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The perturbations of the energy levels of the hydrogen atom by a possible electric dipole moment of the
proton, d, have been obtained. The inhomogeneous equation for the first-order perturbation of the wave
functions was solved analytically. The shifts of the energy levels are of the second order in d. In particular,
there results a decrease of the Lamb shift between the 25} and 2P; levels. By equating this decrease to the
maximum allowed by the approximate agreement between the experimental and theoretical values of the
Lamb shift, it is concluded that the electric dipole moment of the proton, d, must be less than 1.3X107%3 cm
times the charge of the electron. Calculations have also been carried out for the shifts of the energy levels
of deuterium produced by a possible electric dipole moment of the deuteron.

I. INTRODUCTION

INCE the discovery of nonconservation of parity
in the weak interactions,! it has become of interest
to investigate the possible existence of an electric
dipole moment of the elementary particles. It has been
shown that a nonvanishing electric dipole moment for
any elementary particle would imply that time-reversal
invariance is violated,? unless there is an additional
degeneracy of the particle states, such as the degeneracy
involving magnetic pole conjugation considered by
Ramsey.? Several years ago, Smith, Purcell, and
Ramsey* obtained an upper limit for the dipole moment
of the neutron d, by a magnetic resonance method:
d,<5X107%® cmXe, where e is the charge of the elec-
tron. Very recently, Berley, Garwin, Gidal, and
Lederman® have shown that the electric dipole moment
of the muon must be less than ~2X 10715 cmXe, by a
deflection method which utilizes the longitudinal polar-
ization of muons from pion decay. Feinbergé and
Salpeter” have obtained an upper limit for the dipole
moment of the electron d, from a comparison of the
resultant shift of the hydrogen energy levels with the
possible experimental and theoretical uncertainties of
the Lamb shift.® The resulting upper limit for d. is
d,<1X1078 cmXe.

In the present paper, we have determined the pertur-
bation of the hydrogen energy levels by a possible
electric dipole moment of the proton, d. It is found that
the presence of a proton dipole moment d would de-
crease the Lamb shift between the 253 and 2P; levels,
in the same manner as a dipole moment of the electron.®’

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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By requiring that the decrease of the calculated Lamb
shift be less than 1 Mc/sec, one finds that the proton
dipole moment d must be less than 1.3 107 cm Xe.

In Sec. I1, we obtain the shifts of the hyperfine levels
of the hydrogen atom in the 1S, 253, 2P;, and 2P;
states. The expressions for the energy level shifts are
given in terms of certain integrals over the radial parts
of the perturbations of the wave functions #,”. These
radial integrals are evaluated in Sec. III, using a
method? in which the radial perturbations ;' are
obtained analytically,*® by directly solving the inhomo-
geneous equation for #;". Upon using the values of the
radial integrals, one obtains the decrease of the Lamb
shift in terms of d, and hence an upper limit on d.

Besides the calculations for hydrogen, we also give in
Sec. II the expressions for the level shifts of the deu-
terium atom produced by a possible dipole moment of
the deuteron. In view of the very small upper limit on
the neutron dipole moment* d,, a dipole moment of the
deuteron dq would represent essentially the effect of a
proton dipole moment d.

II. CALCULATION OF THE ENERGY LEVEL SHIFTS

The energy level shifts due to an electric dipole
moment of the proton d are of the second order in d.
The required second-order perturbation of the energy
E, is obtained from the first-order perturbation of the
wave function ¥;. The basic equation for ¥, is given by

(HO—EU)\PIZ —Hl‘I’o, (1)

where Hy, Eo, and ¥g are the unperturbed Hamiltonian,
energy, and wave function, respectively; H; is the
perturbation due to the dipole moment:

H,=—(A/re-?, 2)
where H, is in Rydberg units; 7 is the distance from the
nucleus in units of the Bohr radius ax; 4 is a constant
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given by
A=2d/(ean); A3)

¢ is twice the spin vector of the proton (in units %);
and 7 is a unit vector in the direction of r.

After ¥, is determined from Eq. (1), the level shift E,
is obtained from the equation

E2=f\1/o*H1‘I’1dV, (4)

where the integration extends over the volume of the
atom, and the asterisk (for ¥¢*) denotes the complex
conjugate.

In order to solve Eq. (1), we note that this equation
involves the following radial equation:

@ W) 22 2
[‘—+ ]u1'=<A/r2)uo', ®)

2

dr? 72 r w

where #,’ is 7 times the radial part of the perturbation
Wy, uo is 7 times the radial part of the unperturbed
function ¥, and the operator in the square bracket on
the left-hand side represents (H,— E) in Rydberg units,
provided that 7 is in units eg. In Eq. (5), ! is the
azimuthal quantum number of the perturbation, # is
the principal quantum number of the unperturbed
state (Eo=—Z%/n*ry), and we have considered the
case of arbitrary Z for the sake of generality. The
function %y’ on the right-hand side of (5) is normalized
as follows:

]

f ug2dr=1. (6)
0

We will consider in particular the 153, 253, 2P;, and
2Py states of the hydrogen atom. As a result of the
perturbation H;, the s states are excited into p states,
and the np states are excited into both s and d states.
Following a method used previously,? the radial pertur-
bations %, for ns—p, np—s, and np—d will be obtained
by directly solving Eq. (5), without any expansion in
terms of the excited states of the Hamiltonian H,. Since
the unperturbed functions #o" are hydrogenic, it turns
out that #,” can be obtained analytically.?® The solution
of Eq. (5) will be discussed in Sec. III. As will be shown
below, the various energy shifts involve only the follow-
ing radial integrals:

EJ/= f wo'u Hy'dr, (N
0

where H,'= — (A4 /7?) is the radial part of H,. The values
of E;' for 1s—p, 2s—p, 2p—s, and 2p—d (as obtained
in Sec. III) are as follows:

By (1s—p) = — 2242, (8)
Ey (2s—p)=—(1/8) 2242, 9
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Ey (2p—s) =+ (1/24) 2242, (10)
Ey (2p—d)=— (1/48)22A%= — 3 E,' (2p—s), (11)

where all of the E,’ are in Rydberg units.

Referring to Egs. (1) and (4), we wish to determine
the expressions for E, in terms of the radial integrals
Ey’ for the various hyperfine levels. The 153 and 2S;
atomic levels are each split into two levels, F=0 and
F=1, by the hyperfine structure interaction. Here F is
the total angular momentum of the atom. We have:
F=1I+1J, where I is the spin of the proton (I=2¢), and
J is the angular momentum of the electron.

We first take as an example the 25; state with F=1,
Mp=1. Here My is the magnetic quantum number
pertaining to F, i.e., the projection of F along an
arbitrary z axis. In all cases, the final result for E; must
be independent of M. This property can be used as
a check on the results, by repeating the calculation for a
different M state. The unperturbed wave function
¥, for F=1, Mp=11is given by .

Wo=ysXyny=2"*Ro,Xyns,

(12)

where 3, is the 2s wave function normalized accord-

ing to
f f Yo r?dr sinfdf=1,
0 0

where 6 is the angle between the radius vector r and

the z axis. Thus Y2, =2"*R,,, where Ro,=u,'/r, with u,’

normalized according to Eq. (6). In Eq. (12), X; is the

proton spin function with magnetic quantum number

m=1%, and n; is the electron spin function with m=%.
H, can be written as follows:

(13)

H= Hll[% ((7;;"{-’1:(71,) sinfe—%¢

+1(o.—10,) sinfei*+o, cosd ], (14)
where ¢ is the azimuthal angle, and H, = — (4/7), as
defined above [Eq. (7)]. The operator (o-#) does not
act on 7z, and we have ¢.X;=X;, (0,—40,)X;=2X_;, and
(¢2+10,)X3=0. One thus obtains

HVo=H1 s (X3 cosf~+X_; sinfe??). (15)
The resulting perturbation ¥, is given by
Wr=2"%u"n3(X; cosf+X_; sinfe?®), (16)

where u,’ satisfies the following equation [see Eq. (5)]:

@ 2 22 722
(_“'i“_"“"‘—‘* u'=—H1uy. an
ar  r 4
From Eq. (16), one obtains
H1‘1’17’= 2—‘5‘H1’u1’n;,.x%. (18)
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The resulting energy shift E; is given by

E,= f f (To*r)H Y yrdr
o Yo

Xsin0d0=f we Hi'u'dr.  (19)
0

The radial integral on the right-hand side is just
Ey (2s—p), as given by Eq. (9), so that

Ey)(F=1)=—(1/8)Z2A%ry. (20)
For the 25; state F=0, the unperturbed wave func-
tion ¥y is given by

(21)

where X,, and 7,, are the spin wave functions for the
proton and the electron, respectively. By using the
same procedure as for the state F=1 discussed above,
one finds

Wor=3uq’ (Xyn—y—X_ymy),

Wir=3ur’ [y (—X; sinfe™*+X_4 cosp)

+n_3(Xy cosf+X_; sinfei®) ], (22)
whence
HWyr= %Hl’ull (ﬂ—%x%_ﬂ%x-%), (23)
Eo= f f (Vo*r)H ¥ 1rdr sinfdf
0 0
=E)/(2s—p)=—(1/8)224%ry. (24)

Thus Eo(F=1) and E.(F=0) are equal for the 25}
state. Both levels are shifted downward by the same
amount, while the hyperfine splitting is unaffected.
The same is, of course, true for any .S state, since we
have not used the properties of the radial wave func-
tions except to evaluate Ey'(2s—p). Thus for the 1S,
state, we have Ey'(1s—p)=—2%4?; both the F=1 and
F=0 levels are shifted by this amount, and the hfs
splitting Av(1s) is not affected. As will be discussed in
Sec. IT1, the radial integrals for a given type of angular
excitation (nl—!’) are proportional to 1/#%. The shift
for the 3.5y state is — (1/27)2242ry.

The 2P; state consists of two levels, F=1 and F'=0.
The energy shift for F=1 will be determined by means
of the magnetic substate M y=1. The unperturbed wave
function ¥, for this state is given by

Vo= —(1/3)Wap, X3+ (2/3)W2p, m—33,  (25)
where Y2, 1S the normalized 2p wave function pertain-
ing to magnetic quantum number #2. Y25, » is normalized
in the same manner as ¥», [Eq. (13)]:

f f |Wap, m| 22dr sinfdf=1.
0 0

(26)
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Thus we have
Yop 1= — (3%/2) (u’ /1) sinfeie,
I//gp' 0= (3/2)%(140//7’) COSG,

where #o’ is 7 times the radial wave function, normalized
according to Eq. (6):

uo' = (Z3/24%)r* exp(—Zr/2).

(27)
(28)

(29)

The 2p electron will be excited into both s and d
states. In order to obtain these perturbations, it is
convenient to consider separately the 5y and n_; terms of
¥, [Eq. (25)], since the operator ¢-7 has no matrix
elements connecting these terms, which will be denoted
by ¥t and W¢, respectively. Taking first ¥¢t, we have

H¥¢tr=—2" Hnuy (X3 cos’§+X_; sinf cosbe?*)
= — 27 nyud’ {3+ X3 (cos?0— %)

—+X_; sinf cosfei# ]}, (30)

where, in the last expression, the term %X; gives the
2p—s perturbation, while the square bracket leads to
the 2p—d perturbation.
The 2p—s perturbation (¥;F), is given by
(1) sr=—(18)7ImyXy (1),

2

(31)

where the radial function (u:"), satisfies the following
equation:

& 2Z 7*
( —M—"“"f“) (1) e=—Hy'uy'. (32)
a* r 4
From Eq. (31) one obtains
H1 (‘171+) = (18)_%H1I (Mll)s
Xn3(X3 cosb+X_y sinfei?).  (33)

The resulting energy shift due to the 2p—s perturbation
of ¥¢t is given by

(Est)e= f f (Yt)*rH, (¥ 11) srdr sinfd
Jo o

= (1/6)Ey' (2p—s) f cos20 sinfdp
0

= (1/9)Ey (2p—s).
The 2p—d perturbation due to ¥¢* is given by

(34)

(WrH)ar=—274 (") my[ X3 (cos0—3)
: +X_; sind cosfeiv], ~(35)

where the radial function (#,")4 is determined by

@ 6 2Z 7* ‘ ‘
(“—“L__ “*‘) (w)a=—Hi'uo,

36
ar n r 4 (6
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with %’ given by Eq. (29). From Eq. (35), one obtains
Hl (‘I/1+) ar=— 2_%H1' (Mll)d

Xn3(3X; cosf—3X_; sinbe??), (37)
so that the energy shift is found to be
(E2+)d=f f (\I’0+ *rHl(\I/1+)drdr
0 0
Xsinfdo= (2/9)E,' (2p—d). (38)

We shall now consider the n_; term ¥4~ of Eq. (25).
One obtains

HY;r=— 2_%H1/7]_%’I/t0,

X [X; sinf cosfets+X_, sin®fe?i#].  (39)

The angular functions in the square bracket of the
right-hand side are pure d wave functions (with m=1
and m=2). Thus there is no 2p—s excitation of ¥¢.
On the other hand, the 2p—d perturbation is given by

(W) ar=—2"(u")an—s

X (X3 sinf cosfei?+X_y sin?fe?i?), (40)

where (#,")4 is determined by Eq. (36). From Eq. (40),
one obtains

H1 (‘I’l_)d1’= - 2_%H1, (Mll) d‘r]_%X; sinfe?. (41)
Finally, the 2p—d energy shift is given by
(Es)a= f f (¥ )*rH1 (Y1) grdr sinfdb
0 0
=36/ (2p—d). (42)

From Egs. (34), (38), and (42), one finds for the
total energy shift of the F=1 level of 2P;:
Ey(F=1)= (Es") s+ (Es)at (E5)a
= (1/9)E (2p—s)+ (8/9) EY' (2p—d)

=—(1/72)224%ry. (43)
For the F=0(Mr=0) state, ¥, is given by
Vo=m[ 3 Hap, 1X3—6"Rap, X4 ]
L= 670y Xy +3 N, X ] (44)

By proceeding in the same manner as for F=1, Mp=1,
one obtains for the energy shift

Ey(F=0)=Ey (2p—s)=+(1/24) 24 ry. ~ (45)

There is no 2p—d excitation for the F=0 state. This
result can be explained on general grounds, by noting
that the operator ¢-7# commutes with F2, and hence the
perturbation ¥, has the same total angular momentum
F as the unperturbed function, namely F=0 in the
present case. For a 2p—d perturbation, the electronic
partof ¥; would represent a 2Dy or 2Dy state (J=3/2 or
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5/2) which can only give rise to F=1, 2, and 3, but
not F=0.

From Egs. (43) and (45), it is seen that the F=1
level (which lies above F=0) is lowered, while the F=0
level is raised, and as a result the 2P; hyperfine splitting
Ay (2P;) is decreased by an amount (1/18)2%4%ry.

The centroid (weighted average) of the 2P; levels is
not changed by the dipole perturbation, since one finds

2 r(2F+1)Ex(F) =3Ey(F=1)+E»(F=0)=0. (46)

On the other hand, as discussed above, the 2S; levels
are shifted downward by §Z24%ry. Thus the Lamb
shift for hydrogen would be decreased by the presence
of an electric dipole moment of the proton. At present,
the agreement between the theoretical expression for
the Lamb shift! and the observed value is to within
~3% Mc/sec. If one assumes that any possible dis-
crepancy due to a proton dipole moment d must be
less than 1 Mc/sec, one obtains an upper limit for 4
as follows:

142<6.62X 10727108/ (2.18X 107 11) =3.04 X 1071, (47)
so that
A<4.93X1078,

d<e(%)(0.529X107%)(4.93X107%)

=1.30X108 cmXe. (48)

A convenient formula for the upper limit on d from
the Lamb shift or the 2P hyperfine structure is given by

d<0.46X1078 cm X eX (6v/a)?, (49)

where 6v is the upper limit on the experimental and
theoretical uncertainties of the frequency in Mc/sec,
and ¢ is the coefficient of A2 in the theoretical expression
(a=% for the Lamb shift; 1/18 for the 2P; or 2P;
hfs in H).

We will now determine the energy shifts of the 2Py,
F=2and F=1 hyperfine levels. For the F=2 level, E,
will be obtained by considering the Mp=2 state. ¥,
is given by

Wo=V¥q,, 1 Xyn;. (50)
One obtains
HYgy=— (3%/2)H1’775u0’
X [X; sinf cosfei?+X_; sin?he?i¢], (51)

where u,’ is given by Eq. (29). The angular functions
in the square bracket are pure d wave functions,
showing that there is no 2p—s excitation for the F'=2
state. As discussed above for Eo(F=0, 2P;), this result
follows from the fact that for a 2p—s perturbation, the
electronic part of ¥; would represent a 25} state (J=1/2)
which cannot give rise to an F=2 state.

1 H. A. Bethe and E. E. Salpeter, Quantum M echanics of One-
and Two-Electron Problems (Academic Press, Inc., New York,
1957), pp. 107, 352.
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The 2p—d perturbation (¥1)q is given by
(W1)ar=—(34/2) (1)a

Xn3(X; sinf cosfeto+X_y sin?fe???), (52)
from which one obtains
Hy(¥)ar=—(33/2)H{ (u1") m3X; sinfete.  (53)
The energy shift is found to be
Ey(F=2)=E)(2p—d)=—(1/48)722A%ry. = (54)
For the F=1 state with Mr=1, ¥, is given by
Wo=m3L (3/4) Wep, X3 — 6}z, 0X; ]
—(12)n_gap, X3 (S5)
By means of (55), one obtains for the energy shift
Ey(F=1)=(8/9)E, (2p—s)
+3E (2p—d)= (5/144) 2242 ry.  (56)

From (54) and (56), one finds that the hyperfine
splitting Av(2Pj) is decreased by an amount

Ex(F=1)—E,(F=2)=(1/18)22A%ry.  (57)

This change of Av(2P;) is the same as for the 2P; state.
Also in similarity to 2P}, the centroid of the 2P; levels
is not affected by the perturbation. We have

S r(F+1)Eo(F)=5Ey(F=2)+3E(F=1)=0. (58)

In view of these results for the weighted average of the
2P; and 2P; levels, a dipole moment of the proton
would have no effect on the fine structure in the 2P
states, 1.e., on the 2P;-2P; level separation.

We have also calculated the effect of an electric
dipole moment of the deuteron on the atomic energy
levels of deuterium. Since the dipole moment of the
neutron has been shown to be very small (d,<5X10~2
cmXe),* we expect that a possible dipole moment of
the deuteron dq represents essentially the effect of a
dipole moment of the proton d (unless d¢< 107 cmXe).
However, the value of d4 need not be identical with d,
because of possible effects of the motion of the proton
inside the deuteron. In the following, it will be assumed
that the dipole moment is given by dal, where I is the
spin of the deuteron.

For deuterium, the radial integrals E,'(nl—l’) are
the same as for hydrogen, except for the replacement
of A by Aa, where Aq=2d,/(ean). Accordingly the
radial integrals will be denoted by E.p'(nl—i'). The
coefficients of the integrals are, of course, different
from those for hydrogen, because of the deuteron spin
I=1. The results are as follows:

1Sy Ea(F=3)=Ex(F=9%)
=3B! (1s—p)=— 342, (59)

25% : EZ(F=%) =E2(F=%)
=3B/ (2s—p)=—1544, (60)

STERNHEIMER

2Py: Es(F=%)=4%E.p' (2p—s)

+(5/9)Eep’ 2p—d)=— (1/144) A&,  (61)

2Py: Ey(F=1%)= (4/9)E:' (2p—s)
+(2/9) Eap’ 2p—d) =+ (1/72)A 2, (62)
2Py Ey(F=35)=3%Exn'(2p—d)=—(1/80)42,  (63)

2Py Ex(F=%)=(5/9)Ex’ (2p—s)
+(17/45) Esp’ (2p—d) =+ (11/720)4 2,  (64)

2Py: Ey(F=3)=(2/9)Exp’ (2p—s)
+3E' (2p—d)=+(1/144)42, (65)

where all of the values are in Rydberg units.

As for hydrogen, there is no effect on the Sy state
hyperfine splittings. The centroids of the 2P; and 2P;
levels are again unchanged by the perturbation, so
that there is also no effect on the fine structure. The
decrease of the Lamb shift is (1/12)4 2 ry. The hyper-
fine splittings for 2P; and 2Pjs are both affected by
the perturbation, similarly to the result for hydrogen.
For 2Py, the splitting E(F=3/2)— E(F=1) is decreased
by (1/48)A 2 ry.

It is of interest that the present perturbation method
can also be applied to obtain the energy shifts of the
hydrogen atom due to a possible electric dipole moment
of the electron d,. These level shifts have been recently
derived by Feinberg® and by Salpeter,” and have been
used to set an upper limit of 107 cmXe¢ on the electron
dipole moment.

The perturbation of the Hamiltonian is given by

Hy=— (A e/’a)ce'fa (66)

where A.,=2Zd./(ean), o, is twice the spin vector of the
electron (in units %). Obviously H;, has the same form
as Hy. The factor — (4./7?) will be denoted by H,,'.

For the 2S; state with M;=4%, the unperturbed
function ¥, is given by

‘I’0=¢2m§~ (67)

We have

H Y or=2"H,,"uy (13 cosf+1n_; sinfe’?),  (68)
where #o’ is r times the normalized radial 2s function.
From (68), one obtains the following perturbation ¥, :

Wir=2"%u, (13 cosf-+n_; sinfei®), (69)
where #;,’ is determined by the equation obtained from
(17) by replacing H, by Hi,. Thus ui,’=u"(4./4)
=u,"(Zd,/d), where u,’ is the solution of (17). Here and
in the following, we label the radial perturbations
pertaining to the electron dipole moment by the addi-
tional subscript e. The corresponding radial integrals
will be denoted by Es,'(ni—7').
Equation (69) gives

Hle‘ylr = 2_%51(1413"%, (70)
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whence

Ez(ZS;)—_—f f (‘I’o*r)Hle‘I’ﬂ'df sinfdf
0 0

=FE,/(2s—p)=—(1/8)224 2ry. (71)
For the 2P; state with M ;=1%, ¥, is given by
Wo=— (1/3)Wap, s+ (2/3) Woap, 4. (72)
We have
H, Y or=—2"H us'n, (73)

where %, is given by Eq. (29). One thus obtains for the
perturbation ¥;:

Vyr=—2"4(ur)ems, (74)
where (#1.”),=(Zd./d) (uy")s. Equation (74) gives
H 1 Yyr=—2"Hy/ (1) s (13 cosf+1_; sinfei®). (75)
The resulting energy shift is given by
E2(2Py) =Es, (2p—s)=—+(1/24) 224 2 vy.  (76)
For the 2P; level with M ;=3/2, ¥, is given by
whence Yo=bamams )
HYor=—(3%/2)H1uy
X (my sinf cosfei?+1_; sinfe ¢¢). (78)
The resulting perturbation ¥, is given by
Wir=—(3%/2)(%1.)a
X (n3 sinf cosfete—+-1_; sin?fe??¢), (79)
where (#1.)a= (Zd./d) (u,")s. We have
H V= — (31/2)H:1. (u1) any sinfeie, (80)
so that
E2(2Py) =Es. (2p—d)=— (1/48) 224 2 ry.  (81)

The results (71), (76), and (81) are in agreement
with those obtained by Feinberg® and by Salpeter.” For
comparison with Feinberg’s expressions, we note that
his & corresponds to A, [k=2d.Z/(ean)]. The reduc-
tion of the Lamb shift due to an electron dipole moment
de is (1/6)Z24 2 ry, as compared to (1/8)Z242ry for a
proton dipole moment d. Thus the upper limit for d.
obtained by Feinberg® is slightly smaller [by a factor
(4/3)¥=1.15] than the limit for d of Eq. (48).

III. THE RADIAL PARTS OF THE
PERTURBATION u,’

In this section, the radial parts of the perturbation
due to the proton dipole moment will be obtained. The
1s—p perturbation #,’(1s—p) will be considered first.

833

As discussed in Sec. II [Eq. (5)], %’ (1s—p) is deter-
mined by the equation

d 2 27

(——-—I—————+Z2)u1'(ls—>p) =(4/rud(1s), (82)
arr P r

where the unperturbed function #¢’(1s) is given by

uy (15)=2Z%e %, (83)

It can be easily verified that the solution of (82) is

) (1s—p)=Z Are 2", (84)
from which one obtains
By (1s—p) = f ! (15) (— A /7%
° Xy (Ls—p)dr=— 27242, (85)

The 2s—p perturbation #,’(2s—p) is determined by

a 2 2Z 7*
(_“+——~+‘)ul'(2s—>ﬁ) =(4/r)ud (25), (86)

ar* v r 4

where
uy' (28) =2"12% 212 (y— 1 71%). (87)
The solution of Eq. (86) is found to be
) (2s—p) =812  Are 2 12 qy, 1% 2712, (88)

where as, is an arbitrary coefficient. The term in as,
represents an arbitrary admixture of 2p function, which
arises from the 2s-2p degeneracy. This term does not
contribute to Ey, by virtue of a property of the non-
relativistic hydrogenic radial wave functions, which
has been noticed recently by Feinberg® and others.
This property is as follows:

f °° ug' (n]) (1/7)uo’ (n,l)dr=0, (89)

where o' (n,]) and uy'(n,l') are any two radial wave
functions pertaining to degenerate energy levels with
the same » but different 7; e.g., 2s and 2p; 3s, 3p,
and 3d.

From (87) and (88) one obtains

B/ (25—p)= f ! (25) (— A/7%)

Xy (2s—p)dr=— (1/8)224%.  (90)

For the 2p—s perturbation, #,’(2p—s), the following
equation holds:

a 2z 7*
(55

ut' (2p—s) = (4/r")ud (2p), (91)
ar* r 4 ,
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where u¢/(2p) is given by (29). The solution of Eq.
(91) is

w' 2p—s)=—%5(24)" 23 Ar2e 212
+ase 22 (r—32r%), (92)
where as, is an arbitrary coefficient. The as; term
represents an arbitrary amount of 2s function which,
however, does not contribute to E,’, as discussed above
[Eq. (89)].
From (29) and (92), one finds

EY (2p—s) =+ (1/24) 724>, (93)

The 2p—d perturbation #,'(2p—d) is determined by
& 6 2Z 7 A
(— o Juri= (5 Juen. o
ant  r 4 7’
The solution of (94) is given by

) (2p—d) =1(24) A Zi2e 212, (95)

STERNHEIMER

whence

Ey (2p—d) = — (1/48) 2242 (96)

Calculations have also been carried out for the 3s—p,
3p—s, and 3p—d perturbations of the 3s and 3p states.
The results are as follows:

By (Bs—p)=— (1/27) 2242, (97)
By (3p—s) =+ (1/81) 2242, (98)
Ey (3p—d) = — (1/162) 224>, (99)

By comparing these values with those obtained above
for n=1 and n=2, one finds that for a given type of
angular excitation nl—l', E,' (nl—l") decreases as 1/n°
with increasing ». Although this property has not been
proved for arbitrary =, it seems very probable that it
holds true in general.
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Excited State Wave Functions, Excitation Energies, and Oscillator
Strengths for Ne(2p°3s)*
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Department of Physics and Institute of Optics, University of Rochester, Rochester, New York
(Received October 13, 1958)

Solutions of the Hartree-Fock equations for the 3P and 1P terms of neon (2p°3s) have been obtained.
Wave functions are tabulated and results of computations of excitation energies and oscillator strengths
are presented. The former fall within 109, of experimental values. It is found that enlarging the size of the
“invariant core” used to compute the excited state wave functions has only a small effect on the predicted
energies. The predicted oscillator strength of the 736 A transition is 0.11, which is in reasonable agreement
with available experimental data considering the large uncertainties in the measurements. The computed
diamagnetic susceptibility of the ground state is —7.4X 107 cm™ mole, in good agreement with experiment.

1. INTRODUCTION

ECENT interest in investigations of the solid rare
gases has made the computation of numerical
wave functions for the low-lying excited states of the
free-atomic rare gases seem useful.! We have calculated
LS-coupled wave functions for the 3P and 'P terms of
neon in the 2p%3s configuration using the Hartree-Fock
equations.? Spin-orbit interaction and electrostatic
energies are computed for use in intermediate coupling.
* Research supported in part by the U. S. Air Force through the
Air Force Office of Scientific Research of the Air Research and
Development Command. .
t Present address: Department of Physics, University of Illinois,
Urbana, Illinois.
1 For a computation of excited state wave functions for argon
see R. S. Knox, Phys. Rev. 110, 375 (1958).

2D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928);
V. Fock, Z. Physik 61, 126 (1930).

Theoretical values of other parameters of interest,
namely, dipole matrix elements, polarizability, oscil-
lator strengths, and diamagnetic susceptibility are also
calculated. The numerical work was carried out on an
IBM type 650 data-processing machine using a program
written by Piper® for the iteration of the Hartree-Fock
equations.

In part 2(a) the Fock equations are written for
2p%3s (®P,\P) neon, and in part 2(b) their numerical
solution is discussed and tables of wave functions given.
Part 3 is devoted to the computation of excitation
energies and term splittings (including comparison with
a 1s225s® “invariant core” calculation), a comparison
with other work, and an estimation of computational
errors. In part 4 oscillator strengths, polarizability,

3W. W. Piper, Trans. Am. Inst. Elec. Engrs. 75, 152 (1956).



