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Calculation of Migration and Binding Energies of Mono-, Di-, and
Trivacancies in Copper with the Use of a Morse Function*
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A machine calculation has been made of the migration and binding energy of a trivacancy in copper with
the use of a Morse function. It was found that a very large relaxation occurs for one atom into the trivacancy.
This relaxation causes the trivacancy to be shared equally by four atomic sites and results in a large contribu-
tion (about 2.3 ev) to the binding energy. The migration of a trivacancy requires a partial dissociation
of this configuration. The energy of migration is calculated to be 1.9 ev. Thus, a trivacancy is highly stable,
quite immobile, and is, therefore, probably the nucleus for void formation. For purposes of comparison the
migration energies of mono- and divacancies were also computed by the same method without relaxation.
These energies are 1.3 and 0.2 ev, respectively.

I. INTRODUCTION

HE changes which occur in the annealing kinetics
of quenched and damaged metallic lattices as a

function of annealing temperature and defect concentra-
tion are generally interpreted in terms of the migration
and/or recombination of defects. At the present time
there exists some disagreement on the assignment of
activation energies in annealing curves to specific defect
migration. A comprehensive review of this problem in
radiation damage studies is given by Dienes and
Vineyard, ' and Broom' summarizes the difFiculties in
cold-work experiments. Koehler et a/. ' interpret the
annealing kinetics of quenched gold in terms of mono-
and divacancies, but admit that the role of trivacancies
is not known. These few examples describe the specula-
tions which are being made on the role of clusters of
point defects in damaged lattices. The simplest cluster
is the divacancy and a theoretical estimate of its
migration energy has been made by Bartlett and Dienes. 4

No calculation has been made of the energy of motion
of the trivacancy or larger clusters. The present calcula-
tion was made in order to estimate the importance of
the role of trivacancies in annealing and, as a natural
result, to estimate the de.culty of calculating the
properties of quadri- and higher vacancy clusters. These
latter calculations are important to the 6eM of void
formation in metals. More precisely, one would like
to know the minimum number of vacancies in a cluster
which renders the cluster immobile and forms, there-

fore, the nucleus of a void.
The calculation of the energy of motion of a tri-

vacancy is rather complex because of large relaxation

eGects. An IBM 653 digital computer was therefore
used for the calculations with the most important
relaxations considered. At the same time the energies
of motion of the mono- and divacancy were recomputed
with more neighboring atoms considered than had been
done by Bartlett and Dienes.

In a face-centered cubic lattice the trivacancy is
expected to have, from purely geometric considerations,
its lowest energy configuration in the form of an
equilateral triangle whose side is the nearest neighbor
distance. (It will be shown later that because of large
relaxation effects this configuration is not the most
stable one. ) An example of this configuration is shown
in Fig. 1 where the vacancies, labeled V, are at (000),
(110), and (01—1), the coordinates being given in units
of one haN of the lattice parameter. There is one atom
only, (10-1), that is equidistant from the three
vacancies. This atom and the three vacancies form a
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G. J. Dienes and G. H. Vineyard, Radiation Effects in Solids Fro. 1. Schematic diagram of atoms involved in trivacancy

(Interscience Publishers, Inc. , New York, 1957). motion in face-centered cubic lattice. The V s are vacancies, M is
T. Broom, Advances in Physics, edited by ¹ F. Mott (Taylor the moving atom, and R is the relaxing atom. The line from R to

and Francis, Ltd, London, 1954), Vol. 3, p. 26. the center of the tetrahedron shows the path of relaxation. The
Koehler, Seitz, and Bauerle, Phys. Rev. 107, 1499 (1957). line from rV including the lower dashed portion shows the path' J. H. Bartlett and G. J. Dienes, Phys. Rev. 89, 848 (1953). of the moving atom.
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where o, and D are constants and ro is the equilibrium
distance of approach of the two atoms.

The atom at (011) was selected as the moving atom
and the volume bounded by it and the three vacancies
was made into a three-dimensional grid in units of one
tenth of a half-lattice parameter, e.g. , the X distance
0 to 1 was divided into tenths. Such a grid of about
500 points contains both of the paths previously dis-
cussed by which a trivacancy may move.

The moving atom (011), referred to as M, has two
nearest neighbors in equivalent positions (020) a,nd

(—110). The relaxation of these a,toms was computed
as the fourth atom in the tetrahedron, (10—1), was
relaxed. It was found that, although (020) and (—110)
relaxed inward about 7% of a half-lattice distance,
(10—1) relaxed into the geometric center of the tetra-
hedron. The calculation of the energy of the moving
atom at diferent grid points was therefore done for
several positions of (10-1), the relaxing atom, referred
to as E. The energy of the system for each position of
the moving atom and the relaxing atom can then be
represented by

E,=Esr+EIo (E)r, sr) +Er„—(2)

where E, is the energy of the system, E~ is the sum of
the interaction energies of the moving atom, Eg is the

tetrahedron. The word tetrahedron will be used through-
out this paper and will refer to this group. The simplest
type of motion which the trivacancy can have is for one
of the vacancies to interchange with this fourth atom in
tetrahedron. This motion, however, will not allow the
trivacancy to migrate through the lattice for it cannot
escape from this tetrahedral box. And, as will be shown
later, this motion has no physical meaning because of
the large relaxation around the trivacancy. If a tri-
vacancy is to migrate it must partially dissociate. If the
atom at (011) is considered to be the moving atom there
are two possible paths. The (011) atom can exchange
with the vacancy at (000), which causes the trivacancy
to partially dissociate. A second jump is required, (020)
to (011), to complete one unit jump of the trivacancy.
It would then be re-formed in an equilateral triangle
at (01—1), (110),and (020). Instead of this double jump
the atom at (011) may exchange directly with the
vacancy at (01—1) and in this case the trivacancy will

be re-formed at (000), (011), and (110).Both of these
paths had to be considered and it will be shown that
the atom at (011) moves directly to the (01—1) vacancy
in one jump.

II. METHOD OF COMPUTATION

The interaction energy of the atoms in a copper
crystal was represented by a Morse function, according
to which the potential energy E(r;,) of two atoms i and

j separated by a distance r;; is given as

sum of the interaction energies of the relaxing atom, E~
is the sum of all of the other interaction energies in the
crystal which are not changed in this calculation, and
Ez, ~ is the individual interaction energy between E.
and 3f which has been counted twice, once in E~ and
once in Eg, and is therefore subtracted. The path of
the moving atom will then be that in which E, is a
minimum, and the energy barrier for the migration of a
trivacancy will be the difference between the smallest
and largest energies encountered by the moving atom
in following this path.

The writers relied on the results of an unpublished
calculation for the choice of a, ro, and D in Eq. (1).
Girifalco and %seizer' have recently determined the
constants of Eq. (1) for copper by summation over the
lattice and by matching the cohesive energy, compressi-
bility, and lattice parameter to experimental values.
For copper they obtained r0=2.866A, D=0.3429 ev,
and o, = 1.3588 A '. Since relaxation effects in the present
calculation had to be considered, a small number of
symmetrical interactions were used; the interactions
of the atoms in question with the first and second
nearest neighbors of the three vacancies and of the
moving atom (i.e., first and. second nearest neighbors
of 4 sites). A more extended calculation using just the
Morse function was not considered since Seeger and
Bross' have shown that additional factors such as
electronic effects may be important in defect
calculations.

Relaxation effects were computed first. The atoms
at (011), (—110), and (020) were relaxed inward and
the minimum energy position was found to be about
12% of a half-lattice distance. The atom at (10—1) was
relaxed next and a minimum position found. This atom
was then held in the new position and the first three
atoms were again relaxed. They moved back to a posi-
tion of about 7% of a half-lattice distance. When the
position of (10-1) was recomputed, it was found to be
in the geometrical center of the tetrahedron with coordi-
nates of (zr, zt, ——',). When (011), the moving atom, is
moved, it is opposed by two atoms, (—110) and (020),
on one side and one atom, (10—1), on the other side. It
was felt that since the relaxation of (10—1) was very
large compared to the other two, all of the important
relaxation during the passage of the moving atom could
be confined to this one. Hence (—110) and (020) were
held fixed in their relaxed positions for the remainder
of the calculation. Five positions of (10—1) were chosen
along the line of relaxation ranging from its original
lattice site to its fully relaxed position. The grid of the
Inoving atom was computed five times, one for each
position of the relaxing atom. The energy of the relaxing
atom was also computed for each of its five positions.

All atoms were held in their original position (un-

o L. A. Girifalco and V. G. Weizer (to be published). For a
description of their general procedure, see L. A. Girifalco and
J. R. Streetman, J. Phys. Chem. Solids 4, 182 (1958}.' A. Seeger and H. Bross, Z. Physik 145r 161 (1956).
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relaxed) and the computation for the moving atom was
made 6rst with the addition of an atom at (01-1) and
then with the addition of an atom at (110).These two
computations gave the energies of motion of the
divacancy and the single vacancy in a similar manner
to that of Bartlett and Dienes except for the addition of
more neighbors and diGerent constants in the Morse
function.

III. RESULTS

The first result of importance was that the relaxed
position of the atom at (10—1), the fourth atom in the
tetrahedron, is in the middle of the tetrahedron. This
means that the stable conhguration of a trivacancy is
not a simple sum of three vacancies but rather the three
vacancies are shared equally by four atomic positions.
Expressed another way, a trivacancy can be considered
as a quadrivacancy in a tetrahedral con6guration with
an interstitial in the center. This will aGect the equilib-
rium formula for trivacancies which will be considered
in more detail in the next section. The relaxation energy
of this atom, i.e., the change in energy in going from
its lattice site position to its relaxed position, is —2.3 ev.
This aGects strongly the binding energy of a trivacancy,
which will also be discussed later.

The minimum energy path of the moving atom (011)
is not to (000) in a two-step jump but directly to (01—1)
in a slightly curved path lying in a plane with (011),
(101), (10—1), and (01—1) at its corners. This is indicated
in Fig. 1. At the midpoint of its motion it is at the
coordinates (0.35, 0.65, 0). The path in the lower planes
is symmetrical to the erst half unit it reaches an equiva-
lent relaxed position near the site (01—1). The tri-
vacancy has geometrically moved to (000), (110), and
(011).Now a new tetrahedron is formed with the atom
at (101).This atom relaxes into the center of the new
tetrahedron and the trivacancy, or the tetrahedral
grouping of three vacancies, has moved one unit. When
the moving atom, (011), begins its motion, the relaxing
atom, (10-1), is obviously at its fully relaxed position.
As the moving atom approaches the midpoint of its
path the relaxing atom is driven further back towards
its lattice site. When the moving is one tenth of a unit
in (Z=0.1 plane) from the midpoint the relaxing atom
has been pushed all the way back to its lattice site,
(10—1). The relaxing atom stays in this position for
the rest of the path of (011) and remains there even
when the moving atom is in its new position near (01—1).
The relaxing atom of the new tetrahedron which is
being formed, (101), begins to move inward when the
moving atom reaches the Z= —0.1 plane and is fully
relaxed when the moving atom has reached its new

position.
A plot of the energy barrier, as a function of Z,

encountered by the moving atom is shown in Fig. 2.
Each position of Z corresponds to a minimum energy
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FIG. 2. Energy barrier diagram for motion of trivacancy in fcc
lattice. (The dip at 2=0 may trot be real. }

in the XV plane. The calculation is not su%.ciently
precise to determine if the dip at the top is real. It is,
however, a small percentage of the total energy for
the jump, which is 1.9 ev.

The energy of motion of the divacancy was found
to be 0.2 ev and that of the single vacancy 1.3 ev. 7

However, relaxation and electronic eGects were not
considered and they may alter the energy of motion.

IV. DISCUSSION

The formation of a single vacancy in face-centered
cubic materials requires the breakage of 12 bonds and
the formation of 6 on the surface. The energy of forma-
tion of a vacancy can then be expressed as

Eg&"= (12—6) (E./6) —W, (3)

' It should be noted that according to the present calculation
the ratio of the activation energies of a divacancy relative to a
single vacancy is about 0.15. The earlier and somewhat cruder
calculation by Bartlett and Dienes (see reference 4) gave a ratio
of 0.35 for a comparable 0,.

where Ey"& is the energy of formation of a single
vacancy, E, is the cohesive energy, and 8' is . the
energy gained by electronic redistribution and atomic
relaxation. By simple bond counting, the binding energy
of a divacancy is approximately 6E, if it is assumed
that the change in 8" is unimportant. In this case the
binding energy is near 0.6 ev. If 8' is taken into consid-
eration the binding energy is estimated to be about
0.3 ev.' Seeger and Bross' also arrive at a value of 0.3 ev,
which will be used for the purposes of this discussion.
By continuation of this counting process one estimates
the binding energy of a trivacancy relative to a di-
vacancy to be 0.3 ev, and the binding energy of a
trivacancy relative to isolated vacancies is therefore
about 0.6 ev. This energy corresponds to a trivacancy

configuration with the three vacancies on adjacent
lattices sites. Additional stabilization is gained by the
relaxation of the fourth atom into the trivacancy. The
present calculation indicates that this is of the order of
2.3 ev so that the total binding energy of a trivacancy
is about 2.9 ev. The absolute magnitude of this number
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shouM not be taken too seriously. The energy of forma-
tion of three isolated vacancies in copper is about 3 ev
and the 2.9-ev value would imply that most of the
vacancies are present in the form of trivacancy clusters.
This is almost certainly not the case and the true value
of the binding energy is less than the 2.9 ev calculated
here. The error with respect to a proper quantum me-
chanical calculation is impossible to estimate. It is
well possible that the equilibrium concentration of
trivacancies is of the same order of magnitude as that
of the monovacancies. The calculations show very
clearly that the trivacancy is very stable. This high
binding energy plus the high mobility energy indicates
that the trivacancy is the original nucleus for a void.

The final configuration for a quadrivacancy is not
known. One possibility is that the fourth vacancy
will remove the atom from the center of the tetrahedron,
making a tetrahedron of four vacancies. The other
possibility is that a trivacancy will capture another
vacancy in a position that is nearest neighbor distance
to only two of the —„' vacancies which made up the
tetrahedron, and the atom in the center would shift to
a new relaxed position with much less symmetry. A

calculation of these configurations would require the
successive relaxation of about twelve atoms which is

far beyond the scope of the present work.
In order to calculate the concentration of various

vacancy clusters, the combinatory pre-exponential
factors as well as the energies of formation are required.
The equilibrium formulas for the various vacancy
clusters are given in the appendix.
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where S is the number of atoms, m2, m3, and e4 are
res'pectively the number of di-, tri-, and quadrivacancies
and E2, E3, and E4 are their respective incremental
binding energies (e.g. , E3 is the binding energy for a
trivacancy relative to a divacancy). The numerical
coefficients C&, C3, and C4 are obtained by computing
the number of independent orientations of each cluster.
This is done most simply by first considering the
vacancies to be distinguishable, computing the number
of orientations possible, and then making the vacancies
indistinguishable by dividing by the number of possible
permutations. For a divacancy the coefficient is

C2 ——12/2! = 6. (7)

For a trivacancy in the relaxed configuration deter-
mined in this paper, s the coeKcient is

Ca= 12X4X1/4!= 2. (g)

Until the shape of the quadrivacancy is known, its
coefficient cannot be written.

8 For a trivacancy in the form ot an equilateral triangle (no
relaxation), C3 would be 12+4/3!=8.

APPENDIX

The equilibrium formulas for vacancy clusters are
given by the relations


