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Analytic Wave Functions. II. Atoms with 1s, 2s, 2p, 3s, and 3p Electrons™*
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The variation program for the computation of atomic wave functions which has been developed and
programed for the IBM-704 electronic data processing machine is detailed. This calculation has been set up
so as to be able to handle atoms having any combination of 1s, 2s, 2p, 3s, and 3p electrons. One example of
the program is provided by a calculation of the wave functions for aluminum for all degrees of ionization.
Another example is provided by a calculation of the fourteen configurations for oxygen having the electron
distribution (15)2(25)2(2p)3(3). Finally, the three 3P wave functions thus obtained are combined by means

of the configuration interaction.

I. INTRODUCTION

N a previous paper! we have described the analytic

radial orbitals selected by us to represent s and p
electrons having principal quantum numbers one
through three. For those electrons having principal
quantum numbers one and two, we found it a reasonable
procedure to write out the expressions for the bare
nuclear field, Coulomb, and exchange integrals in closed
form. The subsequent machine calculation which con-
cerns itself primarily with the variation of the total
atomic energy made up of these closed form integrals
leads to the best analytic wave functions for these
representations. This was described in some detail in
the previous paper. We also remarked there that the
tremendous addition in complexity with an increase to
three of the principle quantum number in these energy.
integrals requires a somewhat different mathematical
technique. The difference is one of detail, however, for
in principle, the treatment remains a variational one.
In the present paper we describe this machine com-
putation for these wave functions and illustrate it with
a rather complete investigation of aluminum and the
oxygen configurations arising from the electron dis-
tribution (2p)*(3p). In the investigation of aluminum,
we propose to consider all levels of ionization of this
atom and, in so doing, point up the behavior and
accuracy of the calculation for the various orbital
electrons.

II. GENERAL EXPRESSION FOR THE ENERGY

Our first problem is the choice of form for the radial
portion of the orbitals, and this we have written in the
previous paper as

R1,=273 exp[ — Z1r], (1a)
Roy= (1/2V2)Z #1273 [ Zs— ZoZsr Jr exp[— Zar/2], (1b)

Rop= (1/24/6)Z 5% exp[ — Zy/2], (1¢)
Ray=Z 3% (Zs— ZnZor— Z2Z1a®) exp[—Zr/3], (1)
R3p=Z115/27’2(212—ZuZlgf) exp[—Z111’/3:|, (16)

* Based on work performed under the auspices of the U. S. Air
Force Ballistic Missiles Division.
1 R. G. Breene, Jr., Phys. Rev. 111, 1111 (1958).

where of course,

Ynim (7)01 &0) = [Rﬂl (T)/Tj@lm (0>(I)m(¢) )

with the angular portion of the wave function supplied
by the well-known spherical harmonics.

Normality is obviously present in Egs. (1a) and (1¢).
We must, however, assure normality in the other orbitals
and orthonormality between orbitals possessed of the
same orbital angular momentum. Z4, Zs, Zs, Zy, Z10, Z12,
and Zy; allow us to meet these orthonormality require-
ments. The relations which assure our meeting these
requirements may be written down in terms of the
independent parameters Z1, Zs, Zs, Z7, Z11 as

Zi=Zs/a, a= (2Z1+Z)/6Z, (2a)
Zs="[4a?/(1—6a-+12a2) TV, (2b)
Zs=(3Z:Z10AD—122:Z,,)/ 42, (2¢0)
Zg = Z10D, (2d)

Zwo=[CTA)2/[18Z5C* 42D — 144Z,5C*D A

+288Z,7C4— 36Z,5D2A?C*4-144Z SDC?A?
+144Z843C*D— 576217 A2C?~ 240Z,54*CD
+720Z7 A4 24Z,5AC2DY ], (2e)

Zyy=HZj;, (2f)

Z15=[8/3%(2H?— 30H+135) "2, (2g)

where certain of the constants included are given by

A=7Z1+3%7,, (3a)

B=%Z2+%Z7, (Sb)

C=%Z,, (3¢)
D= (4ZZB—4Z 22 A2B—127,7.57*B?
+202,257:24%) (Z4Z1A B — 2,2, A%B?

—32y252:A B*++4Z5257:A*B)™,  (3d)

H=30Z11/ (3Z3+2211) (36)

In the previous paper we wrote down the general
expressions for the total energy, the Hamiltonian, and
the integrals (I,;, F* and G*) contributing to the
energy. We shall simply refer to these equations here.
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The problem is precisely the same one; we must write
the general expression for the total energy in terms of
the integrals. In the present case, however, due to the
complexity of the integrals concerned, we are unable to
write down closed form expressions for the F* and G*.
Our procedure is rather to program on the machine the
F* and G* in terms of generalized integrals which we
represent as A*. As an example, F°(2s5,3s) was written
and programed as

F(25,35) =3[ 22577 U Z2ZRA(2, 725 2,377)

— 27 274757,4A°(2,Z5; 3,2Z7)

+2Z322:752104°(2,Z5; 4,327)

— 27273747 104°(2,22; 5,227)

+Z22272324%(2,7 23 4,2 20)+ Z 2244212 A° (2,245 6,227)

— 22,2772 42,22 3,75)

+4Z374252:25734°(3,22; 3,227)

—470 7, 7572757 10A4° (3,225 4,277)

+47,7.,7577247104°(3,22; 5,22Z7)

— 2752257228 A° (3,225 4,227)

— 2257, 257.4Z12A°(3,Z5; 6,2Z)

+ 2322 Z8A (2,375 4,25)

—22327327:7734°(3,227; 4,25)

+22272327,7:7,0A%(4, 7. 4,3 77)

— 22273273 237104%(4,24; 5,327)

+ 222271 7324°(4,25; 4,327)

+ 22732772 7124%(4,22;5 6,327)).  (4)

In Eq. (4) the 4°(4,7; k,l) are the expressions for specific
integrals of products of orbitals. As an example:

0 0 1
PR o g —
0 0

r>
6! 10X5! 604!
=_bZ(a+b)7 b (a+b)® b*(a+D)°
240X3!  600X2! 720 720

J— |
b (a+b)* b%(a+b)® b'(at0d)? "

©)

Utilizing the expressions of which Egs. (4) and (5)
are examples, the total energy of an atom in a general
form has been programed on the IBM-704 electronic
data processing machine. The procedure for the mini-
mization of this energy expression by the machine is as
follows. We first determine the coefficients of the 7,,,
F* G* and provide these together with the atomic
number as input data to the machine. In addition, the
range and increment for our independently varying
parameters, Z1, Zs, Zs, Zz, and Zy; are furnished as
input data. We also furnish as input data the gni, ax, bx
which are appropriate to the atom under consideration.
For each set of values of these independently varying
parameters, the machine evaluates the expression for
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the total energy of the atom, always assuring us, of
course, of orthonormality through Egs. (2). In evalu-
ating a given, say, F* during this computational pro-
cedure, the machine first evaluates the requisite A4*
which are stored. It subsequently evaluates the desired
F*. Finally, of course, the machine completes the energy
evaluation by using the F* and the other expressions as
needed. Thus, one might say that a chain of evaluations
is carried out in this variation program as compared to
the immediate single-step evaluations which are possible
to the simpler program.

A modification of this approach has resulted in large
savings of machine time. We first treat the atom
stripped of its 3s and 3p electrons by the small variation
program and, subsequently, use the values thus ob-
tained for Z, Z,, and Z; as starting values in a treat-
ment of the complete atom by our large variation
program.

III. WAVE FUNCTIONS FOR Al1 THROUGH Al x11

We have utilized these programs to treat all degrees
of ionization of the aluminum atom. This program has
been applied not only to check our results but also to
investigate the program itself—to determine the value
of the approximations which we have adopted. The
results have been compared with the familiar work of
Moore? and are presented in Table I.

The table contains the computed total atomic energy,
the computed ionization potential, and the experi-
mental ionization potential for each of the levels of
ionization considered. In addition, we indicate the per-
centage error between the experimental and our
theoretical results as well as the absolute discrepancy
between these two figures. The general trend from high
percentage errors for the outermost electrons to negli-
gible errors for the innermost electrons would certainly
be expected since this is merely a reflection of the fact
that our probabilities are greater for accurately com-
puting large numbers than for so computing small
numbers. This should be considered insofar as the
27.29, error figure in our first ionization potential is

TasiE I. The energies and ionization potentials for aluminum.

Ionigation Ab-
Energy Dotential (ev)  percent solute
Ion Configuration ev Calc Exptl error error
I (15)2(25)2(2p)8(3s5)2(3p) 6537.36 4.35 5.984 27.2 1.63
11 (15)2(25)2(25)5(35)2 6533.01 16,11  18.823 144 2.72
III (15)2(25)2(25)(3s) 6516.90 26.85 28.44 5.6 1.59
IV (1s)2(25)2(2p)¢ 6490.05 109.47 119.96 8.7 10.49
V (15)2(2s)2(2p)5 6380.66  144.99 153.77 5.7 8.78
VI (1s5)2(25)2(2p)4 6235.67 175.06 190.42 8.06 15.36
VII (15)2(25)2(2p)3 6060.61 245.51 24193 148 —3.58
VIII (1s5)2(2s)2(2p)% 5815.10  281.45 285.13 1.29 3.68
IX (1s)2(2s)2(2p) 5533.65 327.38 330.1 0.83 2.72
X (1s5)2(2s)2 5206.27 389.38 398.5 2.29 9.12
XI (1s5)2(2s) 4816.89  438.43 441.9 0.79 3.47
XII (1s)2 4378.46 2070.06 2085.46 0.74 15.4
=+0.37
XIII (1s) 2308.40

2 Atomic Energy Levels, National Bureau of Standards Circular
No. 467, edited by Charlotte E. Moore (U. S. Government
Printing Office, Washington, D. C., 1949).
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concerned. Actually, in the over-all calculation, the
first ionization potential seems reasonably good. Nor
need we flatter ourselves with the ionization potential
for Al x11 since one is almost completely assured of
excellent results in this region with quite poor approxi-
mations.

The notable item is the peaking in percentage error
of the ionization potentials at each closed shell or semi-
closed shell position. There is an exception in that the
ionization potential for Al x11 is percentagewise less
than that for Al x1; however, we can hardly be sur-
prised at this since the ionization potential increases
by some 1500 volts or fivefold. The reason for this
behavior is evidently to be found in our choice of
angular portion of the atomic wave function. Of course
this choice can be corrected for by introducing con-
figuration interactions. If we consider the ionization
potential for, say, Al 111, we are effectively dealing with
an alkali-like situation in which our angular portion is
quite well accounted for by the associated Legendre
function. As we move away from this alkali-like con-
figuration, we find a discrepancy in ionization potential
increasing as is to be expected. Thus, although we
might improve our radial functions to a large degree by
the addition of products of polynomials and exponen-
tials to all of them, we still would anticipate this
worsening trend in ionization potentials as more elec-
trons are added to a closed shell configuration.

There is a rather notable exception to the trend
remarked in the last paragraph, however—the ioniza-
tion potential for Al v1. If the error is meaningful and
not simply accidental, it would appear to point up a
specific weakness in these radial orbitals. The indication
would be that improved orbitals are most needed for
the p electrons; although this can hardly be concluded
from this single value.

IV. CONFIGURATIONS IN OXYGEN ARISING
FROM (1s)2(2s)*(29)* (3p)

As a second check of our variation calculation for
atomic wave functions, we have determined the wave
functions for the fourteen pure configurations arising
from oxygen with the electron arrangement (1s5)2(2s)-
(20)°(3p).

We know that we may obtain all these wave functions
as a linear combination of whatever wave functions lie
at the origin of the Slater diagram.? In the case of

TaBLE II. The diagonal elements in the Hamiltonian block for
oxygen (2p)3(3p) corresponding to M =M g=0.

Energy
Electron distribution (au) Z1 Zs Zy Zu

vl (—170¥1%)(0-)]  73.886 7.653 5944 4798 1.796
Yl (—170-1%)(0-] 73937 7.653 5936 4.818 1.797
Yyl (—1+1-1%)(=17)] 73.835 7.654 5948 4.780 1.770
Yyl (0-0+1+)(—1-)]~ 73.837 7.654 5947 4779 1.819

3]. C. Slater, Phys. Rev. 34, 1293 (1929).

TasLE III. The Hamiltonian block corresponding to the origin position of the Slater diagram for oxygen (15)2(25)2(2p)3(3p).
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functions. The symbol ¢(2P:1S), for example, refers to the 1S configura-

2P configuration of O 1r.

the pure configuration wave
tion of O 1 arising from the

TasiE IV. The coefficients in the expansion for
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oxygen with a 3p electron, there are fourteen wave
functions which give M =0, M s=0. This means that
there will be a nondiagonal 14X 14 block of the Hamil-
tonian corresponding to this position on the Slater
diagram. Further, it will mean that in order to obtain
the wave functions corresponding, it will be necessary
for us to diagonalize this 14X 14 matrix. Before diagonal-
ization, however, we must determine the matrix elements
of the Hamiltonian and this, of course, is where our large
variation program enters. By means of this large
variation program, we are able to determine the diagonal
elements for this block. Subsequently, by making use
of the effective nuclear charges which we obtain from
our variation calculation, we can quite readily evaluate
the off-diagonal elements of this block. First, however,
let us list the fourteen single-determinant functions as
follows:

Yl (—17071%) (07) ],
Yul (—110-11) (07) ],
Y[ (—170717) (00) ],
Yiv[ (= 170-1F)(01) ],
Y[ (—170+17) (04) ],

Yyl (070F1H) (—17) ],
Yrx[(—17171H) (= 1H) ],
Yx[[(0-0717) (—19)],
Yxal (—17=1+1H) (+17) ],
Yxul (=17 =1F17) (+19)],
Yvi[ (—170-17)(01)], Yxml (—170-01) (1),
Yvu[ (=119 (= 19)],  ¢xrv[ (= 17070%) (-17) .

As an example the symbol [ (—1-011%)(07)] may
be defined as follows. Within the bracket the first set
of parentheses refers to the 2p electrons while the second
set of parentheses refers to the 3p electron. The number
is the magnetic quantum number with sign as indicated,
and the sign appearing as a superscript on each number
refers to the spin.

Although there are fourteen diagonal positions in
this block of the Hamiltonian, it turns out that there
are only four different energies. This means then that
we have but four variation calculations to carry out
utilizing our large variation program. As an example,
the general energy expression corresponding to one of
these energies may be written as

E[(—170M1+) (07) J= 211,421 55+ 315+ I3,
+FO(15,15)+F0(25,25)+3F°(2p,2p)+4F°(15,2s)
+6F°(25,2p) — (3/25)F2(2p,2p) — 2G°(15,2s)

—G (15,2p) — G*(25,2p) — (3/25)G2(2p,2p)
+2F°(15,3p)+2F°(25,3p)+3F°(2,3p)
—G°(2p,3p)+6F°(15,2p) — 3G (25,3p)

—3G'(15,3p)— (3/25)G*(2p,3p).  (6)

Table IT presents the results of our variation calculation.
These results consist of the energies as indicated
together with the effective nuclear charge for the
various electron configurations which now must be
utilized in the diagonalization of our Hamiltonian
block. The off-diagonal elements are then evaluated by
means of the results for the diagonal elements.
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Let us recall that no diagonal elements of our Hamil-
tonian exist between two wave functions for which
more than two electrons change their quantum state.
For the case when two electrons, 7 and 7, change their
states to, say, ¢’ and 7', the nondiagonal matrix element
of the Hamiltonian between two such determinants is

i’j’)—(ij

These diagonal elements may be evaluated in terms of
the G* and F* insofar as their radial portions are con-
cerned and they may be evaluated in terms of the Slater
ar and by, insofar as their angular portions are concerned.
As an example, one may obtain for a typical off-diagonal
element:

[(=17071H) (07) | H| (= 1+0-1%) (07)]
= (3/25)F2(2p,2p)=0.05071466. (8)

Thus, having carried out the variation part of the cal-
culation, we were then in a position to set up the block
of the Hamiltonian corresponding to the origin of the
Slater diagram. This we have displayed in Table ITI.

As available subroutine for the IBM-704 electronic
data processing machine was utilized for the eigen-
vector-eigenvalue problem posed by this matrix. In
Table IV we have displayed the coefficients in the
expansions for the wave functions corresponding to the
pure configurations. Each of the terms in a given ex-
pansion is a single determinant whose effective nuclear
charges are given in Table II.

Finally, the eigenvalues corresponding to the various
configurations are given in Table V. For comparison
with experiment the energy separations of certain of
the configurations above the °P state are indicated.
Also indicated are the corresponding experimental
separations as given by Moore. The energy of the
lowest level (°P) has been observed by Moore as 2033.3
ev. Our result, on the other hand, is 2012.48 ev, a
variance which is somewhat less than that obtained for
the ground state of O. The ground state energy for
oxygen we calculated as 2018.28 ev as compared to an
experimental value of 2043.3 ev.

1

7ij

(ali)=(is

j’i’). @)

1
¥

V. CONFIGURATION INTERACTION FOR THE
EXCITED 3P CONFIGURATIONS

As is apparent from Table V, there are three 3P con-
figurations for O with a 3p electron arising from the 45,
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TasLE V. Configuration energies and comparison of separations
with experiment. The symbol (2P)1S refers to a 1S configuration
arising from the 2P configuration of O 11.

Energy Energy
above above
Energy Configu- Energy (4S) 5P (4S) 5P
(au) ration (cm™) (calc) (exp)
—73.7560 =P)1S —16 183 712 50 940 44 318
—73.7571 (2P)1D —16 183 969 50 683 41970
—73.8320 (2P)1P —16 200 393 34 259 41042
—73.8339  (*P)P  —16200811
—73.8340 @P)sS —16 200 824
—73.8353 (2P)3D —16201 119 33 533 40 656
—73.8365 (D) D —16 201 383 33 269 30 005
—73.8365 (2D)'F —16 201 383 33 269 27 370
—73.8389 (2D)3F —16 201 909 32743 27 089
—73.8397 (2D) 3D —16 202 094 32558 26 669
—73.9655 (2D) 3P —16 229 694
—739656  (D)'P  —16229701
—73.9870 (4S) 3P —16 234 395 257 5
—173.9881 (4S) sp —16 234 652

2D, and ?P states of O 1. We now propose to combine these
three through a configuration interaction analysis.

Let us designate the three wave functions as ¥,
Y1v, ¥x. Then the matrix of the Hamiltonian corre-
sponding to these three configurations is

II [—73.986955 0.0010182°  —0.0000436
v [ 0.0010182 —73.965529 0.266387 |.
X —0.0000436 0.266387  —73.833899

We now diagonalize this and obtain as energies cor-
responding to our coupled configurations

Y4 (CP) ~ 2016.88 ev,
Yve(3P) ~ 2013.37 ev,
Ye(®P) ~ 2002.34 ev.

The unmixed 3P corresponding energy-wise to ¥4
—yr—had an energy of 2012.45 ev, so that we have
improved the energy by about five volts. ¥1v had an
energy of 2011.86 ev while v had an energy of 2008.28

ev.
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