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Velocity of Sound in Litluid Hest
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The velocity of sound in liquid He' along the vapor pressure curve between 1.2'K and 3.2'K has been
measured using a pulse technique at 14 Mc/sec. Between 2'K and 2.6'K the variation with pressure up to
1 atmosphere has been investigated. The results are combined with other known data to calculate various
thermodynamic quantities for the liquid. Available data on the specific heat along the vapor pressure curve
have been converted into the more theoretically interesting case of the specific heat at constant volume

along an isopycnal. The phonon contribution to the specific heat is discussed.

1. INTRODUCTION

T the outset of this research the specific heat and
density along the vapor pressure curve were

known, but, in order to gain a more complete knowledge
of the thermodynamic functions, it was necessary to
measure one further thermodynamic derivative. We
decided to obtain the adiabatic compressibility by
measuring the velocity of sound, since this can be
determined with some accuracy. We were also interested
in using the velocity of sound to calculate a possible
phonon contribution to the specific heat. ln the case of
liquid He' such a contribution is well known to exist
and is a very important feature of the properties of the
liquid.

2. EXPERIMENTAL DETAILS

The pulse technique was similar to that used previ-
ously' ' for liquid He'. The pulse length was 10 micro-
seconds and the carrier frequency was 14 Mc/sec. The
apparatus is shown in Fig. 1. The sound was generated
by a quartz crystal, reQected from a polished stainless
steel surface and received by the same crystal after
having travelled a total distance of 1.317 cm. The time
of Qight was measured by a Du Mont 256D oscilloscope
with a calibrated delay and a quartz crystal controlled
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time standard. The intrinsic time delay between the
start of the time base and the pulsing of the crystal
was determined by observing the positions of the first,
second and third echoes. Because of the low acoustic
impedance of the liquid and the bad mismatch to the
crystal, the pulse shape was very poor and it was
necessary to use a high input power in order to observe
the true foot of the echo, which otherwise was hidden
amongst the noise.

The size of the echo decreased as the temperature
was raised. This may correspond to an increasing
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FIG. 1. The apparatus.
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TABLE I. Some thermodynamic quantities for liquid He .

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

(deg-1)

0.01937
0.02828
0.03925
0.05264
0.06904
0.08939
0.1152
0.1489

O.p(Vsat, &)
(deg-1)

0.0215
0.0323
0.0458
0.0628
0.0846
0.112
0.151
0.204

C885
(cal mole 1deg 1)

1.026
1.148
1.280
1.445
1.63
1.84
2.07
2.36

Cv(Veal, &)
(cal mole 1deg 1)

1.02
1.12
1.23
1.35
1.45
1.55
1.61
1.66

C (VO, T)
(cal mole 1deg 1)

1.02
1.11
1.21
1.31
1.39
1.47
1.50
1.53

y(Vsat, T)

1.00994
1.0237
1.0485
1.0880
1.148
1.240
1.376
1.585
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3. THERMODYNAMICS

Some thermodynamic quantities are collected to-
gether in Table I. The subscript "sat" implies that the
quantity is measured at a pressure and temperature on
the vapor pressure curve, or in the case of a temperature
derivative that the change in temperature is accom-
panied by a change in pressure such that the vapor
pressure curve is followed. The adiabatic compressi-
bility along the vapor pressure curve is obtained directly
from the velocity of sound:

Ks(T, V„t)= 1/p„tlt'.
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Pressure -p(mm Hg)

FIG. 2. The velocity of scund as a function of pressure.

attenuation, but could also be a consequence of the
decrease in the density p and the velocity of sound I&,
resulting in an increasing discrepancy between the
acoustic impedance (prst) of the liquid and the crystal.
Above 2.4'K the echo disappeared at the vapor pres-
sure, but returned when the pressure was raised. The
velocity was therefore measured at various pressures,
determined from the height of the mercury in the
Toepler pump used to fill the apparatus with He', and
the curve was extrapolated back to the vapor pressure
(Fig. 2). Below 2.4'K the accuracy of the velocity is
about &1/o and is mainly due to the uncertainty of
the position of the foot of the echo, but above 2.4'K
the error is determined by the uncertainty in the above
extrapolation procedure and has risen to about &10jo
at 3.2'K.

In Fig. 3 the velocity of sound is plotted against
temperature along the vapor pressure curve. There is
good agreement with the data of Laquer, Sydoriak,
and Roberts. ' The apparent discrepancy suggested by
our earlier results'4 was a consequence of the fact that
we were using smaller power inputs and were not
observing the true foot of the echo.

The extrapolated value of the velocity at O'K is
183&3 m sec '

3Laquer, Sydoriak, and Roberts, Symposium on Solid and
Liquid He, Ohio State University, 1957 (unpublished), p. 15.

H. Flicker and K. R. Atkins, Symposium on Solid and Liquid
He', Ohio State University, 1957 (unpublished), p. 11.

The density p„& has been measured by Kerr, ' and from
it we can deduce the coeKcient of expansion along the
vapor pressure curve, rr„t= (1/V»t) (dV,«/dT), which
is related to the more commonly defined coefFicient at
constant pressure, n„= (1/V) (BV/BT)~, by the equa-
tion,

(dp/dT) „, is the slop. e of the vapor pressure curve.
p is the ratio of specific heats and also the ratio of
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FIG. 3. The velocity of sound as a function of temperature along
the vapor pressure curve. O, these experiments; ———,smoothed
data of Laquer, Sydoriak, and Roberts. '

' E. C. Kerr, Phys. Rev. 96, 551 (1954).
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matically assuming the value corresponding to the
liquid in equilibrium with the vapor. From a theoretical
point of view there is much more significance in the
variation with temperature at constant volume, that is,
along an isopycnal. We have calculated C, as a function
of temperature at a constant molar volume Vo=36.8
cm' mole ', which is the value of V„~ at 1.0'K, using
the approximate formula

d (n~)
C„(Vs,T) =C, (V s, T)+T

~ ~
(Vs—V, g), (6)

dT &Ez

which assumes that n~/Er is constant over the range
of V covered.

0.5

isothermal to adiabatic compressibilities'.

y=C„/C, =ET/Es. (3)

The equation relating the specific heat at constant
volume, C„ to the measured specific heat along the
vapor pressure curve, C„~, is

'1
Temperature (4 K )

FIG. 4. The speci6c heat. C, &, directly measured speci6c heat
for liquid in equilibrium with vapor. C„(VO,T), speciac heat at
constant volume along the isopycnal V0=36.8 cm' mole '. For
the lower curves the phonon contribution has been subtracted,
assuming a value for the cutoff frequency which is shown adjacent
to each curve. v, =2.7X10" sec ' is the Debye cutoff frequency
which makes the number of modes equal to the number of atoms.

4. THE SPECIFIC HEAT

Figure 4 shows these various types of specific heat
as a function of temperature. Although C„t is approxi-
mately linear above 1.5'K, the specific heat at constant
volume along an isopycnal, C„(Vs,T), gives a curve
which is concave downwards.

An interesting question is whether there is a phonon
contribution to the specific heat similar to that found
in liquid He'. Since 14-Mc/sec sound can be observed
experimentally, there is no question that phonons of
low frequency exist; and the real point at issue is how
large the frequency can become before there is ap-
preciable attenuation of the wave in a distance com-
parable with one wavelength. The maximum possible
phonon contribution is obtained by equating the
number of normal modes to the number of atoms, and
corresponds to a cutoff frequency

v, = (3X/4rrV)&ur~2. /X10" sec '.

Finally

C,=yC„=C..t+rr„VT(dp/d T), ,

y —1=a sVT//EsCy.

(4)
In Fig. 4 we have subtracted the phonon contribution
for cut-oG frequencies of 0.5v,', 0,75',', and 1.0v, . This
contribution was calculated from the formula

The measured quantities are p„p and n„p, ' C„t,'
(dP/dT) n, ,r and I&. .The other thermodynamic
quantities can be obtained from Eq. (1) through (5)
by an iterative procedure.

In this way the various quantities are calculated as a
function of temperature, with the molar volume auto-

' G. de Vries and J. G. Daunt, Phys. Rev. 92, 1572 (1953);93,
631 (1954); T. R. Roberts and S. G. Sydoriak, Phys. Rev. 98,
1672 (1955); Abraham, Osborne, and Weinstock, Phys. Rev. 98,
551 (1955); Ilrewer, Sreedhar, Kramers, and Daunt, Phys. Rev.
110, 282 (1958).

r T. R. Roberts and S. G. Sydoriak, Phys. Rev. 106, 175 (195'7).

and it was not assumed to vary as T'. It will be seen
that the phonon contribution may be quite large at
2.5'K and it is even possible that the remaining
contribution has a maximum near 2'K. On the other
hand, if for any reason phonons do not exist above 10"
cps, then the phonon contribution is not very
important,


