Electron Impact Ionization of Ne, O, and N

M. J. SEATON

Department of Physics, University College, London, England (Received October 13, 1958)

The Bethe approximation gives a functional relation between the cross sections for electron impact ionization (Q) and photoionization (a). Estimates of Q_N and Q_O are obtained using experimental values for Q_{Ne} and calculated values for a_N , a_O , and a_{Ne} .

ET Q(E) be the total cross section for ionization • of an atom by electrons of kinetic energy E and let a(W) be the cross section for photoionization, W being the energy of the ejected electron. The approximation of Bethe¹ is

$$Q(E) = \frac{I_{\rm H}}{\pi \alpha E} \int_0^{E-I} \frac{a(W)}{(I+W)} \ln\left(\frac{4E\tau}{I+W}\right) dW, \quad (1)$$

where I is the threshold ionization energy, $I_{\rm H}$ is the

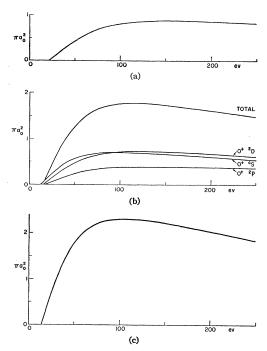


FIG. 1. (a) Experimental cross section for Ne ionization by electron impact (Ne+ $e \rightarrow$ Ne⁺+2e). (b) Calculated cross sections for O ionization by electron impact (O+ $e \rightarrow$ O⁺+2e). The curves show the total cross section and the cross sections for $O \ge 2p^4 \cdot P \rightarrow O^+ 2p^3 \cdot 4S$, 2D , and 2P . (c) Calculated cross section for N ionization by electron impact (N+ $e \rightarrow N^++2e$). (N $2p^3 \cdot 4S \rightarrow N^+ 2p^2 \cdot 3P$ only; the transitions $2p^3 \cdot 4S \rightarrow 2p^2 \cdot 1D$ and 1S do not occur in photoionization and may be expected to have small cross sections for collisional ionization.)

¹ H. Bethe, Ann. Physik 5, 325 (1930).

threshold ionization energy of hydrogen, α is the fine structure constant, and τ is a constant of order unity.

We consider two atoms, A and B, for which the photoionization cross sections a_A , a_B are such that

$$a_A(I_A\chi)/a_A(0) = a_B(I_B\chi)/a_B(0).$$
 (2)

Then from (1) and (2)

$$I_A Q_A (I_A \epsilon) / a_A(0) = I_B Q_B (I_B \epsilon) / a_B(0).$$
(3)

The Bethe approximation (1) is valid for large values of $\epsilon = (E/I)$. For values of ϵ which are not large we may expect that (1) will give similar percentage errors for Q_A and Q_B and that the functional relation (3) will remain a useful approximation.

The cross sections Q_{Ne} and a_{Ne} have been determined experimentally by Bleakney² and by Po Lee and Weissler,³ and the cross sections a_{Ne} , a_0 , and a_N have been calculated by the Hartree-Fock method by Bates and Seaton⁴ and Seaton.⁵ Owing to the use of approximate wave functions, the dipole length and dipole velocity formulas give somewhat different results, denoted by $a^{(L)}$ and $a^{(V)}$. For Ne the geometric mean,

$$a = \left[a^{(L)}a^{(V)}\right]^{\frac{1}{2}},\tag{4}$$

agrees closely with the experimental result. The calculated ratio $a_{\rm Ne}/a_{\rm O}$ is in good agreement with (2); the ratio $a_{\rm Ne}/a_{\rm N}$ is in slightly worse agreement.

Figure 1 shows the experimental cross section Q_{Ne} and the cross sections Q_0 and Q_N calculated by using $Q_{\rm Ne}$ and Eqs. (3) and (4). Our results for Q_0 are compared with experimental results in an accompanying paper by Fite and Brackmann.⁶ The very satisfactory agreement at moderate and high energies provides a useful check on the accuracy of a_0 calculated by using (4).

² W. Bleakney, Phys. Rev. **36**, 1303 (1930). ³ Po Lee and G. L. Weissler, Proc. Roy. Soc. (London) **A220**, 71 (1953).

⁶ M. J. Seaton, Proc. Phys. Soc. (London) **A67**, 927 (1954). ⁶ W. L. Fite and R. T. Brackmann, following paper [Phys. Rev.

113, 815 (1959)].

⁴ D. R. Bates and M. J. Seaton, Monthly Notices Roy. Astron. Soc. 109, 698 (1949).