms of the corresponding
honeycomb expansion and using the theorem (73)
directly. This result is especially valuable since, owing
to the high degeneracy of the ground state of the anti-
ferromagnetic triangular lattice, it is not possible to
obtain low-temperature expansions for this lattice.

If the susceptibility of the honeycomb (or series for
it) were known as a function of the three interaction
parameters E~, E2, and E3, corresponding to the three
lattice directions, then the use of the asymmetric
star-triangle transformation would yield the triangular
susceptibility (or series for it) as a function of the three
parameters E~', E2', and E3'. In this case the suscepti-
bility of the square net may also be obtained by setting
E3'=0 or by letting E3 become infinite. The asym-
metric honeycomb lattice thus occupies a central
position in that all the zero-Geld properties of the square,
triangular, and Kagome lattices can be derived from
it by direct transformation.

The arguments used above may, of course, be applied
to 6nite clusters. Thus the susceptibility of the tetra-
hedron can be derived from the even part of the suscepti-
bility of the cube by a transformation similar to (73),
(74), and (75).

10. TRANSFOR&ATION OF SPIN CORRELATION
FUNCTIONS

The odd terms in the susceptibility series for the
honeycomb (or other loose-packed lattice) correspond
to spin pair correlations (s5s5) of type "AB" in which
the two spins concerned are on different sublattices.
The star-triangle transformation to the triangular
lattice necessarily removes one of these spins and this is
essentially, ~be reason why the odd terms in p& cannot

'4These terms and the details of the calculation are to be
published by M. F. Sees.
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be derived from the triangular susceptibility expansion.
In this section, however, we show that it is always
possible to express an "AB" correlation in terms of
"AA" correlations only. In this way the complete
expression for the honeycomb susceptibility can be
derived from the properties of the triangular lattice.
It transpires that higher-order correlation functions of
the triangular lattice, such as ($2$2$2$4)r, are involved
so that although the relationship is of theoretical
interest it is not actually very useful for practical
calculations.

The theorem to be demonstrated shows that a
correlation function involving a spin s0 can be expressed
as a linear combination of correlation functions in-

volving the q spins, s» s2, sq which are nearest
neighbors to s0. The mean value of the correlation
product between spins $0, sg, sg ''' s on a net with
general interactions E;; is

S0SOSa' ' 'Sm

coefficients n„, Pg, y . so ensuring that (78) is a
faithful representation of (77). On inserting this
transformation into (76), we get

SOSgSP ' ' '
Srrt, &r SrSgSh ' ' '

Srw
r=l

(2)
+ ri pt(SagSbtSct$0$h' ' 'Sga)+ ' ' ' (80)

which expresses the correlation with s0 as a sum of
correlation functions involving the nearest-neighbor
Splns $1 S2 ' Sq in place of s0 ~ If the coordination
number q is greater than 2 the right-hand side of (80)
will include correlation functions of higher order than
the original correlation (Sos,sh . .$ ).

In the case q=3, which is relevant to the honeycomb
lattice, the explicit expression for the pair correlation is

(sosq)=ng(sgSq)+n2($2$0)+ggo(sosq)+P(sgsososq)g (81)

s i=+1
$0$ Sh' ' .$ exp{ P E;;s;s;}/Z, (76)

where

which we may try to represent in the form

Zo($1,$2, Sq)

(2) (0)
= j P gqrSr+ P PtSagSbgScg+ P QggSaa' ' Segg+ ' ' ' }

1 1

X p exp(Eisosi+E2$0$2+ +E,sos ), (78)

where the g7 coefficients n„ the (2) coeflicients Pg, the
(qo) coefficients y, etc. , are functions only of the g7

interaction parameters E1,E2, ~ ~ ~, E, between the spin
$0 and its nearest neighbors s1, s2, ~, s, . In the products
SagSbgScg, Sa Sb Sc Sd Se, etC. , nO SPin may aPPear mOre

than once so that the longest product has q or q
—1

factors, according as q is odd or even, and altogether
there are

(2)+ (2)+ (0)+ (79)

distinct products with corresponding coefficients gq„P„
7„,etc. Now there are 2q distinct joint spin states of the
nearest-neighbor spins and the identity of (77) and (78)
must be enforced for all these states. The right-hand
sides of (77) and (78) both change sign when the signs

of all the spins s1, s&, ~ s, are altered. C~m.sequently
we obtain only —,'2q=2q ' independent equations be-
tween (77) and (78) which exactly determine the set of

where Z is the partition function for the net. Consider
the summation over $0——&1 in the numerator of (76),

Zo($, ,$2) Sq)

so exp(Eisosi+E2S0$2+ ' ' '+Eq$0$q), (77)
sp=+1

p = 4 $tanh (Ei+E2+E'2)+tanh (Ei—E2—E'2)

+tanh(E2 —Eo—Ei)+tanh(E2 —Ei—E2)], (82a)

and

ag ——4)tanh(Ei+ E2+Eo)+tanh (E i—E2—Eo)
—ta,nh(E, —E,—E,)—tanh(E, —E,—E,)], (82b)

and o.2 and n3 are derived by cyclic interchange of E1,
E2, and E3. If s0 is a spin decorating a single bond, then
q= 2, and the formulas reduce to

(sos, )= 2 ftanh (Ei+E2)+tanh (E,—E2)](Sis,)
+2 Ltanh (El+E2) tanh (El E2) ]($2sg)g (83)

which involves only pair correlations.
The theorem (81) may now be used to change the

"AB"correlations on the honeycomb lattice into "AA"
correlations (the neighbors of a 8-spin are all A-spins)
and by the star-triangle transformation these can then
be expressed as functions on the triangular lattice. In
terms of the variables v and w, defined in (72), (74),
and (75), we Gnd that the complete susceptibility
expression for the honeycomb can be written

3v(1+v') ggg2 2v'
y~(v)= 1+ Xr(w)— 8z (w), (84)

1+3v' kl' 1+3v'
where

8r(w) = P (sgs2$2sq)v

=
C Zz (w)] ' P t (r)w'

r=0

and where t(r) is the number of r-bond graphs on the
triangular lattice with four odd vertices three of which
occur at the vertices of a fixed triangle (si$2$2). The
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function 0 has no direct physical significance, although
it should resemble somewhat the specific heat C and the
temperature gradient of the susceptibility Bx/BT, since
both these functions have expansions in terms of
restricted conGgurations with four odd vertices. The
leading term in the expansion of ep is w= 5 + ' ' ' so that
the first two odd terms in pic(v) are, in fact; derivable
from the triangular susceptibility alone.

It is obvious from the foregoing work that expressions
similar to (84) will hold between the individual corre-
lation functions of the triangular and honeycomb
lattices. The triangular pair correlations will yield the
honeycomb "AA" pair correlations, but the "AB"
correlations will require the fourth-order correlation
function (sis2sas, )p. A similar distinction will arise in the
relations for the higher order honeycomb correlation
functions.

11. CONCLUSIONS AND SUMMARY

We have shown how the decoration and star-triangle
transformations may be generalized so as to apply to an
arbitrary mechanical system coupled to two or three
spins of a basic Ising net. In this way exact solutions are
made available for many further plane Ising lattices,
some of which have been illustrated. The transfor-
mations also ease the task of evaluating the thermo-
dynamic and magnetic properties of some more
complicated Gnite spin clusters. With the generalized
transformations it becomes possible to introduce spins
of arbitrary magnitude onto an Ising net. The critical
points of three such lattices in which standard (S= i2)

and "anomalous" (S arbitrary) spins alternate have
been evaluated as a function of S.For a Gxed maximum
interaction energy between spins, T, falls and
approaches a limiting value as S increases.

The symmetries of the decoration process with
respect to the magnetic Geld have been investigated.
The results simplify the application of the trans-
formations and lead to the discovery of a general class
of antiferromagnetic Ising models in which "comple-
mentary" spin systems interact with one another via
nonmagnetic spins. All the thermodynamic and mag-
netic properties of these models can be evaluated
exactly even in the presence of a magnetic field.
(Detailed discussion of such models is postponed for a
further publication. )

The work of Naya and of Syozi and Nakano on the
spontaneous magnetizations of the semiferromagnetic
honeycomb and the ferrimagnetic square net has been
generalized for arbitrary lattices of mixed magnetic
moments. Similar relations have been obtained for the
susceptibilities of loose-packed lattices with diferent
magnetic moments on the two sublattices. From these
results a transformation connecting the susceptibilities
of the triangular and honeycomb lattices has been
derived. This is very useful in the numerical calculation
of the triangular susceptibility series, since this can be
deduced from that of the honeycomb which is much
easier to evaluate. Finally it has been shown how a
correlation function involving a particular spin can
be expressed as a linear combination of correlation
functions involving only the nearest neighbors of the
given spin. This enables the individual correlation
functions of the honeycomb and triangular lattices to
be related to one another.
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