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Effect of an Electric Diyole Moment of the Proton on the Energy Levels
of the Hydrogen Atom*

R. M. STzRNHzmzR
Brookhaven Ãational Laboratory, Upton, See Fork

(Received October 8, 1958)

The perturbations of the energy levels of the hydrogen atom by a possible electric dipole moment of the
proton, d, have been obtained. The inhomogeneous equation for the erst-order perturbation of the wave
functions was solved analytically. The shifts of the energy levels are of the second order in d. In particular,
there results a decrease of the Lamb shift between the 2Sy and 2Ey levels. By equating this decrease to the
maximum allowed by the approximate agreement between the experimental and theoretical values of the
Lamb shift, it is concluded that the electric dipole moment of the proton, d, must be less than 1.3X10 "cm
times the charge of the electron. Calculations have also been carried out for the shifts of the energy levels
of deuterium produced by a possible electric dipole moment of the deuteron.

I. INTRODUCTION
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in the weak interactions, ' it has become of interest
to investigate the possible existence of an electric
dipole moment of the elementary particles. It has been
shown that a nonvanishing electric dipole moment for
any elementary particle would imply that time-reversal
invariance is violated, ' unless there is an additional
degeneracy of the particle states, such as the degeneracy
involving magnetic pole conjugation considered by
Ramsey. ' Several years ago, Smith, Pur cell, and
Ramsey' obtained an upper limit for the dipole moment
of the neutron d„by a magnetic resonance method:
d„(5X10 "cmXe, where e is the charge of the elec-
tron. Very recently, Berley, Garwin, Gidal, and
Lederman' have shown that the electric dipole moment
of the muon must be less than 2X10 "cmXe, by a
deflection method which utilizes the longitudinal polar-
ization of muons from pion decay. Feinberg' and
Salpeter' have obtained an upper limit for the dipole
moment of the electron d, from a comparison of the
resultant shift of the hydrogen energy levels with the
possible experimental and theoretical uncertainties of
the Lamb shift. The resulting upper limit for d, is
d.(j.X10—13 cmXe.

In the present paper, we have determined the pertur-
bation of the hydrogen energy levels by a possible
electric dipole moment of the proton, d. It is found that
the presence of a proton dipole moment d would de-
crease the Lamb shift between the 2S~ and 2P; levels,

By requiring that the decrease of the calculated Lamb
shift be less than 1 Mc/sec, one finds that the proton
dipole moment d must be less than 1.3X10 "cmXe.

In Sec. II, we obtain the shifts of the hyperfine levels
of the hydrogen atom in the 1$;, 2S;, 2P;, and 2P~
states. The expressions for the energy level shifts are
given in terms of certain integrals over the radial parts
of the perturbations of the wave functions I&'. These
radial integrals are evaluated in Sec. III, using a
method' in which the radial perturbations N1' are
obtained analytically, "by directly solving the inhomo-
geneous equation for N1'. Upon using the values of the
radial integrals, one obtains the decrease of the Lamb
shift in terms of d, and hence an upper limit on d.

Besides the calculations for hydrogen, we also give in
Sec. II the expressions for the level shifts of the deu-
terium atom produced by a possible dipole moment of
the deuteron. In view of the very small upper limit on
the neutron dipole moment4 d„, a dipole moment of the
deuteron d& would represent essentially the effect of a
proton dipole moment d.

II. CALCULATION OF THE ENERGY LEVEL SHIFTS

The energy level shifts due to an electric dipole
moment of the proton d are of the second order in d.
The required second-order perturbation of the energy
E2 is obtained from the first-order perturbation of the
wave function 4'&. The basic equation for 4'& is given by

(Hp —Ep)%'i = —Hr+p,

in the samemanner as a dipole moment of the electron. ' where ggo, ~0, and @0are the unperturbed Hamiltonian,
energy, and wave function, respectively; H& is the

*ork pe««med un««he auspices « th«. S. Atomic perturbation due to the dipole moment.
Energy Commission.' T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

P Lee, Oehme, and Yang, Phys. Rev. 106, 340 (1957);T. D. Lee (2)
and C. N. Yang, Brookhaven National Laboratory Report BNL-
443, 1957 (unpublished); L. 1.andau, Nuclear Phys. 3, 127 (1957) where Hi is in Rydberg units; r is the distance from the

'N F Ramsey, Phys Rev 109, 225 (1958) nucleus in units of the Bohr radius aH, A is a constant
'Smith, Purcell, and Ramsey, Phys. Rev. 108, 120 (1957).
5 Berley, Garwin, Gidal, and Lederman, Phys. Rev. Letters j., 144

(1958). ' R. M. Sternheimer, Phys. Rev. 84, 244 (1951);96, 951 (1954);' G. Feinberg, Phys. Rev. 112, 1637 (1958). 105, 158 (1957).
r K. E. Salpeter, Phys. Rev. 112, 1642 (1958). ' R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460' Triebwasser, DayhoR, and Lamb, Phys. Rev. 89, 98 (1953). (1953);Foley, Sternheimer, and Tyclro, Phys. Rev. 93, 734 (1954).
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given by
A =2d/(eaH);

e is twice the spin vector of the proton (in units h);
and r" is a unit vector in the direction of r.

After %i is determined from Eq. (1), the level shift E~
is obtained from the equation

P&—— 0 O~H&% &d V, (4)

where QJ' is r times the radial part of the perturbation
4&, Qo' is r times the radial part of the unperturbed
function 0 0, and the operator in the square bracket on
the left-hand side represents (Ho —Eo) in Rydberg units,
provided that r is in units aH. In Eq. (5), l is the
azimuthal quantum number of the perturbation, e is
the principal quantum number of the unperturbed
state (E&=—Z'/m'ry), and we have considered the
case of arbitrary Z for the sake of generality. The
function No on the right-hand side of (5) is normalized
as follows:

Qo"dr=1. (6)

We will consider in particular the 1S;, 2S;, 2P~„and
2I'; states of the hydrogen atom. As a result of the
perturbation Hi, the rls states are excited into p states,
and the np states are excited into both s and d states.
Following a method used previously, ' the radial pertur-
bations Ni' for rsvp, e~s, and ep—+d will be obtained
by directly solving Eq. (5), without any expansion in
terms of the excited states of the Hamiltonian Ho. Since
the unperturbed functions Qo' are hydrogenic, it turns
out that Qy can be obtained analytically. ' The solution
of Eq. (5) will be discussed in Sec. III. As will be shown
below, the various energy shifts involve only the follow-

ing radial integrals:

Eg = No Qy Hg 41',

where the integration extends over the volume of the
atom, and the asterisk (for &o~) denotes the complex
conjugate.

In order to solve Eq. (1), we note that this equation
involves the following radial equation:

d' l (l+1) 2Z Z'
——+ ——+—Ni' ——(A/r')mp', (5)

8f 'f f fF

Ez'(2p —+s) =+ (1/24)Z'A' (10)

4'p ——Pz,X;g~=2 ~Rg,&;rl~ (12)

where Pz, is the 2s wave function normalized accord-
ing to

00 pg

f~ 'rzdr sin8d8= 1&J, ~,

where 0 is the angle between the radius vector r and
the z axis. Thus P~, =2 ~R~„where E~,=No'/r, with eo'
normalized according to Eq. (6). In Eq. (12), X; is the
proton spin function with magnetic quantum number
m=-,', and g~ is the electron spin function with m=-,'.

H~ can be written as follows:

H, =H, 'P,' (a,+ia„)-sin8e—'&

+-', (o.,—io„) sin8e'"+o, cos8], (14)

where p is the azimuthal angle, and Hi'= —(A/r'), as
defined above LEq. (7)j. The operator (e r) does not
act on q,*, and we have o,X;=X„(o —ia„)X.=2X ., and
(o +ia„)X~=0.One thus obtains

Hi@'o ——H rpgi~, (X; cos8+X; sin8e'&).

The resulting perturbation 4& is given by

Vir=2 ~u, 'g*(X; cos8+X ~ sin8e'&), (16)

where ui' satisfies the following equation t see Eq. (5)j:

Ez'(2p-+d) = —(1/48)Z'A'= ——',Eg'(2p~s), (11)

where all of the E~' are in Rydberg units.
Referring to Eqs. (1) and (4), we wish to determine

the expressions for F~ in terms of the radial integrals
E&' for the various hyper6ne levels. The 1S~ and 2S;
atomic levels are each split into two levels, F=O and
F= 1, by the hyperfine structure interaction. Here F is
the total angular momentum of the atom. We have:
F=I+J, where I is the spin of the proton (I=-,'a), and
J is the angular momentum of the electron.

We Grst take as an example the 2S; state with F= 1,
M+=1. Here 3fp is the magnetic quantum number
pertaining to F, i.e., the projection of F along an
arbitrary s axis. In all cases, the final result for E~ must
be independent of M&. This property can be used as
a check on the results, by repeating the calculation for a
diGerent Mg state. The unperturbed wave function
0'0 for F= 1, My= 1 is given by

where Hi'= —(A/r') is the radial part of Hi. The values
of Ez' for is~p, 2s~p, 2~s, and 2p~d (as obtained
in Sec. III) are as follows:

Ez'(1s~p) = —Z A',

E,'(2s p) = —(1/8)Z'A',

( d' 2 2Z Z')
+ + lgi'= —Hi'eo'.

dr' r' r 4 &

From Eq. (16), one obtains

HyC yF —2 zB ] Q] 'QzX &.

(17)



830 R. M. STERNHEI MER

The resulting energy shift E2 is given by

E2 t——it (%0*»)H,+1»dr
J0

Thus we have

P,„,,= —(3~/2) (uo'/r) singe',

$2&, 0= (3/2)*(up /r)'cosg,

(27)

(28)

g singdg= Jt uo'H, 'u1'dr (19) where uo' is r times the radial wave function, normalized
according to Eq. (6):

E2 (F= 1)= —(1/8) Z'A-'ry. (20)

For the 25~ state F=O, the unperturbed wave func-
tion 4 0 is given by

+,r=-', u, '(X,.q .—X;»I,), (21)

where X and g are the spin wave functions for the
proton and the electron, respectively. By using the
same procedure as for the state F= 1 discussed above,
one finds

The radial integral on the right-hand side is just
E~'(2s—+p), as given by Eq. (9), so tha, t

uo' (Z'/2—4—**)r' exp (—Zr/2) .

The 2p electron will be excited into both s and d
states. In order to obtain these perturbations, it is
convenient to consider separately the g; and g; terms of
%'p ! Eq. (25)j, since the operator cr r has no matrix
elements connecting these terms, which will be denoted
by +0+ and 0'0, respectively. Taking first 0'0+, we have

H,%'0+r =—2—~H1'»I;uo'(X) cos'0+X,* sing csog e&)

= —2 iH1'g;uo'(-', x.+!x;(cos'0 —-',)
+X; sing cosge'&g), (30)

%,»=-,'u, '!»ll(—X; singe
—'~+X *, cosg)

+q .(X, cosg+X; singe'~)],

whence

(22)

where, in the last expression, the term 3X; gives the
2p—&s perturbation, while the square bracket leads to
the 2p—&d perturbation.

The 2P—&s perturbation (%1+), is given by

H1+1»= —',H1'u1'(y;X, —g;X;}, (23)
(4'1+),r = —(18) '»l~x;(u1') „ (31)

00

F2 '(4'——o*r)H1+1»dr singdg
~, J,

=E2'(2s +p) = —(1/8}Z'A—' ry. (24)

d' 2Z Z'i
! + I(u1) = Hi uo ~

d»' r 4 ) (32)

where the radial function (u1'), satishes the following
equation:

Thus E,(F=1) and E~(F=O) are equal for the 25;
state. Both levels are shifted downward by the same
amount, while the hyperfine splitting is unaffected.
The same is, of course, true for any 5 state, since we

have not used the properties of the radial wave func-
tions except to evaluate E2'(2s~p). Thus for the 15;
state, we have E2'(1s—+p) = —Z'A'; both the F= 1 and
F=O levels are shifted by this amount, and the hfs
splitting Av(1s) is not affected. As will be discussed in
Sec. III, the radial integrals for a given type of angular
excitation (ul—+l') are proportional to 1/rP The shift.
for the 35; state is —(1/27}Z'A' ry.

The 2I'; state consists of two levels, Ii =1 and Ii =0.
The energy shift for 8=1 will be determined by means
of the magnetic substate Mp = 1.The unperturbed wave
function 0'0 for this state is given by

From Eq. (31) one obtains

H, (41+),r = —(18)—~H, '(u, '),
X»t,*(X;cosg+X;. singe'&). (33)

The resulting energy shift due to the 2p—+s perturbation
of C0+ is given by

(E&+),=,~ ~ (co+)*rH1(+&+),rdr singdg. 0 60

= (1/6)Eg (2~$) iI cos 8 slIlgdg

= (1/9)E2'(2p-+s). (34)

The 2~d perturbation due to +0+ is given by

where $2„ is the normalized 2p wave function pertain-
ing to magnetic quantum number m. f~~ is normalized
in the same manner as P., I Eq. (13)g: ~he~e the radial function (u, ')s is determined by

+o= —(1/3) V2, on-:X-;+ (2/3) V~, 1n-.x:, (25)
(4'1+)ar = —2

—*(u1')aq;LX; (cos'8 ——;)

+X i sin8 cosge*"&g, . (35)

0 0
I P&n, ~ I

'»2dr singdg = 1. ( d' 6 2Z Z'i
+ + 1(u1')a= —H1'uo',

4) (36)
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so that the energy shift is found to be

7r

(Es+)g——
) ) (4'o+)*kg(@g+)grdr

0 0

Xsingdg= (2/9)Es'(2P —+d). (38)

We shall now consider the rt *, term %o of Eq. (25).
One obtains

&8'o r= -2-sHg'q;Np'

X [Xi sing cosge'&+X; sin'ge" vj. (39)

The angular functions in the square bracket of the
right-hand side are pure d wave functions (with trt= 1
and m=2). Thus there is no 2~s excitation of %o .
On the other hand, the 2~d perturbation is given by

(+g )gr = ——2
—l (sag') crt;

X (X; sing cosge'&+X i sin'ge"") (40)

where (tt, ')d is determined by Eq. (36). From Eq (40).,
one obtains

jy, (e,—)dr = —2—&Hg'(Ni') og ~X; singe"'". (41)

with Ns' given by Kq. (29). From Eq. (35), one obtains

a, (e, +),r =—2
—'*a,'(tt, '),

Xrl;(ssX; cosg —sX; singe'"), (37)

5/2) which can only give rise to F=1, 2, and 3, but
not F=O.

From Kqs. (43) and (45), it is seen that the F=1
level (which lies above F=0) is lowered, while the F=0
level is raised, and as a result the 2I'; hyperfine splitting
Av(2P;) is decreased by an amount (1/18)Z'A' ry.

The centroid (weighted average) of the 2P; levels is
not changed by the dipole perturbation, since one finds

Pv(2F+1)E, (F)=3E,(F=1)+Es(F=O)=0. (46)

On the other hand, as discussed above, the 25~ levels
are shifted downward by SZ'A'ry. Thus the Lamb
shift for hydrogen would be decreased by the presence
of an electric dipole moment of the proton. At present,
the agreement between the theoretical expression for
the Lamb shift" and the observed value is to within

-', Mc/sec. If one assumes that any possible dis-
crepancy due to a proton dipole moment d must be
less than 1 Mc/sec, one obtains an upper limit for d
as follows:

—'A'&6. 62X10 "X10'/(2.18X10 ")=3.04X10 " (4'l)

so that

A&4.93X10 5,

d &e(-,') (0.529X10-') (4.93X10 ')
=1.30X10 "cmXe. (48)

Finally, the 2p~d energy shift is given by

(E2 )d (40 )*rIii(+& )drdr singdg

=—', Es'(2p d). (42)

From Eqs. (34), (38), and (42), one finds for the
total energy shift of the F= 1 level of 2I'.;:
Es(P=1)= (Es ).+(Es+)o+(Es )o

= (1/9)Es'(2 p—+s)+ (8/9) Es' (2p—+d)

= —(1/72) Z'A' ry. (43)

For the F=O(3fv=0) state, %o is given by

4'o ——ran[3 jets„gXi—6 r'P, v oX;1
+q *,[—6 'Ps„, sXi+3 '*|Ps„,&X ij. (44)

By proceeding in the saine manner as for F= 1, Mp= 1,
one obtains for the energy shift

Es(F=0) =Es'(2p —&s) =+ (1/24)Z'A' ry. (45)

There is no 2p—+d excitation for the F=0 state. This
result can be explained on general grounds, by noting
that the operator o r" commutes with P, and hence the
perturbation 4'i has the same total angular momentum
F as the unperturbed function, namely F=O in the
present case. For a 2~d perturbation, the electronic

part. of 4't would represent a 'D1 or 'D~ state (J=3/2 or

A convenient formula for the upper limit on d from
the Lamb shift or the 2I' hyperfine structure is given by

d&0.46X10—"cmXeX (gv/tt)*, (49)

where 8u is the upper limit on the experimental and
theoretical uncertainties of the frequency in Mc/sec,
and a is the coeKcient of A' in the theoretical expression
(tt=i& for the Lamb shift; 1/18 for the 2P; or 2P;
hfs in H).

We will now determine the energy shifts of the 'I'~
F=2 and F=1 hyperhne levels. For the F=2 level, E2
will be obtained by considering the M+=2 state. 0«
is given by

+p ——+g„gXgg~..

One obtains

Kg+sr = —(3'/2)Hg'g;sto'

X [X; sing cosge'r+X i sin'ge" r j, (51)

where tts' is given by Eq. (29). The angular functions
in the square bracket are pure d wave functions,
showing that there is no 2p-+s excitation for the F= 2

state. As discussed above for Es(F=O, 2P,), this result
follows from the fact that for a 2p—+s perturbation, the
electronic part of%'& would represent a 'Si state (j= 1/2)
which cannot give rise to an F= 2 state.

"H. A. Bethe and K. E. Salpeter, Quantum 3Eechunicg of One-
ortd Two Electron Problems -(Academic Press, Inc. , New York,
195.7), pp. 107, 352.



R. M. STERNHEI M ER

The 2~d perturbation (%'i) q is given by

(+i)«= —(3'/2) (Ni').

Xg;(X~ sin8 cosine'&+X ~
sin'ee" &), (52)

from which one obtains

If,(+,)„r= —(3~/2)&i'(Ni')gg. x* singe'& (53)

The energy shift is found to be

E&(F=2) =E&'(2~d) = —(1/48)Z'A' ry. (54)

For the F= 1 state with 3f~= 1, +0 is given by

@o=q,L(3/4) P»,X ~
—6—

*P», oX;g
—(12) 'v--*.An, iX: (55)

By means of (55), one obtains for the energy shift

Eo(F= 1)= (8/9) Eo'(2~s)
+-o'Eo'(2p —+d) = (5/144) Z'A' ry. (56)

From (54) and (56), one finds that the hyperfine
splitting Ai (2P1) is decreased by an amount

Eo(F= 1)—Eo(F= 2) = (1/18)Z'A' ry. (57)

This change of Av(2P;) is the same as for the 2P; state.
Also in similarity to 2P;, the centroid of the 2P; levels
is not aGected by the perturbation. Ke have

Qr(2F+1)Eo(F) =5E2(F=2)+3Eo(F= 1)=0. (58)

In view of these results for the weighted average of the
2P; and 2P; levels, a dipole moment of the proton
would have no eGect on the fine structure in the 2P
states, i.e., on the 2P;-2P; level separation.

Ke have also calculated the eGect of an electric
dipole moment of the deuteron on the atomic energy
levels of deuterium. Since the dipole moment of the
neutron has been shown to be very small (d„&5&&10 "
cm&(e),4 we expect that a possible dipole moment of
the deuteron dd represents essentially the eGect of a
dipole moment of the proton d (unless dq& 10 "cm&&e).
However, the value of d~ need not be identical with d,
because of possible eGects of the motion of the proton
inside the deuteron. In the following, it will be assumed
that the dipole moment is given by ddI, where I is the
spin of the deuteron.

For deuterium, the radial integrals E (rod—&1') are
the same as for hydrogen, except for the replacement
of A by A&, where A&=2dz/(eaii). Accordingly the
radial integrals will be denoted by E2D'(iol~l'). The
coeKcients of the integrals are, of course, diGerent
from those for hydrogen, because of the deuteron spin
I= 1. The results are as follows:

Eo(F=k) =Eo(F= 2)
=—ooE»'(1s—+P) =——;Ao', (59)

Eo(F=k) =Eo(F=2)
= oEo»'(2s~p) = —i'oA", («)

Hi, = —(A./r') e, .r, (66)

where A, = 2Zd, /(eaH), o, is twice the spin vector of the
electron (in units h). Obviously Hi, has the same form
as IIi. The factor —(A,/r') will be denoted by Pi, '.

For the 25~ state with Mg=-,', the unperturbed
function 00 is given by

(67)
Ke have

&i.+or= 2 '*Hi, 'eo'(rp cos—g+g x sin0e'~), (68)

where uo' is r times the normalized radial 2s function.
From (68), one obtains the following perturbation 4'i.

4',r=2 iu„'(q; cos8—+i1; singe'&),

where u&,
' is determined by the equation obtained from

(17) by replacing Hi' by Hi, '. Thus Ni, '=ui'(A, /A)
=Ni'(Zd. /d), where Ni' is the solution of (17).Here and
in the following, we label the radial perturbations
pertaining to the electron dipole moment by the addi-
tional subscript e. The corresponding radial integrals
will be denoted by E2.'(el~i').

Equation (69) gives

+1+lr 2 +1 u16 g$ (70)

2P;: E,(F=-,') =—,'E»'(2~s)
+ (5/9) E»'(2p —3d) = —(1/144) Ad', (61)

2P;: Eo(F= o) = (4/9)E» (2~s)
+ (2/9)E»'(2p —+d) =+ (1/72)A g', (62)

2P) .. E,(F= ,') =oE-oD'(2~d) =—(1/80)A s', (63)

2P,*: E,(F=-',)= (5/9)E i)'(2~s)
+ (17/45) E»'(2~d) =+ (11/720)A d', (64)

2P).' Eo(F=-', ) = (2/9)E»'(2~s)
+-,'E»'(2P d)=+(1/144)A„o, (65)

where all of the values are in Rydberg units.
As for hydrogen, there is no eGect on the Sg state

hyperfine splittings. The centroids of the 2P~ and 2Pg
levels are again unchanged by the perturbation, so
that there is also no eGect on the Gne structure. The
decrease of the Lamb shift is (1/12)A&' ry. The hyper-
6ne splittings for 2Pg and 2P~ are both aGected by
the perturbation, similarly to the result for hydrogen.
For 2P„ the splitting E(F=3/2) E(F= —,') is—decreased
by (1/48)A j ry.

It is of interest that the present perturbation method
can also be applied to obtain the energy shifts of the
hydrogen atom due to a possible electric dipole moment
of the electron d, . These level shifts have been recently
derived by Feinberg' and by Salpeter, ' and have been
used to set an upper limit of 10 "cm)(e on the electron
dipole moment.

The perturbation of the Hamiltonian is given by
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whence

Ep(2S;) =
~0 &0

As discussed in Sec. II [Eq. (5)], u~'(1s—+p) is deter-
mined by the equation

(+o r)Hx,+xrdr sinHdH
tt' d 2 2Z

+ +Z' !ug'(1s-+p) = (A/r') up'(1s), (82)
=E„'(2s +p)-= —(1/8) Z'A p ry. (71)

E dr' r' r

For the 2Pg state with Mg=-'„0'0 is given by

+o= —(1/3) ~fpy, orig+ (2/3)&fp~, ig y.

We have
+le+Or = —2 &Hie +0 g&q

(72)

(73)

uo'(1s) = 2Zlre-e'

It can be easily verified that the solution of (82) is

ug'(1s~P) =Z&Are e", (84)

where the unperturbed function up'(1s) is given by

where up' is given by Eq. (29). One thus obtains for the
perturbation 0'l.

+,r = —2
—'(u„'),q&, (7 ) E&'(imp) = up'(1s) ( A/—r')

where (uq, '),—= (Zd./d) (uq'), . Equation (74) gives

H~P~r =—2 'H~, '(u~, '), (g; cosH+g; sinHe'p'). (75)

"0
X xu'(1 ~sp) dr = —Z'A'. (85)

The 2s—+p perturbation u&'(2s—+p) is determined by

The resulting energy shift is given by d' 2 2Z Z'~
+ + !ug'(2s~p) = (A/r')uo'(2s), (86)

Ep(2Py) =Ez,'(2~s) =+ (1/24)Z'A ep ry. (76) E dr' r' r 4 )
For the 2P; level with Ms=3/2, %p is given by where

whence
pod. Iv~a~ (77)

up'(2s) =2 &Z'e "~'(r—Zr'). —

The solution of Eq. (86) is found to be

Hg,% pr =—(3&/2)Hg, 'up'

X (g~ sinH cosHe'~+rj; sin'He '&). (78)
ug'(2s-+P) =8 &Z&Are ""+ap,r'e e"" (88)

The resulting perturbation 4'& is given by

e,r= (31/2) (u„')~—
X (g~ sinH cosHe'"+g 1 sin'He" ~),

where (u~, ')q=—(Zd./d) (u~')q. We have

H~,,%'gr= —(3**/2)Hg, '(ug, ')gg; i sHen'&,

(79)

(80)

where a2„ is an arbitrary coe%cient. The term in a2„
represents an arbitrary admixture of 2p function, which
arises from the 2s-2p degeneracy. This term does not
contribute to E2', by virtue of a property of the non-
relativistic hydrogenic radial wave functions, which
has been noticed recently by Feinberg' and others.
This property is as follows:

so that up'(e, l) (1/r')uo'(u, l') dr =0,
0

(89)

E(2Pa) =E„'(2~d)= —(1/48) Z'A, ' ry. (81)

The results (71), (76), and (81) are in agreement
with those obtained by Feinberg' and by Salpeter. ~ For
comparison with Feinberg's expressions, we note that
his k corresponds to A, [k=2d,Z/(eaH)$. The reduc-
tion of the Lamb shift due to an electron dipole moment
d, is (1/6)Z'A, ' ry, as compared to (1/8)Z'A' ry for a
proton dipole moment d. Thus the upper limit for d,
obtained by Feinberg' is slightly smaller [by a factor
(4/3)'*= 1.15j than the limit for d of Eq. (48).

where up'(l, l) and up'(e, l') are any two radial wave
functions pertaining to degenerate energy levels with
the same e but different l; e.g. , 2s and 2p; 3s, 3p,
and 3d.

From (87) and (88) one obtains

Ep'(2s~p) = ) up'(2s) ( A/r')—
Xu&'(2s~p)dr = —(1/8)Z'A'. (90)

III. THE RADIAI, PARTS OF THE
PERTURBATION QI

In this section, the radial parts of the perturbation
due to the proton dipole moment will be obtained. The
1s~p perturbation u~'(1s—+p) will be considered first.

For the 2p—+s perturbation, u~'(2p —+s), the following
equation holds:

2Z Z'q
! + !ug'(2p s) = (A/r')up'(2p), (91)4)
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where No'(2P) is given by (29). The solution of Eq. whence
(91) is Es'(2~d) = —(1/48) Z'A' (96)

where a2, is an arbitrary coeKcient. The a2, term
represents an arbitrary amount of 2s function which,
however, does not contribute to E2', as discussed above

Ãq (89)j.
From (29) and (92), one finds

Es'(3s"p) = —(1/27)Z'A' (97)

E,'(3p—+s) =+ (1/81)Z'A' (98)

Es'(3~d) = —(1/162)Z'A' (99)

By comparing these values with those obtained above

E,'(2p —+s) =+(1/24)DA'. for n=1 and n=2, one finds that for a given type of
angular excitation nl —+l', Es'(nl —+l') decreases as 1/n'

The 2~d perturbation Nt'(2~d) is determined by with increasing n. Although this property has not been
proved for arbitrary m, it seems very probable that it
holds true in general.d' 6 2Z Z') (A)+ + I»'(2p~d) =

I

—I»'(2p) (94)
dr' r' r 4) &r') IV. ACKNOWLEDGMENTS
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Excited State Wave Functions, Excitation Energies, and Oscillator
Strengths for Ne(2p'3s) ~

ALBERT GQLD AND RQBERT S. KNoxf
Department of Physics and Institute oj Optics, University of Rochester, Rochester, cVew York

(Received October 13, 1958)

Solutions of the Hartree-Fock equations for the 'P and 'P terms of neon (2p'3s) have been obtained.
Wave functions are tabulated and results of computations of excitation energies and oscillator strengths
are presented. The former fall within 1O% of experimental values. Tt is found that enlarging the size of the
"invariant core" used to compute the excited state wave functions has only a small e6ect on the predicted
energies. The predicted oscillator strength of the 736 A transition is 0.11, which is in reasonable agreement
with available experimental data considering the large uncertainties in the measurements. The computed
di™gneticsusceptibility of the ground state is —7.4X10 cm ' mole, in good agreement with experiment.

1. INTRODUCTION

ECKNT interest in investigations of the solid rare
gases has made the computation of numerical

wave functions for the low-lying excited states of the
free-atomic rare gases seem useful. ' We have calculated
LS-coupled wave functions for the 'P and 'I' terms of
neon in the 2p'3s configuration using the Hartree-Fock
equations. Spin-orbit interaction and electrostatic
energies are computed for use in intermediate coupling.

*Research supported in part by the U. S. Air Force through the
Air Force Office of Scientific Research of the Air Research and
Development Command.

f Present address: Department of Physics, University of Illinois,
Urbana, Illinois.

' For a computation of excited state wave functions for argon
see R. S. Knox, Phys. Rev. 110, 375 (1958}.

«D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928);
V. Pock, Z. Physik 61, 126 (1930).

Theoretical values of other parameters of interest,
namely, dipole matrix elements, polarizability, oscil-
lator strengths, and diamagnetic susceptibility are also
calculated. The numerical work was carried out on an
ISA type 650 data-processing machine using a program
written by Piper' for the iteration of the Hartree-Fock
equations.

In part 2(a) the Fock equations are written for
2p'3s ('P, 'P) neon, and in part 2(b) their numerical
solution is discussed and tables of wave functions given.
Part 3 is devoted to the computation of excitation
energies and term splittings (including comparison with
a 1s'2s' "invariant core" calculation), a comparison
with other work, and an estimation of computational
errors. In part 4 oscillator strengths, polarizability,

' W. W. Piper, Trans. Am. I'nst. Elec. Kngrs. 75, 152 (1956}.


