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Scattering of Neutrons by Nonspherical Nuclei*
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(Received October 2, 1958)

A discrepancy between experiment and the optical model calculations of Bjorklund and Fernbach exists
in the scattering of 7-Mev neutrons by tantalum. The possibility is investigated that this discrepancy is
due to the quadrupole deformation in tantalum. The deformation is represented by a term proportional
to P2(cosy) added to the spin-dependent potential of Bjorklund and Fernbach (y is the angle between the
assumed nuclear symmetry axis and the radius vector to the scattered particle). The added term is treated
as a perturbation and the calculation is carried to second order. The Schrodinger equation is solved numeri-
cally on an IBM-704 computer to obtain the differential cross section for the elastic scattering of neutrons
and the results are applied to the scattering of 7-Mev neutrons by tantalum. Parameters are determined
which bring the theoretical results into adequate agreement with experiment.

HE optical model has been highly successful in
correlating a large amount of data for the

scattering and polarization of nucleons by nuclei. The
cross-section curves obtained by Bjorklund and Fern-
bach' (BF) provide a remarkably faithful reproduction
of experimental data. The fits to experiment are not
perfect, of course, but discrepancies of the order of
forty or fifty percent can be tolerated in a theory as
crude as the optical model. In one case, however, the
scattering of 7-Mev neutrons by tantalum, theory and
experiment disagree by a factor as large as five or six
for certain values of the scattering angle. This is so
much larger than typical optical model discrepancies
that one would like to ascribe it to something other
than the crudity of the theory.

A hint as to the possible source of this difficulty
comes from the fact that tantalum has a large quadru-
pole moment. Thus it cannot be expected to be a perfect
sphere and an adequate optical potential may have to
reQect the presence of nonspherical deformations. To
investigate this possibility we have calculated the
differential cross section for the elastic scattering of
neutrons using a modified optical potential of the form

V(r) = Vnp(r)+ Vr(r)Ps(cosy).

numerically even with the aid of a high-speed electronic
computer under such circumstances can be extremely
awkward. One might consider omitting the spin-orbit
coupling in VBI;, but the spin-dependent parts of this
potential are known to be of considerable importance
in treating elastic scattering. Furthermore, we should
like to pursue this investigation without altering either
the form of the BF potential or the numerical values
of its parameters. For these reasons we shall perform a
perturbation calculation in which the noncentral po-
tential is assumed "small" relative to the BF potential.
Chase, Wilets, and Edmonds' in a recent paper have
shown that the "distorted-wave first Born approxi-
mation" is not reliable for this problem. Thus we
calculate correct to second order and obtain thereby
an improvement over the first Born approximation,

Our calculation also makes use of the adiabatic
approximation which is the assumption that the target
nucleus does not rotate during the time it interacts
with the projectile neutron. The validity of this
approximation has been demonstrated by direct calcu-
lations, '' and a rough order-of-magnitude calculation
shows that a heavy (A 200) nucleus rotates through
an angle of less than one degree during the time a
neutron (P. 7 Mev) passes through the target force
field. This corresponds to an exchange of about 30 kev
of energy between the target and the projectile.

The setting up of the equations proceeds along quite
straightforward lines. The wave function is split into
zeroth-, first-, and second-order parts, and terms of
like order in the wave equation are equated to obtain
a wave equation in each order. The wave function is
analyzed in terms of angular momentum states and this
leads to the determination of the zeroth-, first-, and
second-order radial equations. The zeroth-order equa-
tion is that already considered by BF and others. The
first- and second-order equations contain inhomo-
geneous terms resulting from the mixing of angular
momentum states by the noncentral potential.

Here Vns(r) is the complex, spin-dependent potential
of Bjorklund and Fernbach. Vt(r) is a real, spin-
independent function of r alone which we choose to be

Vr(r) = Vr expI —(r—Et)'/c'],
with Vr, E~, and e adjustable parameters. Ps(cosy) is
the second order I.egendre polynomial and p is the
angle between the assumed nuclear symmetry axis and
the radius vector to the scattered neutron. The angle-
dependent term is meant to simulate the quadrupole
deformation.

The BF potential is spin-dependent; thus one is faced
with the task of solving the Schrodinger equation with
a spin-dependent, noncentral potential. To provide an
analytic solution is clearly hopeless. To And a solution

*Work performed under the auspices of the U. S. Atomic s Chase, Wilets, and Edmonds, Phys. Rev. 110, 1080 (1958).
Energy Commission. 'B. Margolis and E. S. Troubetzkoy, Phys. Rev. 106, 105' F. Bjorklund and S. Fernbach, Phys. Rev. 109, 1295 (1958). (1957).
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The radial equations are replaced by equivalent
difference equations which are solved numerically on
an IBM-704 computer subject to the requirement of
outgoing spherical waves at infinity. The procedure
involves integrating numerically from r= 0 to the
point r=r,„at and beyond which the potentials are
essentially zero. At this point the numerical solutions
are joined smoothly to spherical Hankel functions
which are solutions of the field-free equations. The
scattering amplitude is, of course, obtained from the
asymptotic form of the wave function. The form of the
amplitude in the three orders is as follows:

f (o8,~) =Z ~l(8,~),

f (8,~; ~;)=Z «-(8,~) I'."(~;),

f (8,~;&,~)= E Z&. (8,~)I'."(r,~)
1=0,2,4 Lm

The angles ($,q) are the polar and azimuthal angles of
the nuclear symmetry axis in a coordinate system so
chosen that the s axis is the incident beam direction.
The three functions of the scattering angles (8,@), F~,
G~, and HI. E are spin-dependent.

Correct to second order, the diGerential cross section
for the scattering of a neutron through a direction
(8,@) by a nucleus with symmetry axis oriented in the
direction (p,g) is

0 (8A'; p,n) =
I fo(8,4) I +Lfo(8,$)fr*(8,@;g,g)+c.c.j
+

I f (8,~) I'+Lfo(8,~)f'"(8,~; &,~)+"l
The quantity which is to be compared with experi-

ment is an average of the above expression over nuclear
orientation. Suppose that the target nucleus is described
by a wave function Xr(Q), where I represents all
quantum numbers and Q all coordinates (including g
and q) necessary to specify the target. Then with
f(8,@;t,g), the amplitude for the scattering from an
oriented nucleus,

f' ( A)= ~ *( )f(,4»$, ) ( )

For a randomly oriented target the quantity Sr I
xI (Q) I

'
is independent of 0 and, in fact, the cross section
becomes

0 (8,y) =—
I f(8,$; $,g) I

' sin(dydee

It is the fact that the XI (Q) form a complete set that
permits us to make use of closure in the above argu-
ment. Thus we have included in o.(8,$) processes in
which the target nucleus makes transitions to states
diferent from the initial state. We have already pointed
out, however, that the perturbing potential permits
only very small energy exchanges between the projectile
and the target; hence only those fr 1(8,&) for which
the initial and final target energies are equal or nearly
equal are nonvanishing. Furthermore, in the usual
experimental arrangement the energy resolution is
such that scattered particles whose energies lie in a
sarge about the incident energy are counted as "elasti-
cally" scattered, and so it is consistent to identify
o(8,&) calculated by the method described here with
the elastic scattering cross section measured in the
laboratory.

This process of averaging over nuclear orientations
has the interesting consequence that the first-order
correction to the cross section vanishes. Thus

) fo(8,$)fl*(8,$; $,lt) sin$d$dg

= 2 ~l(8A)Gl - *(8A) I'o"'*(k,n)»nkdhdn=o
LL'

The cross section averaged over nuclear orientations is
then

~(8A) =~o(8A)+~»(8A)+~»(8A),

where

1
o(8A) =—

I fo(8A) I' »nk«d~=
I fo(8A) I'

is the BF cross section and

is the amplitude for scattering in which the target
makes a transition from the state I to the state I'.
The cross section is then

1
+ll(8A) =—~'

I fl(8A; k,n) I' »nggn,

(8,~)=2 S
I f.'(8,~) I',

where Sr represents an average over initial nuclear
states. Using the closure property of the XI(Q), one can
show that this expression assumes the form

~(8,y) = 8 "
I
x, (Q)f(8,y; t,~) I'dQ.

0'»(8,P) =— ufo(8,4)fo*(8,&; P,g)+c.c.j sin&d&drj,
4

are the lowest-order nonvanishing corrections resulting
from the quadrupole deformation. It is important to
emphasize that a first Born approximation would give
only 0»(8,&) and not o»(8,p). Since all(8,p) is always
greater than or equal to zero while o&o(8,&) can (and
does) vary in sign as a function of scattering angle,
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one finds

n=3Ze/4mEo' V. crt, .

The quadrupole moment is given by

2
Q= —

I r'Ps(cos8)p(r, 8)dr
e~

6Z (Vi)
exp[ —(r Ri) s/cs7—r4dr.

5&o' &Vcz& "o

The integration may be carried out to sufhcient
accuracy and yields
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FIG. 1, Differential cross section vs scattering angle for the
elastic scattering of 7-Mev neutrons on tantalum. The solid curve
gives the result of calculating with the quadrupole term included
in the potential. The dashed curve represents the calculation
omitting the quadrupole term. The data are those of Beyster,
Walt, and Salmi, Phys. Rev. 104, 1319 (1956).

the 6rst Born approximation is an overestimate of the
lowest-order correction to the cross section.

The result of applying our calculation to the scat-
tering of 7-Mev neutrons by tantalum is shown in

Fig. 1. Although no extensive parameter search has
been made, the values

V~——10 Mev, E~= 1.25A& fermis, c= 2 fermis,

give the improved fit shown in the figure. It should be
noticed that the correction to the BF cross section is
positive in the range of scattering angle from 60' to 80'
and negative (though not sufFiciently large in rnagni-

tude) between 80' and 100' as required. A First Born
approximation, as we have remarked, could never be
negative, and if it were adjusted to improve the fit in
the 60'—80' region it would worsen, rather than
improve, the fit in the 80'-100' region.

A connection between the nonspherical potential and
the quadrupole moment of the nucleus can be made if
one assumes that the nuclear charge distribution is

proportional to the real spin-independent part of the
optical potential. Thus the nuclear charge density is

taken to be

p(r, 8) =n[Vc~ (r)+ Vt (r)Ps(cos8) 7,

where n is a constant and Vc~(r) is the real spin-

independent part of the BF potential. o. is determined

by the requirement

"p(r,8)dr=Ze.

BF give V,=45.5 Mev, E.o ——1.253: fermis, and a=0.65
fermis. Kith these values and the values for V~, E~,
and c given above, one finds for. tantalum

Q—5.5 barns,

in good agreement with the measured value which is
about 6 barns. 4

We feel that we may conclude from this analysis that
the quadrupole deformation in tantalum can be the
source of the discrepancy between experiment and the
results of BF. It would be interesting to apply our
calculation to other elements but a scarcity of experi-
mental data precludes this for the present. Two other
elements, lutecium and uranium-238, have deformations
comparable with that of tantalum, but, unfortunately,
there are no lutecium scattering data available, while
uranium, for which some data do exist, is outside the
range of elements used by BF to determine the pararn-
eters of their potential, and discrepancies between the
BF results and experiment might be expected to reQect
this situation as well as the existence of deformations.
Other elements such as indium, antimony, and rhenium
have quadrupole moments of such magnitude as to
give deformations something less than half as big as
the tantalum deformation. Since the correction to the
cross section is of second order in the perturbing
potential, the effect of the deformations in these ele-
ments might well be so small that they are masked by
"normal" optical model discrepancies and careful
measurements, perhaps with mono-isotopic samples,
might be required in order to discern the effects of
quadrupole deformations.

If data of sufhcient quality and quantity become
available, it might be worthwhile to re-examine this
problem with an eye to dispensing with perturbation

' T. Schmidt, Z. Physik 121, 63 (1943).
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methods and solving the wave equation directly in the
manner of Chase, Wilets, and Edmonds. ' We feel,
however, that for any such program to provide defini-
tive results the calculation must be based on a spin-
dependent optical potential such as that of BF which
is known to be applicable to many elements over a
wide range of energies.
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The energy difference involved in the decay of K" to A" by electron capture was measured in two ways.
First, a time-of-flight technique was used to observe the neutron spectra from A4O(p, e)K4s and the corre-
sponding Q's were computed. Second, the thresholds for production of certain gamma rays from this reaction
were measured; these thresholds provided another set of values for the Q's. When these Q values were com-
bined with our measurements of the gamma-ray energies, we obtained a mass difference equivalent to
1.522~0.006 Mev between A4' and K' and an energy release of 60&8 kev in the decay of K' to A' . This
appears to conflict with other information on this branch of the decay of K".

.:I

I. INTRODUCTION

'HE decay scheme of K" has been the subject of
many papers since it is of interest not only as a

nuclear phenomenon, but also as a geophysical tool.
Even so, its decay scheme is not completely understood.
In this paper we describe a measurement of the neutron
spectra resulting from transitions to states in K"
through the reaction A4'(p, n) K4'. From these and other
measurements we deduce the energy available for the
decay of K" to A" by electron capture.

The threshold of the reaction A4s(P, ts)K4' was first
investigated by Richards and Smith, ' who obtained
an upper limit of 2.4 Mev for it. The energies of ex-
citation of the levels of K~ were obtained by Buechner
et aL' using the K"(d,P)K4s reaction. The low-lying

levels of K" appear to arise from j-j' coupling of an

fr~s neutron with a ds/s proton hole leading to spin

states of 2, 3, 4, and 5. The ground-state spin is known'

to be 4; with other states assigned as in Fig. 1, Pandya'
and Goldstein and Talmi' successfully computed the

positions of the corresponding levels in Cl". These
assignments have been confirmed to some extent by
recent measurements' of the angular distribution of

K"(d,p)K4s. Endt and Braams' have recently reviewed
data on K".

From this information one can conclude that we
should observe transitions only to the second. and third
excited states of K", as indeed we do. In the absence of
a (P,n) measurement, Way ef al. s had taken an average
of mass-spectroscopic data and other reaction data to
obtain a value of 1.51&0.02 Mev for the mass difference
between A" and K4 . From our work, we obtain a value
1.522+0.006 Mev for this mass difference.
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FIG. 1. The energy levels
of Ao and K~. l.00—
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II. EXI'ERIMENTAL EQUIPMENT

The spectra of neutrons from the reaction A4'(p, e)K4'
were obtained by measuring the neutron time-of-Qight
in conjunction with an externally pulsed beam from the
4-Mv electrostatic accelerator at Argonne National
Laboratory. A block diagram of the equipment is

$ Work performed under the auspices of the U. S. Atomic
Energy Commission.
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