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The many-boson system with repulsive interactions is treated by a variational method based on a vari-
ational trial state of an exponential pair-excitation type obtained by a generalization of that of Bogoliubov;
the treatment is closely related to an intermediate-coupling approximation with respect to pairs. The non-
linear integral equation which determines the variational ground state is derived, and various properties
of this ground state and the associated excited states are examined. The resultant low-lying spectrum lies
below that of Bogoliubov by an amount proportional to the total number of particles. The variational
principle is shown to produce rigorous energy eigenvalue differences for the pair part of the Hamiltonian.
The variational states, however, still exhibit unphysical features characteristic of pair-excitation states:
The pair correlation function does not go to zero at zero particle separation and the phonon spectrum
exhibits a gap above the ground state. It is suggested that these features can be removed by using states
which take into account excitation of momentum-conserving groups of more than two particles.

I. INTRODUCTION

S INCE the appearance of Tisza's' and Landau's'
semiphenomenological theories of super fluidity,

there has been considerable progress in deriving the
salient features of the low-lying spectrum of a many-
boson system with repulsive interactions from erst
principles. The approximate low-lying states found by
Bogoliubov, ' Lee, Huang, and Yang, 4 and Brueckner
and Sawada' are all of the "pair-excitation" form. Such
a state is a linear combination of states of the type C»,

where C ~ di6'ers from a particular low-lying unperturbed
state, C'", only by excitation of pairs of particles from
zero momentum to paired equal and opposite momenta.
In Zq. (1), aa and ttqt are the annihilation and creation
operators for free bosons of momentum iI, and rt is the
total number of particles.

In two extreme limits the pair form represents the
rigorous structure for the eigenstates of a many-boson
system. First, as shown by Bogoliubov, in the limit of
weak coupling the eigenstates involve only excitation
of particles of equal and opposite momenta. ' Second,
Lee, Huang, and Yang4 have shown that for a hard-

* A preliminary account of this work was given by M. Girardeau
and R. Arnowitt, Bull. Am. Phys. Soc. Ser. II, 3, 54 (1958).

t This work formed part of a dissertation submitted by M. G.
in partial fulfillment of the requirements for the Ph. D. degree at
Syracuse University.

$ Now at The Institute for Advanced Study, Princeton,
New Jersey.'L. Tisza, Phys. Rev. 72, 838 (1947), which see for earlier
references.

s L. Landau, J. Phys. (U.S.S.R.) 5, '71 (1941); 8, 1 (1944);
11, 91 (1947); Phys. Rev. 60, 356 (1941).' N. ¹ Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947), hereafter
designated by B.' Lee, Huang, and Yang, Phys. Rev. 106, 1135 (1957), hereafter
designated by LHY.

5 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117, 1128
(1957).

The derivation of the eigenstates of the approximate Hamil-
tonipn conqidt:red by Bogoliubov will be carried out in Sec. II.

sphere atomic interaction, the eigenvectors are also of
the above type for systems of low density. Neither of
these limits, of course, are applicable to the physical
liquid He. It would seem, however, worthwhile to give
a more general investigation of the pair-excitation wave
function for the actual liquid in order to see if the
low-lying states of the total Hamiltonian may be
reasonably approximated by them.

The technique of calculation used in this paper is the
variational method. The trial states assumed are of an
exponential type obtained by a generalization of those
of Bogoliubov and Lee, Huang, and Yang; these states
are also closely related to those employed by Lee, Low,
and Pines' in their treatment of the polaron problem.
The simple trial states used sufBce to give a low-lying
energy spectrum lying below those of references 3—5 by
an amount proportional to the number of particles, e.

In order to examine more closely the validity of the
variational method, the Hamiltonian was investigated
to see what part of it is rigorously diagonalized by this
technique. It will be seen below that the total Hamil-
tonian can be divided into three parts: a part involving
occupation number operators and operators that anni-
hilate and create pairs (the "pair Hamiltonian") and
two other parts dealing with interactions involving
three and four particles of nonzero momentum, respec-
tively. The latter two contributions have zero diagonal
matrix elements between pair states. The energy spec-
trum given by the variational principle divers from the
rigorous eigenvalues of the pair Hamiltonian by a
constant upward shift independent of e and of the
state under consideration. '

The properties of the variational states are discussed
in Secs. III and IV. It will be seen that these states
possess several unphysical characteristics. Methods of
improving on the pair type states are brieQy discussed
in Sec. V.

' Lee, Low, and Pines, Phys. Rev. 90, 297 (1953).
In this respect the constant shift in energy is somewhat

analogous to the disconnected closed loops of quantum Geld
theory.
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II. MATHEMATICAL FORMULATION

In a quantized held representation, the Hamiltonian
of a system of spinless bosons takes the form'

H =Q k ,'Pakt—ak

+-', V 'Qkk k" ~(k)~k- k'~k'ak k~k", (2)

where a~ and uk~ annihilate and create particles in
states V 'e'k' and v(k) is the Fourier transform of the
interparticle potential v (r):

states. Thus H —Hp does not contribute in the varia-
tional principle calculation.

The approximate Hamiltonian used in 8 is obtained
by replacing ao and cot by the c number eo: and drop-
ping cubic and quartic terms in the annihilation and
creation operators for particles of nonzero momenta;
the result is

Hii ', (e——-1)P—v(0)++k' [';k'+Pov(k) jEk
+-',uo Pk' ~(k) (~k+~k"), (7)

p(k) =
J

'v(r)8 ' tPr. (3)
where po=eo/V. Hri can then be diagonalized by the
canonical transformation

The quantization has been assumed to take place in a
box of large volume U with periodic boundary condi-
tions (surface effects being neglected). Further, the
potential function v(r) is assumed to be an even function
of the interparticle distance r.

The approximate ground states found by B and
LHY can be written in the pair form (1) with 4 "' equal
to the unperturbed e-particle ground state

$k (1 L'k ) (&k J kti—k ))
Lk=[~o~(k)3 '[&~(k)—2&'—u»(k)3,

&ii (k) = k[uo& (k) +~ k'j'

leading to the energy spectrum

EB('f192 ' ) +0+2 k 9kFB (k) )

where
(9)

Eo= —(e 1)Pv(0) ——P—k [—k +PPv(k) —Eg(k) j. (10)
i n) = (e!)—l (aot)"

i
0).

In Eq. (4),
~
0) is the normalized vacuum (st.ate of no

particles). We define the pair Hamiltonian, Hr, as that
part of the total Hamiltonian B which has nonzero
expectation value in such a pair-excitation state. The
only potential terms having this property are those
which can be written (by commutation of annihilation
and creation operators if necessary) as functions only
of the occupation number operators E~= a~ a~ and the
pair annihilation and creation operators n~= a~a ~ and
O, k~=a~tu ~~. This implies that the momentum indices
k, k', and k" in Eq. (2) must obey one or more of the
relationships

k"=1 —k', k"=l', k=o.

One Ands thus, with the aid of the Bose commutation
relations, that

H =-', (e—1)Pi (0)+Qk' [-',k'+ (Eo/V)i'(k) jXk
+ 2 V pk &(k) (nk &o+&o &k)

+2V Zkk ~(k)&k &k —k

+-', V—'Qkk' r (k)Ek. krak, (6)

where p=e/V. The primes on the single summations
imply the omission of the term k=0 while those on
the double summations imply the omission of %=0,
k'=0, k=k', and in the last term also k=2k'. In
obtaining Eq. (6) we have replaced pk iVk by the
c number e since we shall deal only with eigenstates of

- the total number of particles belonging to eigenvalue e.
The remaining part of the Hamiltonian, H —H~, con-
sists of terms where three and four annihilation and
creation operators have nonzero momentum and clearly
possesses no diagonal matrix elements between pair

1' We use units such that A=m=1, where rn is the mass of the
particle,

In Eq. (9), the non-negative integers gk represent the
number of phonons of momentum k. Eii(k) is the
phonon spectrum and reduces to that of I.HY if one
inserts the value v(k) =4~a appropriate for their hard
sphere pseudopotential and replaces po by p."

In order to find the eigenstates of H~ we note that
the canonical transformation (8) is the result of a
unitary transformation

$k= Ua~kUa '.
From this it follows that the normalized eigenstates of
H~ belonging to the eigenvalue E~(gig2 ) and the
eigenvalue eo of Ã0 are

@&(nin2 ) = ~iiCLlk'( tk ) '(~k') "'3
I «) (12)

where ~eo) is defined in Eq. (4). In Appendix A it is
shown that U~ has the form

Uii exp[2 pk'(nkt —ak) tanh 'Lkj. (13)

In order to obtain variational trial states with which
to approximate the eigenstates of H, we shall generalize
the states of Eq. (12) of Bogoliubov's approximate
Hamiltonian. Since H~ does not commute with the
total number of particles, its eigenstates are not
eigenstates of the total number of particles. This defect
is easily remedied by replacing in Uz the operator n&~

(which creates a pair of particles of nonzero momenta
&k) by the operator nkteo (which excites a pair of
particles from zero momenta to momenta &k). For
technical reasons, however, it is more convenient to
use the combination nk"po, where po is a "unitary""

o p and p0 are equal to zeroth order in (pa')&; see reference 4."In order that Po be unitary over the whole Hilbert space it is
necessary to delete from the space all states containing either
zero or one particle with zero momentum. We can do this without
Bculty, since for &he low-lying states with which wt; shgll bc
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operator deGned by

Po'= 42oIlfo ', Po '= (8 ol) t= + o 'cot,

and having the properties

lation and creation operators eGected by the unitary
transformation U. By a derivation paralleling that in

Appendix A, one can show that for kWO

~„'=U-t~, V= [1—q2(k) j-l[~.—V(k)e.~ "3, (»)
Pol~)=l~ —» (~&2), Potl~)=Po 'l~&=l~+»

[Bog'oj=2Po, [A 'P'op= —2Po ', (15)

[A,422j= po, 42~'j= 0 (k&0).

where

y(k) = tanhlf (k).

After a somewhat lengthy calculation one finds"

(20)

Co ——Ul22),

&=expL-.'Z. '
lf (k) (ao-'~.—P~")$,

(1.6)

where lf (k) is a real, even function of k to be determined
by the variational principle. We shall introduce the
corresponding excited states in Sec. IV.

Since U commutes with the operators representing
the total number of particles and the total linear
momentum, the state Co is an eigenstate of these
operators (with eigenvalues 22 and zero, respectively).
Co is closely related to the variational states employed
by Lee, Low, and Pines' in their treatment of the
polaron problem, the only essential difference being
that the phonon annihilation and creation operators in
the polaron problem are replaced by po '422 and po422t

in Eq. (16). This change is, of course, necessary since
total particle number and total linear momentum must
be conserved in the many-boson problem. As in the
analysis of Lee, Low, and Pines, our treatment is a
straightforward generalization of Tomonaga's inter-
mediate-coupling approximation. " In fact, it can be
shown that 40 represents a state where the probability
amplitude for observing j pairs of particles with nonzero
momenta &h~ &k, takes on the product form
p(ki) @(k;); this result is very similar to the meson
case where the probability amplitude for observing j
mesons of momenta k, .k, is also a product of the
above type. Thus our states (16) imply strong pair
correlation but no correlation between di&erent pairs.

III. THE VARIATIONAL GROUND STATE

We now turn to the determination of the best
variational approximation to the ground-state energy
of H by states of type (16). The energy expectation
value, Eo, is

Eo= (4o,H@o) = (C'o HvC'o) = (22
l
Hv l 22}, (17)

where
Lt p' ——U—'H~U,

the second equality in Eq. (17) following from the fact
that Co is of the pair-excitation form (1). Hence, in
order to evaluate Eo and other relevant observables one
must find the canonical transformation of the annihi-

concerned (Eo) is proportional to I, and moreover the fractional
dispersion of E0 vanishes as n —+ ~. The simpli6cation results
from the fact that p0 and p0 ' commute whereas o,0 and o,0~ do not.

"S.Tomonaga, Progr. Theoret. Phys. Japan 2, 6 (1947).

We therefore take as our variational ansatz with which
to approximate the ground state the state 4» de6ned by

' —=-',pv(0)+ (&~'p)-' [-',P+pov(k)
e

where

y2(k)
+-2'I2(k)) d'k —(82rsp)-' I [pov(k)

1-y2(k)

~(k)—-', I i(k) g d'k, (21)
1-@2(k)

t
4'(k')

po =p —(22r)
—' d'k',»—~'(k')

~(k')
Ii(k) = (22r) ' I v(k —k') d'k',

1—y2(k')

4'(k')
I2(k) = (22r) ', v(k- k') d'k'.

1—y2(k')

(22)

In deriving Kqs. (21) and (22) we have carried out the
limiting prOCeSS 22-+ ~, V —+ oo, m/V 4 p (Where p iS

a finite nonzero constant) and have neglected terms
that give no contribution in these limits.

The function g(k) is determined by minimizing Eo
Upon differentiating Eo with respect to g(k) [taking
into account the implicit dependence of po, I~, and I~
on p(k) j, one finds as the (necessary) condition that
Eo be a minimum

[pov(k) —Ii(k)][1+)9(k)j—2[-'k +pov(k)

+ 2(k)+Ii(0)-I2(0) j4(k) =o (23)

An alternative form may be obtained by solving the
quadratic equation for g(k) [ignoring the implicit
dependence in po, Ii, and Is/. This gives the following
nonlinear integral equation" for g(k):

[pov (k) —I,(k) jy(k) = -2'k'+ pov (k)+Is(k)+It(0)
—I2 (0)—f-'0'+ 0'[psv (k) +Is (k) +It(0)—I2 (0)j
+2I2(k) [Ii(0)—I2(0) j+2pov(k) [Ii(k)+I2(k)

+It�

(0)—I2 (0)j+I2'(k) —It'(k)
+[It(0)—I2(0)j')' (24)

We now examine some general properties of the

"The details of this calculation can be found in the Ph.D.
dissertation of M. G., Department of Physics, Syracuse Uni-
versity, 1958 (unpublished}.

'4 In solving Eq. (23) for p(k) we have chosen the sign of the
square root such that @(k) vanish as f4 approaches infmity (see
below).
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solution P(k) of Eq. (24). For small j'r one finds

y(k) ~ [1—elj[1+e'$ ' a=It(0)/pov(0). (25)
k-+0

Upon expanding the square root in Eq. (24) through
terms of order k ' one finds, under the assumption that
v(k) decreases like j'r ' for large Jt,"that

y(k) =u-sQ, v(k) —I,(k)j—5u-o[I, (0)
—Is(0)j'[pov(k) —Ii(k)j '+0(& ') (26)

and hence P(k) decreases like k 4 for large k. The
Bogoliubov approximation arises when one neglects
the integrals Ii(k) and Is(k) compared to srks and
toov(k) in the integrands of Eq. (21). For the physical
liquid He, this is bound to be poor in general. "If v(k)
is spherically symmetric, there can exist spherically
symmetric solutions of Eq. (24). There may, however,
exist nonsymmetric solutions which could reflect the
short-range crystalline order possessed by all real
liquids. The only de6nite symmetry assumption, then,
that one can make on p(k) is that it is an even function
(which follows from the fact that u k=uk).

We conclude this section with a brief discussion of
some of the physical properties of the ground state,
Co."One of the parameters of interest in describing a
liquid is the pair correlation function D(r). This repre-
sents the relative probability that a particle be located
at point r when one is known to be at the origin (normal-
ized to unity for r —+ ~). It is given by

where p'(0) is the radial derivative of g(k) at the
origin. ' The asymptotic approach to unity for large r
(absence of long-range configurational order") is typical
of a liquid. If P(k) is nonspherically symmetric to the
extent of having symmetrically distributed "bumps"
near k= 0, then D(r) will exhibit short-range crystalline
order.

One can show" from Eq. (28) that

D(r))1—2(po/p)' (30)

Hence it is only possible for D(r) to become small for
small r (as it must for the true ground state if there is a
strong short-range repulsion) if po/p) 2 l. Furthermore,
one sees from Eq. (29) that D(0))0 for (po/p) (1.We
conclude that for interparticle interactions such as the
hard-sphere one, our wave function and pair correlation
function become physically unrealistic for small particle
separations unless (po/p) 1. This tendency of D(r) to
increase as r ~ 0 seems to be a general defect of pair-
excitation states, "and can probably only be corrected
by going beyond the pair-excitation ansatz (1) so as to
take into account excitation of momentum-conserving
groups of more than two particles.

The ground-state energy Eo can be rewritten in a
simpler and physically more appealing form than (21)
with the aid of the momentum distribution function nk
and the pair correlation function D(r). One finds with
the aid of (3), (21), (22), and (28) that

+jv

D(r) =p 'll+(0)+(r)C'olio

+(r) = V—'* Qk e'k'ak (27) Ek;„/n= (Sorsp) '
—,k'nkd'k,

(31)
By the methods used in evaluating the energy expec-
tation value Eo one finds

D(r) —+ 1+
2pg'(0) (29)

r 410(r s)
7r'p'[1+y(0) j'

'~ This is the case for Coulomb or screened Coulomb interactions
or for a soft-sphere interaction.

'6 For example, the Bogoliubov approximation requires @(0)= 1.
A rough numerical solution using a soft-sphere interaction of
radius 1.9X10 cm and height 0.03'K shows that even for this
weak potential g(G) =0.5.

"A more extended analysis of 40 can be found in reference 13.

D(r) =1—2(po/to)[fi(r) fs(r) j+fts—(r)+fss(r),

@(k)
fi(r) = (Sor'p)-' " e"'d'k

»-~'(k) (28)

qP(k)
fs(r) = (Sm'p)-' e"'d'k.

~ 1-@s(k)

The functions fi(r) and fs(r) are of the same form as
the functions —G(r) and F(r) in the LHY pair corre-
lation function. D(r) has the following behavior for
small and large r:

D(0) =2[1—(po/p)'I+ [(ps/p) —ft (0)]s

where

Ev.,/n=-,'p I D(r)n(r)d'r,

nk=(nl &k'ln)=4'(k)[1 —y'(k) j '.

IV. THE VARIATIONAL EXCITED STATES

(32)

We consider in this section the approximate excited
states, 4o(o)tots. . .), which are related to the variational
ground state, Co, in the same fashion as Bogoliubov's
excited states are related to his ground state. We de6ne
C (rt&rts ) by

C'(»» ) = &
I vms . )

(33)
I
ollrts ) Lll (olk ) (ak ) k3

I
n Zk' otk')

' In obtaining the asymptotic behavior for large r use has been
made of the results in C. J. Tranter, Integral Transforms in
Mathematical Physics (John Wiley and Sons, Inc. , New York,
1951), pp. 63 ff. We have also assumed that p(k) is spherically
symmetric here, though one expects the same qualitative behavior
if p(k) does not deviate seriously from spherical symmetry.

"This is intimately connected with the Bose-Einstein conden-
sation; see O. Penrose and L. Onsager, Phys, Rev. 104, 576 (1956).

oo This follows from the fact that D(r) can be rewritten in the
form.

D(r) =1—2(po/p) +L(po/p) —fi(r) jr+a(po/p)+ fo(r) jo.
"It is exhibited by the LHV pair correlation function, which

becomes positively infinite as r ~ 0.
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In Eq. (33), rfr are non-negative integers which will be
shown to have the signilcance of the number of phonons
of momentum k. Since U commutes with the operators
representing the total number of particles and the total
linear momentum, C(r)ir)s . ) is an eigenstate of these
operators belonging to the eigenvalues n and Ps r)rk,
respectively. We introduce the phonon creation oper-
ators $&t in order to rewrite Eq. (33) in the more
physical form

This gap seems to be unphysical for the true liquid He
system" and seems to be a general defect of the pair-
excitation states" just as is the behavior of the pair
correlation function for small r.

In order to justify the use of the term "phonon"
for our elementary excitations we consider brieQy the
number density operator p(r). In the Schrodinger
representation p(r) is given by

C'(vins )=Lll'(n') '(4') "'jC'p p(r) = 2 &(r r~') =Es pre'"' (39)

Comparing Eqs. (33) and (34) we see that they are
equivalent provided we take

The states of Eq. (34) then possess the following energy
spectrum:

which becomes in the quantized-field representation

(40)

If C(1s) represents a state of one traveling phonon,
then the state for a standing wave, Os, can be obtained
by superimposing two traveling waves of equal and
opposite momentum":

E(ni~s ') =(n'in 's' ' IIIP j'~l'92' ' )
=Ep+Pa' r)rE(k), (36)

8 =2 *'[+(1 )+C(1-.)j
In the state Oi, one has

(41)

where Eo is the ground-state energy of the state Co and

1+~'(k)
E(k) = [-,'k'+ppv(k)+Is(k)+It(0) —Is(0)J

1—y'(k)

@(k)—2[ppv(k) —Ii(k)j . (37)
1—qP(k)

In obtaining Eq. (36) we have dropped terms which
vanish in the limit rs ~ po for the low-lying states (i.e.,
states for which the number of phonons P&' r)~ is finite
in the limit I—+ oo). The energy spectrum (36) is thus
that of a collection of elementary excitations, E(k)
being the energy of a phonon of momentum k.

The Bogoliubov approximation to E(k) is of course
obtained by neglecting again the integrals I& and I&.
The rigorous limiting behavior for small and large k is,
however,

E(k) ~ 2 eip pv (0)+0(k),

E(k) -+ -'k'+It(0) —Is(0)+O(k '),

where e is defined by Eq. (25) and we have again
assumed i (k) ~O(k ') for large k. Thus the phonon
energy correctly approaches that of a free particle for
large k. However, since E(0))0, ' an energy gap exists
separating the first excited state from the ground state."

22We assume that the interparticle interaction is repulsive
"on the average" in the sense that v(0) = J'p(r)d'r is positive.

23 The physical origin of this gap can be seen by noting that
although the excitation of a phonon of momentum k; =2m V &

changes the total kinetic energy by a negligible amount, it changes
the pair correlation function D(r) by an amount I 'A(r) with n
independent of n, and hence Laccording to (31)j changes the
potential energy by an amount r'v J'h(r)v(r)drr.

1+ps(k)
(Or,p(r)Oq)=p+V ' cos(2k r). (42)

1—y'(k)

It is clear that Eq. (42) represents the density fluctu-
ations appropriate for a standing sound wave.

In order to obtain a clearer picture of the meaning of
the approximate variational states it is of interest to
examine what part of the total Hamiltonian has been
diagonalized by the variational principle. This sub-
Hamiltonian, Ho, will then be diagonal in the phonon
representation. To 6nd Ho we must pick out the part
of H'= U 'HU which is a function only of the occu-
pation number operators Xi„and call it Ho'. Since
H —'H~ is completely oG-diagonal in the phonon repre-
sentation, Ho' is completely contained in HI'. By
inspection one finds then that

Bp'=Ep+gx'E(k)1Vg+(V —'Ãp —p)Ps' v(k)

1—y(k)
X &~+V ' Z) ~

' gi(kk')&D'x, (43)
1+~(k)

where g& is independent of e; the low-lying variational
states Cp, C'(rfiiis. ) are rigorous eigenstates of Hp

belonging to the eigenvalues (36) in th'e limit as n ~ po.

Now, since H —H~ has no diagonal matrix elements

2'The Debye H speci6c heat at low temperatures implies a
linear excitation spectrum E(k) at low k.

I' In this connection it shouM be commented that the expec-
tation value of the total Hamiltonian between one-phonon
Bogoliubov states becomes positively in6nite as k —+ 0. Thus, in
a sense, these more approximate states exhibit this defect even
more seriously.

26 & is an eigenstate of energy but not of momentum. One
would expect such a state to be set up if the system were allowed
to interchange momentum but not energy with its surroundings
as in an ideal standing sound wave.
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between pair states, the best possible variational state
of the pair type would be a rigorous eigenstate of Hp
itself. In Appendix 8 it is shown that under the assump-
tion that the low-lying true eigenstates of H& can be
expanded in terms of the low-lying variational states,
the eigenvalues of H~, E~, are related to those of Hp
in the limit m ~ ~ by the equation

Ep(riirio . .) =Eo+Qk'qkE(k) —X, P &0, (44)

where A. is a constant independent of e and of g~. Thus
the eigenspectrum of the best possible pair-type states
differs from the spectrum already found only by a
constant downward shift. Similarly, in Appendix 8 it
is shown under the same assumptions that the pair
correlation function, D(r), for eigenstates of Hv is of
the same form as that found above for Hp.

V. DISCUSSION

In the preceding sections we have shown that a
variational treatment of the many-boson problem with
pair-excitation states of a simple exponential type
(closely related to an intermediate-coupling approxi-
mation with respect to pairs) suflices to give a low-lying

energy spectrum lower than those of references 3—5 by
an amount proportional to the total number of particles.
More significant, perhaps, is the relation between the
variational states and the best possible pair-type state.
As discussed at the end of the last section the energy
spectrum differs from the variational one by only a
constant shift and the pair correlation functions dier
only by terms of order e '. Thus as far as these physical
properties of the system are concerned, the variational
ansatz "essentially" diagonalizes the pair segment of
the Hamiltonian. However, in spite of this, certain
unphysical characteristics remain in the pair-excitation
states: the pair correlation function increases as r —+ 0
even in the presence of a short-range repulsion and the
phonon energy levels possess a gap not really present
in He4. It would seem, therefore, that the physical
liquid contains states somewhat more complicated than
a simple pair type.

In spite of the above, the pair-excitation states may
oQ'er a convenient departure for constructing a better
wave function to represent the true liquid. The remain-

ing part of the Hamiltonian not diagonalized by a
pair-type state includes terms involving three- and
four-particle groups of the type a» ak a& and
ak" ~~a~ a~ ~a~ . Such structures, when acting on
the unperturbed ground state of the kinetic energy
operator, give zero and hence do not interact directly
with the totally unperturbed states. When acting on a
pair state, however, they produce excitations involving
three and four particles, respectively. It appears,
therefore, that the true wave function would contain
terms involving operators acting on pair functions
which produce "triad" and "quartet" excitations. One
of us (M.G.) is now investigating this possibility.

+B e
y

~ o Zk 7k(nk nk)i (A.1)

where yk is a real, even function of k. We determine yk
such that Eq. (11) is equivalent to Eq. (8). We first
define the auxiliary quantity ak(e) to accomplish the
unitary transformation

gk (e) —eeipg e aI"— (A.2)

The quantities of interest are of course ak(1)—=$k.
The equations of motion for ak(e) are

«k(o)l«= P'(e),~k(e) j, (A.3)

where F(e) is obtained from F by replacing ak and akt

by ak(o) and akt(e) in the definition (A.1). One finds
then that

dak(e)/de=yka kt(e). (A.4)

The solution of Eqs. (A.4) subject to the boundary
conditions ck(0) = uk, akt(0) = akt yields

$k= ak(1) = ak coshyk+a kt sinhyk.

Comparing Eq. (A.5) with Eq. (8), we see that

yi, ———tanh —'Lg.

(A.5)

(A.6)

APPENDIX B

In this appendix we determine the forms of the low-

lying eigenstates and eigenvalues of the pair Hamil-
tonian Hz. We begin by exhibiting the transformed
pair Hamiltonian Hv'= U' 'HpU'. With the aid of (19)
and (23) one finds"

+p +0 + o I Zkk' f(kk ) (Po nknk'+Po nk nk' )
+ (p —v-'ivo) pk' g, (k) (po-'n,

gpss,

t)

+ I' ' Zk' go(k) (po 'nk+pnrkt)

+v ' 2) k
' g4(kk')(po 'nk&k+po% nkt)

+v—' pkk ' go(kk')nktnk. , (8.1)

where the g; are independent of e, and

y(k' 1—y k
f(kk') = v(k)

1—yo(k') 1+y(k)
1+y(k')

+ (1—5kki) v(k —k ) . (8.2)
1—~(k)—

It is readily shown that the part of HJ involving the
g, is of order e ' on the manifold of low-lying'~ vari-
ational states C'(ritrio . ), since one has by (8.1)

IILIIv —&o'—2l' 'Qkk ' f(kk')(po 'nknk

+p"-"-.')ll. " )II'=o( -) (83)
27 We require by definition of "low-lying" that the state

C(rno~ ) contain only a finite number Zk'~k of phonona iri
the limit e —+ ~.

APPENDIX A

In this appendix we shall derive Eq. (13) for Bogo-
liubov's unitary transformation. In order to find this
transformation we make the ansatz
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It follows that we shall make no error (in the limit
e-+ ~) in determining the low-lying eigenstates and
eigenvalues of H~ if we omit the terms involving g, in

(3.1) and take

H p'=He'+a & ' Ekk ' f(kk') (Ps 'trek +Pssctkt~k')
=Ho'+ 2& ' 2 kk + f(kk') (I(Is '~kirk

+PO crk &k' )y (3 4)

provided only that the rate of convergence of the ex-
pansion of the low-lying eigenstates of H& in terms of
the variational states is independent of m, so that only
the low-lying C(r)tris .) contribute to the expansion.
In the second form of (8.4) we have replaced f by its
symmetrized form

f(kk') =-', [f(kk')+ f(k'k)+ f(—k, k')+ f(k', —k)

+f(k, —k')+f( —k', k)

=-', [f(kk')+ f(k'k)+ f(—k, k')

+f(l', —k)j, (B.S)

and have replaced summation over the whole k space
by summation over half of it, since O.~=o ~,. in the
following, the superscript "plus" on sums or integrals
always implies restriction of summations or integrations
to half of k space.

The simple form of the perturbation Hamiltonian
Hp Hs implied b—y (8.4) leads to a perturbation
expansion in which only the disconnected loop diagrams
contribute in the limit e —+ ~. As a result, the low-

lying spectrum of H& divers from that of Ho only by
a constant downward shift X,ss as implied by Eq. (44),
while the corresponding eigenstates D(tetr)s ) of Hp
have the form

n(&,&," ) = UII'(&,&, ),

11'(ntns )= 2 [(2j)i?'I' '
j=o

X P+ f, (qt qs~)Po"~st'

fore the elementary excitatioris are the same as those
of the variational states, since the corresponding
creation operators gkt in (3.7) are the same as those in
(34). Nevertheless, the eigenstates of Hp have a more
complicated structure than the variational states, since
they contain components with zero-point phonons not
present in the variational states; these zero-point
phonons are described by the probability amplitudes
i(; in (3.6). Since one can show that the pair correlation
functions of the low-lying excited variational states
differ from that D(r) of the ground variational state
C s only by terms of order n ', it follows that Eq. (28)
gives the pair correlation function of the true low-lying
eigenstates II(grt)s. ) of Hp.

One could obtain formal expressions for the energy
shift X and the probability amplitudes P; by writing
down the general terms of the perturbation expansions
for the eigenvalues and eigenstates of H~, but it is
simpler to define them implicitly in terms of the
coupled set of linear integral equations which follow
from the eigenvalue equation Hz'0'=8'll'. This pro-
cedure has the added advantage that it furnishes an
independent proof of the constant shift. To derive the
integral equations, we substitute (8.4) and (3.6) into
the eigenvalue equation and evaluate the inner products
with the states ~t)t'r)s' .). Upon converting k-space
summations into integrations one finds, apart from
terms whose contribution vanishes in the limit e —+ ~
for low-lying states, the set of equations

f
-', Xfs+(2~) ' d'kd'k' f(kk')Pt(kk') =0,

2j
2 2 f(q q.)ii'~ —t(qt' ' 'q —tq +t' ' 'q.—tq.+t' ' q»)

ups

+[a(q)+ +~(q.,)+l) ]P,(q " q;)
r z+

+ (2s-)—s~ J
d'kd'k' f(kk')P;+, (kk'q, qs, )

(i& 1) (3 8)
where

). (8.6) ) —=&(~res ) —&(ntns ), (3.9)

It follows from Eqs. (33), (35), and (8.6) that

11(ntns ) = LLI'(nk!) '*(4') "kills, (3 7)

where IIs= II(00 . ) is the ground state of Hp. There-

'8 The situation here is similar to that in the fixed-source boson
theory with Hamiltonian

II=Zk E(k)aktak+V & Zk(Skak+Sk*akt),
where the source term causes only a constant downward shift of
the spectrum of II relative to that of IIs=Zk E(k)ak"ak.

with E(r)tt)s ) given by Eq. (36). In deriving (3.8)
we have assumed, without loss of generality, that the
i(; are symmetric functions of their arguments. Since X

plays the role of an eigenvalue parameter to be deter-
mined so that the solution of (8.8) yields a normalizable
state vector II(t)tt)s ), and the r)& appear nowhere else
in (3.8), it is clear that X is in fact independent of the
rik, this proves Eq. . (44). One could construct pertur-
bation expansions for X and the P, by applying iteration
procedures to the solution of (3.8).


