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would not explain the regeneration of the short-lived 01 .
The only remaining explanation for the presence of 81 's

and A."s in the chamber is the particle-mixture pre-
diction. The observations appear consistent with this
prediction. It is dificult to avoid the conclusion that a
neutral E meson having essentially the properties
predicted by Gell-Mann and Pais does indeed exist.
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A set of covariant conservation laws is constructed in the general theory of relativity. Their relationship
to the generators of infinitesimal coordinate transformations is indicated. In a given coordinate system
certain of these quantities may be naturally identified as energy and momentum. Ke can continue to
recognize these conserved quantities in all coordinate systems due to the covariant character of the
expressions.

1. INTRODUCTION

A TTEMPTS within the general theory of relativity
to formulate a meaningful and unique expression

for energy density have always proved to be incon-
clusive. The difficulties have been twofold: (a) there
are many competing candidates for the energy density'
(e.g. , the Einstein canonical pseudotensor, the Landau-
Lifshitz symmetric pseudotensor, and the infinity of
Goldberg's expressions), and (b) none of these ex-
pressions possesses a simple transformation law. Even
the total energy is no invariant. Two recent papers''
have contributed to a clarification of the difliculties.
In this paper we shall combine these recent advances
to construct physically interesting and covariant
conservation laws within the general theory of
relativity.

The second section of this paper will briefly review
the relevant results of the aforementioned papers of
M]][lier and Bergmann. The third section will be devoted
to the actual construction of the covariant conservation
laws. The concluding section will brieAy indicate the
problems entailed by the identification of some of the
conserved quantities with energy and momentum.

2. REVIEW OF RECENT PAPERS

Mgller has shown how to remedy the most flagrant

difhculty entailed by the lack of covariance of the
*Supported by the Air Force OfBce of Scientific Research.' J. N. Goldberg, Phys. Rev. 111,315 (1958).
~ C. Mgller, Ann. Phys. 4, 347 {1958).
3 P. G. Bergmann, Phys. Rev. 112, 287 (1958).

P [ij]— g„P g(gimgjn gjmgin)] (2 1)
(—g)'*

LLatin indices=1, 2, 3, 4; Greek indices=1, 2, 3;
comma denotes ordinary partial differentiation; semi-
colon denotes covariant diGerentiation; UI, t'» means
~s(Us"—Uz")j; the "strongly" (i.e., identically) con-
served Einstein pseudotensor may be written in the
form

(2.2)

(ir is Kinstein's gravitational constant). M]]]lier observed
that if we define the pseudotensor

where

1
cz' s— (U', [kl]+ lr.[kl])

2K 2K

lr [k]]—p[ki] 5 jc+ , [ml]+5 ip [ms].(2.3)

(2.4)

then this new quantity (1/2a)V', " has the following
desirable properties: (a) it is identically conserved;

' P. von Freud, Ann. Math. 40, 417 (1939).

Einstein pseudotensor, namely, the drastic alteration
in the computed value for the energy density, and the
total energy, caused by a mere renaming of the 3-space
points by means of polar coordinates instead of by
quasi-Galilean coordinates. By employing the von
Freud expressions4
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(b) for the total energy it yields the same value as the
Einstein pseudotensor when the latter is computed in a
quasi-Galilean coordinate system; (c) under coordinate
transformations which do not involve the time, the
energy density, (1/2') V'&', behaves like a scalar density
and the energy flux, (1/2') K4, behaves like a vector
density; (d) under linear transformations it behaves as
a mixed second-order tensor. Conversely, if we demand
of a pseudotensor properties (a), (b), (c), and (d), and
further require that it not exceed the second order in
the derivatives of the metric, then it is uniquely given
by Eq. (2.3).

We recall that the Einstein pseudotensor may be
thought of as the set of generators of the various
in6nitesimal coordinate transformations corresponding
to the rigid parallel displacements of the coordinate
origin. ' We further observe that the fundamental
conservation laws in physics are related to the invari-
ance properties of the physical laws, and that general
relativity is invariant under arbitrary curvilinear
coordinate transformations. Consequently, Bergmann
suggests' that we may expect a significant conserved
quantity to correspond to each in6nitesimal coordinate
transformation.

If $' is an arbitrary vector field which indicates an
infinitesimal coordinate transformation, one readily
6nds for the general theory of relativity'

g "bg„„+C"„=0, (2.5)
where

(2.6)
aild

gmn —
( g)-,*Gmn —( g) $(gmn 1g ng)m(2 7)

Thus, we see that C', which is defined by Eq. (2.5) up
to an arbitrary curl field, is "weakly" conserved, that
is, it is conserved modulo the field equations of the
theory.

Combining Eqs. (2.5) and (2.6), we find that one
possible expression for C' is

Di ((mI]' [il]+—qmli' [i]]) (3.1)

For the special case of $ =84' this evidently reduces to
V4',. however, it is not yet generally covariant. If we
express U "&' and V &'&' by means of the metric tensor,
we 6nd that D' may be written

(3.2)

Thus we see that if we add to D' the curl 6eld

we obtain the identically conserved vector density

We note that W' is identically conserved, linear in $', ,
and vanishes identically when P= l[&'. Thus [P' is
precisely the unique covariant expression which we have
been seeking. '

The "generalized" energy-Aux vector

(3.5)

3. COVARIANT CONSERVATION LAWS

The association of a conserved quantity with an
infinitesimal coordinate transformation, in accordance
with Eq. (2.9), is unique if we require that the gen-
erating density C' be free of second-order derivatives
of the metric. However, it is only necessary to require
that the generator of a canonical transformation contain
no second-order time derivatives. We therefore propose
a different set of criteria for the establishment of a
unique association between the conservation law and
the infinitesimal coordinate transformations. We re-
quire, following M]][lier, that the resulting expression
be generally covariuet, and that for the special case of a
rigid time-like translation the expression for the energy
density reduce to that of M][[lier. We are therefore led
to consider the expression

Qi 2)mg i (2.8)

By the addition of an appropriately chosen curl an
alternative generating density can be found which is
free of second derivatives, thus'.

pi= pi+ ((mI7 [in]) —(m~ i+ (m 0' [in] (2 9)

where I, ' is the "weakly" conserved Einstein pseudo-
tensor, and where we have used the identity

satis6es the covariant conservation law

(3.6)

which readily assures the conservation of total "gen-
eralized" energy

1 t' 1
E($)=—I' dS = [Pid'x. —(3.7)

2~~ 2~~
2 j (2.10)

By judicious choice of the vector field $', it can be shown
that the infinity of conserved quantities referred to in
the Introduction can each be obtained. )For example,
taking $' equal to a set of constants, Eq. (2.9) yields
the conservation of the Einstein pseudotensor. 5 Thus
each expression (Einstein, Landau-Lifshitz, etc.) repre-
sents a valid conservation law which is a generator of
an appropriate (curvilinear) coordinate transformation.

As a consequence of Eq. (3.4) we find that for a spatially
closed universe P(t)=0, for all (nonsingular) P. In
general the integral in Eq. (3.7) may be converted into
a boundary integral at spatial in6nity. For a universe
which is asymptotically Schwarzschild at spatial infinity

~ Dr. R. Sachs informs me that he was led to a consideration of
precisely this expression since it is the only covariant expression
of lowest differential order, linear in an arbitrary vector field,
which is identically conserved.
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we readily 6nd
p(84') = discs. (3.8)

(3.10)

does not contain more than first-order derivatives in
the time coordinate. From Eqs. (3.9) and (3.4) this is
readily seen to be the case.

4. CONCLUSION

We have established a covariant conservation law
associated with every infinitesimal coordinate trans-
formation. The law is uniquely determined by the
requirement that it coincide with the Mfiller expressions
for the case of the rigid time translations. Since the
rigid translations do not form an invariant subgroup
of the group of general coordinate transformations, the

The discussion in this section has centered on the
"strong" conservation law. The associated "weakly"
conserved quantity is, by analogy with Eq. (2.9)

(3.9)

In view of the fact that 8'($) is the generating density
for the infinitesimal coordinate transformations indi-
cated by $"', it is necessary to confirm that the generator
of the infinitesimal canonical transformation

identification of any of the quantities P'($) as energy
or momentum must be made separately in each co-
ordinate system. We can continue to recognize the
conserved quantity in other coordinate systems, but
the identification with energy or momentum may no
longer be as reasonable.

In view of the striking analogy, already noted by
Mgller, s which Eq. (3.5) has to the Maxwell equations,
with $' playing the role of the vector potential, we see
that fields which differ from P by a gauge trans-
formation yield precisely the same density distribution.
Furthermore, vector fields which coincide near inanity
necessarily yield, via Eq. (3.7), the same integral
conservation laws. It may therefore become feasible
to divide the vector 6elds into equivalence classes and
to identify appropriate classes with energy and mo-
mentum. Alternatively, we have considered imposing
certain natural covariant conditions on the vector fields
which we choose to identify with energy and mo-
mentum. One such set of conditions might be that the
density of energy Aux should coincide with the mo-
mentum density. However, these investigations are
still at an early stage.
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An earlier proposal of the author for the incorporation of isotopic spin into the foundations of the theory
of spin & particles, based upon a consideration of the group-space of the proper Lorentz group, is here shown
to require a certain definite conception of the essentially spatiotemporal character of all "internal" elementary
particle phenomena such as isotopic spin. It is further shown that according to this proposal the particular
spatiotemporal character of the 3-parameter group of isotopic spin rotations of a strongly interacting charge
doublet is identical with that of another 3-parameter group of spinor transformations recently applied by
pau] j. to the neutrino. It thus follows that for leptons in general there should exist an analog of isotopic spin
rotations, which must be expected to dier from the latter, however, in its physical interpretation. Through
a similar generalization of the notion of G-conjugation, a fundamental criterion is then shown to be available
for the classi6cation of all spin ~ particles into the two families of leptons and baryons, respectively.

' 'N a recent re-examination of the foundations of the
~ - theory of weak interactions, Pauli' has been led to
consider the spinor transformation

v'= av+bysv',

where u is the neutrino wave function and v' is its charge
conjugate, and where c and 6 are complex parameters

r W. Pauli, Nuovo cimento 6, 204 (1957).

subject to the constraint

(2)

Gursey' has subsequently noted the existence of a
certain formal correspondence between Pauli's spinor
transformation (1) and the group of real Euclidean
rotations. One of the objects of the present note is to
point out that this correspondence is not, as would

' F. Gursey, Nuovo cimento 7, 411 (1958).


