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The decay of the A hyperon is studied within the framework of the chirality-invariant four-fermion
interaction. It is shown that the branching ratio of the charged and neutral modes, the s- to p-wave emission,
as well as t'he sign and magnitude of the asymmetry parameter of the p+~ decay mode, can be understood
on the basis of the U-A theory. Improvements upon the Born approximation, using dispersion theory,
indicate that these conclusions are not invalidated by taking into account the pion-nucleon interaction.

Consider for example, the matrix element for P
decay: the transition amplitude is proportional to

l. INTRODUCTION

'HE gross features of weak interactions (like cou-
pling strengths and the breakdown of space

reflection and charge conjugation invariances) are now
fairly well understood. ' Increasing confirmation has
come from various experiments during the last few
months for a four-fermion interaction in P decay of the
V-A form. Indeed, the chirality-invariant V-A theory
appears to be capable of explaining all experimental
data on weak interactions involving nonstrange par-
ticles. %e have already remarked' on the possibility of
all weak interactions proceeding directly or indirectly,
through a universal chiral four-fermion interaction with
suitably chosen pairs of charged and neutral 6elds.

The V-A interaction 6nds its simplest expression' '
as a self coupling of a chiral current, composed additively
of a lepton current (j"), a strangeness-conserving cur-
rent of strongly interacting particles (f") and a strange-
ness-nonconserving current of strongly interacting par-
ticles (ri") in the form
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Choosing the form

~.=4'-&.(&+»)4'v
one obtains

&„=N„y„(f+gyv)tc +tc„f(r""(ht+hvyv)
+be" (hv+h4yv)) (p„—rt„)u„,

z =Gx-', f(j"+J"+g")t,(j),+A+/))},
where f, g, and h; are invariant functions only of the
momentum transfer at the np vertex. Notice that the
terms involving h, vanish in the limit of zero momentum-
transfer. The two form factors f and g are the renor-
malization factors of the vector and axial vector parts
of the current and are in general not equal (in the
absence of renormalization effects f=g=1). The com-
parison of the lifetimes of the muon, 0'4 and the
neutron, 4 give for the zero-m. omentum limits:

where G is the universal weak coupling constant. That
the lepton currents j" involved in P decay and the
decays of the muon, the pion, and the E meson are the
positive chiral charge-exchange currents follows from
the agreement of the experimental results with the
predictions of this interaction. No such immediate con-
nection exists between the form of the transition
amplitude and the structure of the current operator for
Jk ()r ci)

j'(o)=&, g(o)=1.2.
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~ E. C. G. Sudarshan and R. E. Marshak, Proceedings of th
Padua-Uenice Conference, September, 1957; Phys. Rev. 109, 186
(1958). See also, R. P. Feynman and M. Gell-Mann, Phys. Rev
109, 193 (1958), and J. J. Sakurai, Nuovo cimento 7, 649 (1958)

20kubo, Marshak, Sudarshan, Teutsch, and steinberg, Phys
Rev. 112, 665 (1958).' E. C. G. Sudarshan and R. E. Marshak, Phys. Rev. 109, 186
(1958); the negative sign given in this paper refers to the nucleo
asymmetry (the pion asymmetry has the opposite sign).

Thus, in spite of the strong interactions, the admixture
of the negative chiral current of the physical nucleon
states in the vertex function is small.

The absence thus far of any hyperon-lepton decays f.

e Sosnovskii, Spivak, Prokoflev, Kutikov, and Dobrynin, re-
0 ferred to in the summary talk by M. Goldhaber, Proceedings of the

1958 Annual International High-Energy Conference at CERN,
edited by B. Ferretti (CERN, Geneva, 1958).

)Note added in proof.—Two examples of the decay mode
h. —+ p+e+v have been observed by the Berkeley group; although

0 no reliable branching ratio for this mode is thus far available, it
n appears reduced. See Crawford, et al. , Phys. Rev. Letters 1, 377

(1958), and Nordin, et al. , Phys. Rev. Letters 1, 380 (1958).
944



V-A THEORY AND DECAY OF h. HYPERON

seems to indicate that the corresponding strangeness-
violating vertex is strongly dependent upon the mo-
mentum transfer and much depressed with respect to the
zero-energy value of the strangeness-conserving vertex.
By virtue of this observation, the extension of the chiral

coupling scheme to strangeness-violating currents rI" is

a specific hypothesis concerning the structure of the
weak-interaction Lagrangian. It is one of the aims of the
present paper to furnish empirical justification for this
generalization.

The weak interactions thus fall into subcategories
depending on the appropriate parts of the weak-
interaction Lagrangian responsible for the transitions.
The muon decay is the simplest, involving the self-

coupling of the lepton current. Beta decay, pion decay,
and muon capture involve the coupling of the lepton
current j" with the strangeness-conserving current J"
while the leptonic modes of the E mesoris involve the
coupling of j" to the strangeness-violating current g.
Finally, one has the nonleptonic strangeness-violating
decays which are presumed to proceed through the
coupling of the two currents J" and rl". The complica-
tions of the strong interactions appear in their full

complexity in the last case.
This last category of slow processes differs in several

essential respects from the leptonic modes. In view of
the absence of a lepton current occurring as a factor in
the interaction, it is not possible to express the transition
amplitudes in terms of charge-exchange vector vertex
operators. The corresponding vector vertex appearing in

the leptonic modes is a far simpler object to deal with
with regard both to selection rules and to renormaliza-
tion properties. The consequences of specific assump-
tions about the isotopic spin transformation properties
and equations of motion of the "currents" are thus best
tested for the leptonic modes. For the nonleptonic
modes, the transition amplitude, in general, bears no
simple relation to the "current" structure of the inter-
action. For this reason, apart from the meagerness of the
experimental data, there has been no incisive test of our
hypothesis concerning the strangeness-violating decays.
Furthermore, there is the ambiguity in deciding about
the isotopic spin transformation properties and the
individual fields entering in the corresponding current
rI". Among the strangeness-nonconserving weak decays,
the most favorable case to consider at the present time is
the decay of the A. hyperon.

There are now at least three reasonably well-estab-

lished pieces of information concerning the A. decay:
(1) The fraction of the A's decaying via the mode p+z-
is 0.63&0.03; it is presumed that the remaining decays
are via the mode n+vrP. (2) An up-down pion asym-

metry &=0.55&0.10 has been observed' for the decay

' Glaser, Good, and Morrison, Proceedings of the 1958 Annlal
International High-Energy Conference at CERE, edited by B.
Ferretti (CERN, Geneva, 1958).

6 Eisler, Piano, Samios, Schwartz, and Steinberger, Nuovo
eimento 5, 1700 (1957); Piano, Prodell, Samios, Schwartz,

mode p+z. , where e=nMq with n the intrinsic pion
asymmetry parameter and I'J, the polarization of the
decaying A. (3) The polarization of the decay proton
from the unpolarized A has been observed to have a
negative sign and a large magnituder (of the order of
0.9). The last two experiments are fully concordant
with each other and imply that the asymmetry parame-
ter n=+0.9.s

The extension of the V-3 theory to the A decay is
rather unique and it is natural to take for the four-
fermion interaction

The isotopic spin transformation properties of the
strangeness-violating current rl" = g „y"(1+yp)i4 are
those of an isotopic spinor; we have shown elsewhere'
that this choice is consistent with the E meson decays
and that it predicts a value for the E2' lifetime in close
agreement with experiment. The choice of A. hyperon
alone is, of course, not dictated by the isospinor charac-
ter of the g" current. For the present, however, we
assume that rI" consists only of (A,p) since this is such a
simple choice; and it may turn out that the A hyperon
is the most fundamental of the various hyperons. This
is true, for example in the Sakata model and in the
theory of Kobsarev and Okun' where the possibility of
considering the m, p, A. fields as the truly fundamental
fields and identifying the other hyperons and mesons as
composite structures' is discussed. In this paper we
wish to discuss in greater detail than in a previous note'
the consequences of considering the weak-interaction
Hamiltonian (1) jointly with the strong pion-nucleon
interaction.

2. BORN APPROXIMATION PREDICTIONS

Ke write down the transition matrix elements for the
two decay modes of the hyperon as follows:

M —=M(A~P+z )={(-,s)&As —(sz)&At)

+{(s)'&s—(s)'&r) ~ &, (2)

Mp:—M(A. ~ B+rr ) = {(—)iAp+ (—)'Ar)
+{(s)'&a+ (s)'&r) ~.k, (3)

A

where k is the unit vector in the direction of the mo-
mentum of the pion in the rest system of the A, e is the
spin of the nucleon, and A p and Bs (or A r and 8,) are

Steinberger, Bassi, Borelli, Puppi, Tanaka, Waloschek, Zoboli,
Conversi, Franzini, Mannelli, Santangelo, Silvestrini, Glaser,
Graves, and Perl, Phys. Rev. 108, 1353 (1957); Crawford, Cresti,
Good, Gottstein, Lyman, Solmitz, Stevenson, and Ticho, Phys.
Rev. 108, 1102 (1957).

7 Boldt, Bridge, Caldwell, and Pal, Phys. Rev. Letters 1, 256
(1958).

Such a large asymmetry parameter is consistent only with spin
—', for the h. hyperon; see T. D. Lee and C. N. Yang, Phys. Rev. 109,
1755 (1958).' S. Sakata, Progr. Theoret. Phys. 16, 686 (1956); I. K.
Kobsarev and L. B. Okun, Proceedings of the 1958 Anngal Inter-
national High-Energy Conference at CERE, edited by B. Ferretti
(CERN, Geneva, 1958).
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FIG. 1. Lowest order graph
for A. decay.

the s and p parts, respectively, of the transition matrix
belonging to the total isotopic spin I= —,

' (or I=-', ) of the
final pion-nucleon system. Now from the first experi-
mental result cited above, it follows that

g= l~ Js/l~pjs (4)

Pro. 2. A "triangle"
diagram.

Usually, (4) is explained by the selection rule AI= —'„"or
equivalently in our notation, by assuming A3=83=0.

It is desirable to investigate the most general condi-
tion under which (4) holds since it will turn out that the
interaction (1) predicts (4) (in Born approximation) but
nevertheless violates the AI= ~ selection rule. By using
(2) and (3), (4) yields the following equality:

2%2 Re(AtAs*+BtBp*) = —(lApl'+ lBpl'). (5)

If we furthermore assume that the theory is invariant
under time reversal, we can write

A, =alA, le' & As ——alAple"
Bt=~lBtle' » Bp=wlBple' » (6)

where the 0, 's are the usual pion-nucleon phase shifts at
the final state energy 37 Mev. Since the o. s are quite
small at this energy, " we may set them all equal to
zero. This implies that the A's and 8's are real numbers
and (5) becomes

2@2(AtAs+BtBs) = —(Ass+Bar). (7)

One solution of (7) is Ap ——Bp——0 (AI=-', selection rule)
but another possible solution is

A s
———2v2A t, 8p= —2v28t. (8)

Let us next consider the asymmetry factors for the
two decay modes of A. In terms of our notation, we can
write

n =2(As —V2At)(Bp —428t)/
L(&2A t—As)'+ (v28t —Bs)'1, (9a)

np = 2 (&2A s+A t) (V28p+Bt)/
L(&2Ap+At)'+(v28s+Bt)'$. (9b)

The ratio o. of these asymmetry factors is given by

n=n /np
——(As —v2A, ) (8,—@28,)/

l 2(V2Ap+At) (v28p+Bt)$. (10)

Obviously, when EI=—,', then n=1; however, when (8)
is true, we again have a=1.

The interesting fact is that the chirality-invariant
interaction (1) yields (8) in the lowest order (Born
approximation). If we decompose (1) into tensor opera-
tors with respect to isotopic spin space, then we can
rewrite (1) as follows:

=II(il+II(2)
where

II'*'= sG(24'&VS(1+vs)4a O' V"(I+Vp)4y

0-V.(I—+7 )0 4-7"(1+7 )4-)+H c, (I»)
II"'= sG{4~v. (1+Vs)4~ 0-V"(I+Vp)4~

+O' V.(1+7 )14.4' 7"(1+7 )lt )+H c (12b)

In the lowest order of A-decay interaction (see Fig. 1),
we can evaluate the A's and 8's from (12a) and (12b).
We can easily verify that we obtain (8). Thus, while the

Pro. 3. The "bubble"
black-box diagram.

chirality-invariant interaction (1) actually contributes a
larger DI= 2 than AI= 2 matrix element to the decay,
it gives the correct answer for the ratio of the A ~ P+m
to A. —+ tc+s.P mode. In Born approximation, the V-A
theory' also predicts that there is no transverse polariza-
tion and that n =+0.88, which agrees both in sign and
magnitude with experiment. The absolute transition
probability, in Born approximation, diverges loga-
rithmically. An estimate, using a cutoG of the order of
the nucleon mass M (taking account of both the
charged and neutral modes) leads to a lifetime 4
&10 " sec, too small by a factor of 10 compared to the
experimental result. However, this is not serious, be-
cause Goldberger and Treiman" showed that the
matrix element will be damped, if this loop is treated
more rigorously.

' See M. Gell-Mann and A. H. Rosenfeld, Annual Review of
nuclear Sccence (Annual Reviews, Inc., Stanford, 1957), Vol. 7,
p. 407.

"A recent Rochester experiment at 41.5 Mev LBarnes, Rose,
Giacomelli, Ring, and Miyake, Atomic Energy Commission
Report NYO-2170 (to be published)] yields n3 ———0.1005a0.015,
n3i = —0.0477&0.0068, ui ~0.1668&0023, nu = —0 016&0.11 (all
numbers in radians).

3. IMPROVEMENTS ON THE BORN
APPROXIMATION

The Born approximation calculations in the previous
section led to results in agreement with experiment,

'2 The application of dispersion relations to the decay of the
pion was made by M. L. Goldberger and S. B. Treiman /Phys.
Rev. 110, 1178 (1958)g.
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except for some uncertainty in the absolute scale factor.
However, since the pion-nucleon interaction is strong,
one must investigate the e6ects of this interaction by
taking into account the multiple scattering in the final
state; also, one must consider Feynman diagrams more
complicated than Fig. 1, leading to the decay. The
multiple scattering couples the p+n and I+n' modes
and alters the phase relations of the I=2 and I=2
states so that one would expect the branching ratio and
the asyrrnnetry factors for the two modes to be changed.

Before we consider the multiple-scattering eGects, we
note that the next higher order correction to the Born
approximation which is not a final-state interaction
corresponds to a triangular loop (see Fig. 2). This
"triangle" diagram (at least in lowest-order perturba-
tion theory) no longer predicts the same ratio of the
p+m and a+m' modes as does the "bubble" diagram in
Fig. 1, nor does it lead to a large asymmetry factor. It
turns out that in lowest-order perturbation theory, the
"triangle" diagram contributes much less than the
"bubble" diagram and indeed, for the p+x mode, the
contribution vanishes identically due to mutual cancel-
lation of various graphs. This latter result implies that

FIG. 4. The "trian-
gle" black-box dia-
gram.

N

FIG. 5. "Triangle"
black-box diagram in-
volving virtual neutral
pion.

X 7F

iY

y

and J &, Jl" are defined in terms of the nucleon field
operators in the form

~-"(s)=k(s)V"rA (s); ~"(s)=4(sh V(s)
From charge independence, these should be of the forms

3E~py = 60 ping p M~p —8~p8
(A~=M»;, 8~=M»~).

From invariance under charge conjugation of the strong
interactions, we obtain

B~=-J3~=0.

Since, under charge conjugation,

consider the following vacuum expectation values of the
time-ordered operators:

m.„=(olr(j.(~)j,(y)z, (s))lo),
m., =&olr(j (&)jp(y)J"(s))lo),

where j (x) is the isotopic vector "current" to which the
pions are coupled, so that

a qualitative understanding of the large asymmetry
factor in p+m= decay is possible, even without believing
the magnitude of the contribution from the "triangle"
diagram as given by perturbation theory. If the "tri-
angle" contribution were large, it would reduce the
asymmetry parameter for the mode e+~' and alter the
branching ratio E.. To the extent that the latter ratio is
known to be nearly 2, it may be significant that per-
turbation theory predicts only a small contribution to
the e+m' mode from this diagram.

We have indicated that some of the above results are
largely independent of perturbation theory. In fact,
using only charge independence of the pion-nucleon
interaction, one can obtain the same predictions for the
branching ratio E and the asymmetry factors 0.0, n
from the black-box diagram corresponding to the
"bubble" diagram (see Fig. 3). Similarly, using charge
independence and charge conjugation invariance of the
strong interactions, one can deduce that the contribu-
tion to the p+gr mode from the black-box diagram
(see Fig. 4), corresponding to the "triangle" diagram,
vanishes. The proofs of these assertions follow.

To demonstrate that the total contribution from the
"triangle" diagrams to the mode A —+ p+m vanishes,

we get
j2~ —j2, ji, 3~ ji, s,

M~p"= 0.

However, this is not true for the A ~ e+~' decay mode.
Similarly, for the simple black-box diagram (Fig. 3),

the contributions of the charged and neutral modes are

FIG. 6. "Triangle"
black-box diagram in-
volving virtual charged
pion.

n

Z

Now consider the complete matrix element for the
decay A —+ p+m via the black-box diagrams in Figs. 5
and 6. The total transition amplitude is proportional to

v2(0 le(j, (*),j,(y),4.(s)vA „(s))l
o)

+ y&)'&ol&(j+(*),j—(y),k vA (s)) Io)
= —',iA&+2(-,'B~——,'iA~) = —,'8~=0.
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proportional to

(oIP(4-(0)vA n(0) i+(x)) Io), p+~
(0IPg„(0)v„y.(0),i (*))Io),

and, again, by charge independence

o IP(g (0)v„|t (0),J-(x)) I
o)=o,

(oIP(0(0)v.rA(0), ie(x)) Io) =5-ee",

so that the ratio of the charged to neutral amplitude is
simply K2. We have thus proved our earlier statements.

T(p, k,q) =i (2+)p '(2kp) '*(pp/m) l (qp/ns4) '(En.
I H„(0) I h)

= —(2~)'(2kp) '(qp/m4) '*u)) (p)

X ~d xe ' *D,(7rIP()P'(x)H„(0))IA). (13)

Here p, q, and k are the 4-momenta of the nucleon,
hyperon, and pion and ns, mz are the nucleon and
hyperon masses, respectively. H„ is the weak inter-
action (1) and

D.= (v"8/Bx„+m)

From the covariance of the theory, T(pkq) can be
written in the form (I is the isotopic spin of the IVY

system):

u~(p){(Mir+Mp'Vp)+iVk(M4I+M4rV 4))N4(q),

which can be reduced to the form

(p){~. ( )+~ (.)v& (14)

by using the Dirac equations for p and A, where Fir and
F2 are related to A& and 81 in Sec. 2 in a simple way.

The construction of the dispersion relation follows in
the standard fashion by noting that the matrix element
(13) can be re-expressed in terms of a "Born" amplitude

I"n. 7. The strong
interactions consid-

N ered in the present
theory,

'3Lehmann, Symanzik, and Zimmermann, Nuovo cimento 1,
K5 (1955).

4. DISPERSION-THEORETIC CONSIDERATIONS

In view of the remarks at the end of Sec. 3, it seems
justified to attempt to treat in a rather rigorous way
(using the methods of dispersion theory") the multiple-
scattering corrections to the "bubble" diagram. The
starting point is the expression for the 5 matrix element
for the decay A —+cV+m. in terms of the Heisenberg
operators of the baryon and pion fields. With the weak
interaction considered only in first order, the invariant
transition matrix element may be written"

(coming from an equal-time commutator; see below)
and a causal amplitude. Provided that the functions are
well-behaved, the real ("dispersive") and imaginary
("absorptive" ) parts of this causal amplitude are
Hilbert transforms of each other. On the other hand, the
absorptive part can be expanded in terms of a complete
set of intermediate states. To make the problem
tractable, it is necessary to assume that only one-pion
states contribute to the explicit sum-over-intermediate-
states expression for the absorptive amplitude; and that
the h.-hyperon 6eld may be treated in perturbation. The
inclusion of the A.-hyperon interactions exactly leads to
a complicated integral relation between the decay
amplitude and several other matrix elements of the
weak interaction, which reQect the possibility of having
a cloud of virtual particles in the proper field of the A

when it decays; this corresponds to Feynman diagrams
with irreducible vertex modilcations involving the
incoming line. Similarly, the inclusion of other possible
intermediate states (say, two-meson states) generates a
term in the integral equation which involves a pion-
production matrix element as well as the matrix element
for the virtual two-pion A decay

This same amplitude can be related back to the one-
pion decay, thus leading to two coupled integral equa-
tions for these amplitudes. In omitting consideration of
these two-meson states, we fail to include, among other
things, the contribution from the "triangle" diagrams.
Since the contribution from the "triangle" diagram
(Figs. 5 and 6) for the p+4r decay vanishes, we feel
justified in neglecting the two-pion intermediate states.

We are therefore calculating diagrams of the type
shown in Fig. 7. Explicitly carrying out the di8er-
entiation implicit in D, in Eq. (13), we obtain

T(p,k, q) = (24r)'(2kp)&(qp/m4)'—u„(p) I d4x e '&'*

1+~ ~(~9)L4.(*),&-(o)j ~), 0~)

where J~(x) is defined by

+m I)p„(x)=J„(x),
ax„ ) (16)

and where we have made use of the (known) mass spec-
trum to replace P(J„(x)H (0)) by 8(xp)l J„(x),H (0)j
in the expression for the matrix element. We can now
decompose T(p,k,q) in the form

T(p, k,q) = T&~) (p, k,q)+D(p, k,q)+iA (p, k,q), (17)
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where the "Horn" amplitude is

f
T& &(p k q)= —(2pr)'(2kp)*'(qp/mg)&u„(p) d'x e 'v'

1
X ~ -y4~ xo „x,B„O A. 18a

while the dispersive (D) and absorptive (A) amplitudes
are

D(p, k,q) =—(27r)'(2kp) '*(qp/mg) luv(p) d'x e '"'

To calculate the right-hand side of Eq. (19) we express
A(p, k, q) fusing (18c)] in terms of a complete set of
states ln) in the form

(2s.)4
A (p, k, q) =—(2s-) l(2kp) l u, (p)

2$

xZ{(~-IJ,(0) In)(nl J,(o) lo)6(n —p—k)

+(~ IJ~(0)ln)

X(nl J„(O)IO)6(p+n))u&(q), (2O)

x(~
I le(xp)LJ. (x),If-(0)]I», (1gb)

A (p, k,q) = —(2s)'(2kp)'*(qp/mg) &u„(p) d4x e-'v'

X ~ —J„x,H„O A. . 18c
2$

It must be stressed that our Born term T& ' comes from
the equal-time commutator which is diGerent from the
usual case where it originates from the discrete terms.
From covariance only, one can explicitly write down the
matrix dependence in the form

where Jii(x)=I6/gq(x)]H„(x) and A was treated in
perturbation; the summation over e is to be understood
as the average of the sum over incoming states and over
outgoing states in order to preserve the reality condi-
tions on the amplitudes, independent of approximation. "
The second term on the right-hand side of Eq. (20)
gives zero for —n'= —p'= m' and thus n must be a one-
antinucleon state and we are left with only the first
term since (nlJv(0)lo)=0 in this case. The lowest
state is an isolated state with

I np) =neutron and from
covariance alone, we may put

(npl Jg(0) I 0)=—(2s') '(m/np)'*N(np) (c4+cpps),

T(p, k, q) =u„(p){(Mr+Mpyp) where c3 and c4 are pure numbers; the contributions to
+&y k(Mp+M4pp))u~(q), A, (v) become

where M, are invariant functions; similar expressions in
terms of M;~, D;, and A, can be written down for
T(~), D, and A. If we now explicitly use the invariance
of II„and of the strong interactions under time reversal,
one may show that all the M;~, D,, and A; are real.
While the physical amplitude is defined only on the
mass shell with

—p'=m', —q'=m+', k'=m. ', p+—k= q,

the quantities introduced by Eq. (4) may be defined. for
arbitrary values of the momenta, especially without the
last condition.

We now assume that the A hyperon is totally un-

coupled and may hence be treated in perturbation. It is
then obvious that the invariant functions M;, D;, and A,
are independent of q and depend only on the invariant

p k, By virtue of the causal properties of the transition
amplitude, T, M;, D,, and A, are then analytic func-
tions of the variable v= —p k and consequently we can
write dispersion relations of the form

Ai& "»(v) =0, Ap& "»(v) =0,
As&"oi(v) = (s/v2)g8(v+-, 'p')cs,

A 4& "p& (v) = (pr/42)g8(v+ p ps)c4.

The contribution to the transition amplitude can now be
calculated and corresponds to the diagram shown in
Fig. 8 which represents a self-mass term nondiagonal
in strangeness and divergent in general. One may add a
counter term" to the original interaction to cancel this
divergence but such a subtraction leaves ambiguous
finite terms (because of the diferent masses of A and the
nucleon). We shall omit any explicit mention of this
term. If there exist any finite contributions, they may be
absorbed into the Born amplitude.

The next set ln) consists of states containing one
meson and one nucleon. First, take the contribution
from the

I
ps- ) states. Then the matrix element

(ps. I Jq(0) lo) is proportional to the transition ampli-
tude we are studying in which A is treated by perturba-
tion while the matrix element (s.

I J„(0)I
pm. ) is related

1
&

" A;(v')
M (v) =M &e&(v)+— ' dv'

v' —v —pe'
(19)

where we have used the relation

Im{M;—M~&e&) =A;.

This last relation follows from time-reversal invariance.

FIG..8. The self-mass diagram.

"See S. Weinberg, Phys. Rev. 106, 1301 (1957).
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to the pion-proton scattering amplitude. In fact

(~ (k) I ~v(o) I p&v )~ (k'))

=(2m) 'i'(2ko) l(2ko') &(m/po')&

m'(k. k') —v(p k')
62=A*My I—

v' —m'p, '

p'(p k') —v(k k')
+B*Mgm

v' —m'p, '

k+k'
(B"'+B' ')* .(p'), (2&)

2

where A(+), 8(+) are the quantities dehned by Chew,
Goldberger, Low, and Nambu" and can be expressed in
terms of the pion-nucleon scattering phase shifts e~J.
Summing over the intermediate proton spins and mo-
menta, one obtains the total contribution for p+~
intermediate states:

A &~ & (pkq)

" "d'k'd'p' e(k ')S(p ')~(k"+ ')~(p"+ ')
Sx~ ~

X~&'&(p+k —p' —k')~„(p) A*—A.

X (m —iy p') {[M~(v')yM2(v')y&;]

+iy. k'[M3(v')+M4(v')p&;]}uz(q). (22)

p,'(p k') —v(k k') nP(k k') —v(p k')
+A*Mare —2

v mp v mp

m'(k k') —v(p k') )
+B*M3 p' —(2v+p')— (24b)

v m p

The expression for G2(G4) is obtained from G&(G3) by
replacing M& by M& and M3 by M4. To connect these
expressions to the phase shifts, we recall the dehnitions
of A &+&, B&+&."Taking the barycentric system of p and k
and doing the angle integrations, we obtain, after a
series of tedious but straightforward reductions,

+{[co—m]f0+*+[&0+~]f& *}M,], (25b)

k
A~(p k)=-,'—Re[{[&d+m]fo+*+[&d—m]f& *}M&

+( ' ~') Lf —* f~*]-M—], (25a)
k

As(p k) =-',—Re[(f& *—f0+*)M&

where ~=[—(p+k)']& is the total energy of the pion
Upon performing the p' integration and rearranging the
y matrices, this can be written in the form

A,&~ &(p k)

~d4k' 0(ko')8(po+ko —kg')5(k"+y, ')
f&+=—exp(in&+) sinn&+

k
(26)

where

X&Q'—p k+k' (p+k)] ReG, (p' k' p k) (23)

y'(p k')-v(k k')
Gg= —A*Mgm' 2—

v —mp

—A*31 p' 1—
m'(k. k') —v(p k')

v —mp,

p'(p k') —v(k k')—2 (v'+nz')
v2 m2p2

' p'(p k') —v(k k')
+B*Mg v —(2v+«&'+k k')

v m p

p'(P k') —v(k k')
+B*Mam(«&'+2v)

v~—m2pP
(24a)

'5 Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1337
(1957).

for a pure isotopic spin state.
In exactly similar fashion, we may calculate the

contribution from the m+7&' intermediate states. These
contributions are related to the decay amplitude
A. ~ e+m' and the charge-exchange scattering ampli-
tude. Thus we obtain an integral equation coupling the
A —+ p+m amplitude to itself and to the A —& e+7r'
amplitude and involving the direct and charge-exchange
pion-nucleon scattering amplitudes. These coupled
amplitudes separate if we decompose according to the
isotopic spin. The dispersion integrals now assume the
form

M '((o) —M '&~&(co)

d&0' Re{(~'+no) fo+'*
CO $C

X[M& (~') —
(&0 nz)M3 ( )]+&—0((g —~)

Xf& '*[M& ((o')+ (cv'+m)M3'(~')]}, (27a)
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Ms'((o) —Msl(s) ((o) now put

Ao
1

—M —Zc

P, ( ) — ((o m) fr~ F,r( & ((o+m)f
(32)

fl = 2&—ZP =f.

Fr&(z) =f{m—z+q) (»} exp[K'(z)+ it& s(z)],

(28a) Fs'(s) =f{m+z+q(('*))}exp[El( z)+—iAsr(z)],

(28b) f
Fr&(z) = — {m—z+y«&} exp[K1(z)+ihr(z)], (33a)2'

Fr'((o) =Mr'((o) —((o—m)Ms'((o),

Fs'(oo) =M r( ()o+((o+m)Ms'((o),

and rewrite the integral equations in terms of F;: for
I= » these take the form

y Re{—f~'*[Mr'(~') —(~'—m)Ms'(~')] The solution of the singular integral equations (29)

+f re[M I(,)+(,+ )M r(,)]} (2&b)
can be obtained using the techniques originally de-
veloped by Muskhelishvili)s (the details are given in the
Appendix:with corresponding expressions for M2, 314. We may

now define new amplitudes Fr'((o), Fsr((o) by

F,f((o) Prt(ts) ((d—)
Fsi(z) = — {m+z+(f&(l)}e xp[ Ki(—z)+iArr(z)],

242

1
de

ps' ((o) psr(e) ((o)

Re[p, :(~')q sr*(~')]
l (29a)l'

where
(z& m+t(),

(P
d(o {sink s r ((o)

&&exp[E'l (—(o)7—

sinks�

((o) exp[K'((o) ]},

Re[p, '*(~') q s*(~')]

(o'+(o

Rel P '( ') q *( ')]
+

M CO Z6

where we have put

(29b)

d(o{sinI) )r((o)

(33b)
Xexp[Kl( —(o)]—sink)( ) exp[El((o)]},

(P (
" hs((o) Dsr((o)

Ks(z) =—
I d(o +

sr ~ ~o I. (o z (o+z

()os ((o)=k f()+('*& (k) =e'" sinns,

qos)((o) =kfr ('-*&(k) =e' » sinn.„.
(30a) 5'

I

" t) r((o) A»((o)
Kt(z) =— d(o -+

(30b) sr ~ ~ps - (o s (o+s

G
T' '= —(2 ):(2s )'(~ —14(o)v.((+75)I4(o) o)

Hence
X~„(p)v„(1+ps)ms(q). (31)

Mr( ) =Ms(e) =0, Ms' & =M4( & =f,
where f is a constant (whose value may be computed by
the more detailed analysis of Goldberger and Treiman").
These Born amplitudes coincide with the lowest-order
Born approximations discussed in the text. (Recall
however that the residual single nucleon terms, if any,
are also to be absorbed into this "Born" term. ) We may

For I=-'„we have only to replace p3 and q» by p& and

p», respectively. We see, therefore, that in the one-
meson approximation, the physical transition amplitude
satis6es a singular integral equation.

So far, we have not specified H„. If we choose the
expression (1), we get

and h((o) is related to the scattering phase shifts n((o):

1 1+i exp(in~) sinn~
A„(z) =—ln-

2i 1 i exp( inv*) s—inn„*—
p=3, 31, 1, 11. (33c)

From the expressions (33a), (33b), (33c), we can in
principle evaluate the effect of the pion-nucleon inter-
action exactly. However, the phase shifts a3, etc. are not
known beyond about 300 Mev and even up to these
energies the empirically determined values are very
unreliable. Thus, to assess the e8ect of the pion-nucleon
interaction, we are forced to extrapolate the phase
shifts. In this connection, it is important to notice that
since the spin of the A hyperon is 2, only the scattering
in the J=rsstates (s; and P, ) are relevant, and one
recalls that these phase shifts are small in the region

'e See S. G. Mii(h1in, Integral Equations (Pergamon Press,
London, 1957).
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TABLE I. Comparison of the dispersion theory predictions with
the Born approximation results. n is the intrinsic (pion) asymmetry
parameter, x is the ratio of the p- to s-wave amplitudes, and R is
the ratio of the decay rate via the charged mode to the decay rate
via the neutral mode.

Parameter
Dispersion theory

A
Dispersion theory

B

TABLE II. Comparison of two extrapolations.

Parameter Born approximation Dispersion theory (A) fxef

0.83
1.34

0.66
0.96

0!P
R
g
So

+0.88
+0.88

2.0
0.60
0.60.

+0.97
+0.91

2.15
0.82+0.14i
1.14+0.46i

'r H. L. Anderson, Proceedings of the Sixth Anrtuu/ Rochester
Conference ott High Ertergy Physics, 1956 -(Interscience Publishers,
Inc., New York, 1956); H. L. Anderson and W. C. Davidon,
Nuovo cimento 5, 1238 (1957).' At higher energies where o., become complex, 6, are still real
but smaller in absolute magnitude (for real a„hz=n&)."R.H. Dalitz, Phys. Rev. 112, 605 (1958).

where they are known and that they do not appear to
possess any resonances even at the higher energies. In
the vicinity of 300 Mev, the s-wave phase shifts ns, o»
are =20' and n~ approaches e3, +3~ and e~~ are much
smaller. "A typical extrapolation of the phase shifts,
which exaggerates' the effect of the pion-nucleon
interaction (putting the values at higher energy equal to
the values at 300 Mev lab energy) leads to the results
given as (A) in Table I. It should be stressed that the
estimate is extremely crude and only the qualitative
features of these predictions should be considered
significant. In Table I, x is the ratio of the p- to s-wave
amplitude; thus the eGect on x of the pion-nucleon
interaction can be quite large although the extrapolation
gives only a crude upper limit. It is, however, inter-
esting to note that the presently known experimental
parameters, o, and E for the decay of the A are rather
insensitive to these large modifications.

It should be mentioned that some information con-
cerning the ratio x comes from the ratio of the mesonic
to the nonmesonic decay mode of hyperfragments, which
seems to be inconsistent with a value of

I el larger than
unity. "However, one should bear in mind that there are
at present no data directly available on the parameter x
in free A. decay. The transverse polarization of the
resulting nucleon in h. decay or the correlation of the
A spin and the proton spin depends on the quantity
(1—I@I') and a measurement of either of these would
provide a sensitive test for Ixl. We have already re-
marked that our extrapolation of the phase shifts
probably overestimates the pion-nucleon interaction
eGects. For example, if we equate all phase shifts to zero
beyond 300 Mev, the le I

and Ixsl are greatly reduced
and are given below as (8) in Table II.

A different type of question one has to consider con-
cerns the effect of adding terms to H„ I in addition to
those considered in (1)j. We noticed earlier in our
discussion that even though the over-all selection rule
AI= rs is not obeyed by (1), it nevertheless 'leads to a
ratio 8=2. With terms added to H this result no

longer obtains; in particular, if we replace the current
P„y"(1+ps)iver„by terms involving or 2 hyperons, '
then in lowest order, these interactions contribute only
to the charged decay mode of the A. Since the weak
interactions are treated only to lowest order, the
contributions of the interactions involving or Z are
additive (see Fig. 9). The expected final branching ratio
would then depend on the relative magnitudes and
more particularly on the relative phases of the diBerent
contributions. Ke shall omit any such complicated
considerations and merely note that in the framework of
the dispersion theory treatment, these complications do
not affect the relative s and p Born amplitudes; hence
they are numerically irrelevant in determining xo, x,
and consequently the asymmetry parameter n, one
predicts a large asymmetry parameter in any case, de-
pending essentially only on the (known) pion-baryon
coupling.

S. DISCUSSION

Our investigation of the h. decay thus brings out the
following points. The expression (1) for the weak decay
leads not only to a qualitative but to a good quantitative
understanding of the known features of this decay,
despite the abandonment of the old hl=-,' selection rule.
The surprising success of the Born calculations is ex-
plained by the fact that the branching ratio and the
asymmetry parameter 0, are not particularly sensitive
to the ratio of s and p amplitudes which is substantially
altered by the improvements discussed in this paper. We
have seen that the higher-order diagrams discriminate
between the charged and neutral modes of decay and the
possibility is indicated that the branching ratio may be
unaffected while the asymmetry parameter o.o is reduced
below n; measurement of the ratio n /ns would be
most interesting since the old hI= —,

' selection rule
unequivocally predicts unity for this ratio whereas our
theory suggests a somewhat larger value.

The apparent success of the Born approximation for
the decay tempts one to speculate that the factorization
of the decay matrix element in the form

is approximately valid, apart from an absolute scale
factor. There is at present no inconsistency in assuming
that this reduction factor is no more than the momen-
tum dependence of the vertex function (pl gqtlA) and
the sr decay matrix element (sr

I

1"IO). If this method
of resolution (which, incidentally, illustrates the con-
nection of this process to pion decay in Born approxima-
tion) were accepted as a reasonable approximation to
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The equations are [see Eqs. (29)]

~00

Fg((o) = (nz (u—)f3+
Re[f3*(co')F g (a)')]

dc'
/

Zt

FIG. 9. Two diagrams contributing only to the charged
decay mode.

the correct result, one could obtain information con-
cerning the chiral coupling of the physical baryons in the
strangeness-violating vertex.

Let us recall in this connection the structure of the
vertex function in P decay, which involves a very small
momentum transfer. We postulated that the interaction
current J" is a (charged) chiral current. The vertex
function (p~J" ~n), which is the one-nucleon matrix
element of this operator, is nearly equal to the Born
approximation result, both in structure and in magni-
tude, since the ratio of the vector to axial vector
covariants in the physical transition amplitude is nearly
equal to unity. Also the absolute magnitude of the
coeKcients in the vertex function is equal to the "bare"
coupling constant occurring in the Lagrangian operator
as determined from the muon decay (and the hypothesis
of a universal Fermi interaction). At the higher mo-
mentum transfer associated with m decay, there is a
damping of the axial vector part of J".

If the factorization of the matrix element for A decay
is valid, one can easily see that only the axial vector
part of J~ contributes and that the large value of the
asymmetry parameter o. essentially implies chiral
coupling in the vertex. There is also some damping in
this decay process. That the absolute scale factor is
determined by a momentum-dependent damping of the
vertex function is consistent also with the apparent
reduction of lepton modes.

If the above were a true interpretation of the experi-
mental results, one would then have a consistent picture
of the various transition amplitudes in the decay
processes all reflecting the chiral structure of the inter-
action Lagrangian with the absolute scale factors de-

pendent on the momentum transfer at the vertex.
Whether one could arrange the structure of the strong
interactions so as to ensure this unified point of view is
still an open question.
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(A-1)
1

I

"
(
Re[s 3*(cu')Fg(o)')]

P2((o) = (m+a )f,+ —d(o'

~+@ CO 07

Re[p„*((g')F,((g')]
07 —G) Z6

The method adopted is originally due to Muskhelishvili"
and consists of introducing a complex function of which
Ii& and Ii2 are boundary values and then determining
this complex function in terms of its singularities.

Accordingly, let us introduce the complex functions
H~(s) and H2(s) of a complex variable s, such that when
s is along the real axis, they coincide with F&(o&) and
P2((v):

p00

Hg(s) = (m —s)fa+—

1
H2(s) = (m+s) f3+ d(—o'

One immediately verifies the relations

H2(s) =Hg( —s), Hg*(s) =Hg(s*), Hg*(s) =H, (s*),

F~(o)) = lim Hg(a)+is), (cv&m+p),
(A-3)

F2(o)) = lim H2(co+is), (o»m+p).

From the de6ning equations for H& and Hg, for o&)m+ p,
the jump across the real axis can be found:

H, (co+i&) Hg(cv i—c) =2i R—e[yg (co)Hg(o)gie)]

Taking the complex conjugate of both sides and using
the result Hq~(s) =H~(z*), we see that

APPENDIX. SOLUTION OF THE SINGULAR
INTEGRAL EQUATIONS or

Hg((o —se){1+sqp((u)) =Hg((o+se){1—spy*((o)),

Here we wish to indicate the method used to solve the
coupled singular integral equations derived in the text,

Hg((u+ie)

Hy(G0 z6)

=exp{2iAS((o)), (A-4a)
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where
1 |' 1+i(ps(a)) )a, (~) =—ln~
2i & 1—i ps*(o&) )

(A-4b)

is equal to ns(co) when o.s(oi) is real; when us(o~) is
complex, As(co) continues to be real. Similarly

where

Hi( M+Ze)—=exp{—2ia»(oi) ),
Hi ( oi 'Le)

( 1+$ps i (M) )~ (~)=—»I
2s k 1—i psi*(oi) )

If we now introduce the complex function

1 t." &s(~o') &st(o~')
E(s) =— doi' +, (A-5a)

7l mys M s oi +s
with jumps

E((u+se) —E(oi—ie) =2ihs(cv),
(A-5b)

E( oi+i e) —E( o~ —is) =——2sh—si (oi),

across the real axis for m+p&co& ~, then

assume this to be the case (at least after a suitable cutoff
of the high-momentum contributions).

Let us now investigate the behavior of h(s) at infinity.
If the phase functions As(o~), Dsi(co) vanish sufficiently
fast, for s ~oo, E(s) —& 0 and b(s) —+ Hi(z) —+ fs—z and
consequently h(s) has a simple pole at infinity. However,
since h(s) possesses no essential singularities in the
complex plane, the number of poles and zeros must be
equal and hence h(z) ha, s a zero, say at z=8. If we now
introduce

()
(s)=-

(—f,) s—e
(A-7)

then P(z) is analytic everywhere, including the point at
infinity, and is therefore a constant. For z ~~,P(z) ~ 1

and hence,

f(z) =1, Hi(s) = fs(8 s) exp/E—(s)j. (A-8)

It follows immediately that

J, (~) =f, (e—~) expLE(~)+ sa, (~)),
(A-9)

J s(oi) = fs(&+a&) expLE( —o~)+sist(oi) j.
The zero of h(z) is given by

h(s)=H (s) e pP —E(z))

is continuous across the real axis:

h(+M+se) =h(&M ze)q (m+p&M& ~) i

(A.6)
dto{sinAsi(oi) expLE( —oi) $

—sinas(oi) expt'E(~0)]). (A-10)

further, Hi(s) and E(s) are analytic everywhere in the
complex plane cut along the real axis from —~ to
—(m+p) and from (m+p) to +~; now the reality
condition on Hi(s) implies

h*(s) = h(z*),

enabling us to conclude that h(s) is analytic everywhere
in the complex plane, except possibly at infinity.

The expression for E(s) will be mean'ingless unless the
delning integrals converge and this requires that hs(or)
and h»(co) decrease sufficiently fast at inhnity; we

. This completes the solution of the integral equation. "
It is gratifying to note that the phase factor of the

amplitude is given by A(co). Consequently, below the
threshold for real processes, the phase coincides with
n(a&) and i.he phases of the amplitudes for weak processes
(which are invariant under time reversal) are essentially
determined by the strong interactions —a well-known
result.

~ After our completion of this work, we noted a paper by R.
Omnes [Nnovo ciinento 8, 316 (1958)] in which he hss inde-
pendently arrived at the same technique of solution for similar
integral equations.


