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Higher Electromagnetic Corrections to Electron-Proton Scattering*
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Higher order electromagnetic corrections to the electron-proton scattering amplitudes are studied. The
scattering amplitude is subjected to a dispersion analysis which permits the e' contribution to be written
as the sum of two terms. The first corresponds to radiative corrections to the form factors, the second to
virtual photon Compton scattering by the proton. A simple model is constructed for the resonant contribu-
tion to Compton scattering which is shown to correct the form factor analysis negligibly up to ~i Bev for
all scattering angles.

I. INTRODUCTION

N this paper we shall discuss the validity of the form
~ ~ factor analysis of electron-proton scattering experi-
ments. ' Such analysis is based on the assumption that
the electron and the proton exchange only one virtual
photon: higher order electromagnetic effects are
neglected.

The e' contributions to the matrix element in electron-
proton scattering are of course closely connected with
nucleon Compton scattering. Indeed the electron emits
a photon which, after having been scattered by the
proton, is finally reabsorbed by the electron.

However, not all e4 corrections can be summarized
in virtual Compton scattering as can be seen by Fig. 1.
Figure 1(a) shows a contribution to virtual Compton
scattering and 1(b) a radiative correction to the usual
form factor analysis (of course there are also radiative
corrections to the electron current as calculated by
Schwinger-') .

We are primarily interested in showing that all terms
of type 1(a) which, for real photons, are responsible for
the large resonance in the proton Compton scattering
cross section, do not lead to a significant correction to
the form factor analysis.

A first evaluation of the e4 effects, based on a simple
model for Compton scattering, has been given earlier. '
It was found that such e6'ects are small and do not

invalidate the conventional interpretation of the Hof-
stadter experiments below 500 Mev.

Here, by means of a more refined calculation, we
shall confirm the previous results and extend the va-
lidity of the form factor analysis to 1 Bev and back-
ward angle scattering.
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II. REPRESENTATION OF THE ELECTRON-PROTON
SCATTERING AMPLITUDE

We want to study the T-matrix element for electron
proton scattering using the methods of dispersion the-
ory. Different representations for such a matrix element

are obtained depending on whether the reduction for-

mula is applied (a) to the two electron operators, or

(b) to one electron operator and one nucleon operator. '
(a) By applying the reduction formula' to the two

electron operators, one easily finds'

(a) (b)

FIG. i. Some diagrams representing fourth order corrections.
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The equal-time anticommutator can be expressed

simply in terms of the electromagnetic field A„(x). The
second term can be transformed first into a time-

ordered product, and, then to order e4, the electron
operators appearing in the 0(x) can be replaced by
incoming free operators and contracted together.

' S. Mandelstam, Phys. Rev. 112, 1344 (1958).
5For example, see Lehmann, Symanzik, and Zimmermann,

Nuovo cimento 1, 205 (1955).
6 p1p2 are the initial and final proton momenta; g1 and q2, the

corresponding electron momenta. P„and P, represent the proton
and electron fields; (e,b)+= ah+be; co~ and E„represent electron
and proton energies; N =—I+go.
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We thus obtain
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Equation (2) shows clearly the structure of the e' and
e' contributions to the scattering amplitude. The first
term contains the complete e2 amplitude which is usu-

ally expressed in terms of the form factors for the charge
and moment distributions; in addition, it contains the
electromagnetic radiative corrections to the one-photon
exchange terms as illustrated in Fig. 1(b). The second
term contains the total contribution of the two-photon
exchange. It is interesting to remark that while the
first term is given in terms of the absorption of a virtual
photon by a nucleon, the second term is described in
terms of the Compton scattering of a virtual photon
by a physical nucleon.

In this paper we are mainly concerned with the
evaluation of this second term. In order to give a
precise treatment of this term, one is tempted to subject
the matrix element
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to a dispersion treatment. However, we feel that such
a program is still outside the present possibilities of dis-
persion theory.

In the next section we shall propose a simple model
for this term which takes into account the eGect of the
transition to a resonant pion-nucleon state. Before
entering into such a particular model, we wish to
explore next the possibility of avoiding working with
virtual particles as appear in (3) and to try to relate
our calculation to real photon processes. We turn then
to contraction (b).

(b) Applying the reduction formula to the initial
electron and final nucleon operators, and passing di-
rectly to the commutator form for the matrix element,
we obtain'
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7We obtain the anticommutator of the electron and proton
source functions because we assume anticommutation relations
between their 6eld amplitudes. Here it is completely irrelevant
whether we make this, or the opposite assumption of commutation
between P, and P~, since the Lagrangian is bilinear in electron and
nucleon amplitudes. Had we assumed commutation relations
between p, and 1(|~ a commutator of the source functions would
appear in (4) and all subsequent results would be unchanged.
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To the sum (6a) contribute all states with zero
nucleon and electron number; to the sum (6b), all
states with nucleon number j. and electron number 1.
Let us analyze in detail such contributions.

(A) The first terms appearing in Eq. (6a) come from
photons. The one-photon term is favored by e'= 1/137
and represents a pure Moiler scattering by a point
particle. The two-photon terms are related to the
polarizability effect we are discussing here and in
principle can be computed in terms of nucleon Compton
scattering by rea/ photons.

(8) Next in (6a) there are terms corresponding to
pions, nucleon-antinucleon pairs, etc. These states
connect to the electron only through exchange of
photons. Such contributions, particularly .the two-pion
term, can be analyzed in a similar way as Eqs. (4) to
(6). It can be shown that the one-photon contributions
correct the pure Moiler term by the form factors. The
two-photon term corrects the matrix element of (6a)
by taking into account virtual photon effects in nucleon
Compton scattering.

Thus, whereas this second type of application of the
reduction formula permits us to work directly with
real photons, it leads us to the complications of these
strongly coupled states, such as the two-pion term,
which must be taken into account. in order to "dress"
the proton with its observed physical structure.

From our discussion it follows that the advantage of
the dispersion method of giving only real-particle
scattering is sometimes illusory. Indeed the structure
of a "dressed" particle (here, a proton), which is probed

by the virtual intermediate particles (here, photons)
in a perturbation calculation, is here built up as a result
of contributions from higher mass configurations. Such
contributions are not necessarily negligible.

(C) The 6rst contribution to ps comes from a one-

Equation (4) can be taken as the basis for the con-
jecture of a dispersion relation for T in the momentum
transfer (qi —q )s'= t, where (pi —qs)'= 8 is taken as a
constant. In the Appendix the proper frame of reference
which decouples those two variables is constructed.
Our resulting dispersion relation is
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nucleon one-electron state and is given in terms of the
electron-nucleon scattering matrix. It represents of
course a rescattering correction which in a simple
potential theory corresponds to the higher Born
approximation corrections to first Born approximation.
Furthermore, we have contributions from eSx states
corresponding to electron production of pions.

The complication of this analysis, together with the
lack of a complete dispersion treatment of Compton
scattering even for real photons, forces us to rely on a
simple model.

III. THE MODEL FOR NUCLEON POLARIZABILITY

Let us consider the second term of Eq. (2),

T"'(psgsyplgl) (2~) 5(ps+$2 pl gl)s~

X Q ~(Psks Plkl)tc(gs) ei
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with
ks=ki+pi —ps

X esse (qi) d'ki, (7)

The matrix element M is given by the virtual Comp-
ton matrix element multiplied by the propagators
Dp(kit)Ds (kss), where De (k') —= 1/k„k".

Next we relate the virtual Compton scattering to
real Compton scattering. Limiting ourselves to the
terms generated by the magnetic moments, we do this

by multiplying the matrix elements for the real Comp-
ton process by the magnetic form factor of the nucleon,
F (k'), where k is the four-momentum transferred by
the virtual photon to the nucleon. ' The justification
for this can be found in a relativistic dispersion analysis
of production of pions by electrons. ' There it was shown
that the magnetic dipole matrix element for pion pro-
duction by a virtual photon is equal to the corresponding
matrix element for a real photon, multiplied by F (k').

We write then

(16cosicos ski iEps) 'M
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where T» is the amplitude for real Compton scattering.
We approximate T» by the static model, " retaining
only the magnetic dipole terms,

Ke are interested in electron-proton scattering
through large angles, where the form factor analysis
(to order e') leads to a small cross section and the
correction terms are anticipated to be of the greatest
relative importance. Therefore we keep only the spin-
flip terms and obtain in Eq. (9), upon inserting the
well-known scattering phase shifts,
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where co is the common frequency of the scattered
photons in the center-of-mass system, co&=2.2m, and
7=0.7m . Of course the first term is the contribution
from the (33) resonance and the second term preserves
crossing symmetry. "

Using (8), (9), and (10) we have evaluated the
integral in (7) for large-angle scattering. The contribu-
tion due to the interference between T&" and the
leading term in Eq. (2) was calculated and it was
found that the cross section is increased by 1% in the
energy range Bev. The resonance contribution to the
radiative correction is thus seen to be no more im-
portant than other" corrections to the form factor
analysis which are characterized by the parameter
e'= 1/137.

Two comments are of interest in connection with
this result. First of all it is insensitive to choice of form
factors I' since the integral is finite even in the limit
Ii„,—+1. Secondly, unlike the situation in the real
Compton process, the (33) resonance does not play a
dominant role here. This can be understood from Eq.
(10) where the matrix element depends strongly on the
resonance only for co cog. However, as noted earlier, '
the in-phase contribution from the resonance, which
interferes with the lowest order Born term, is odd about
the resonance so that the region co co~ is unimportant
here.

We do not feel that it is safe to extend our results
much beyond the Bev energy range in view of the non-
relativistic treatment of the nucleon in the model
with which we calculate.
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IV. CONCLUSION

where T o o is the scattering amplitude for srs+P ~
sr'+p with initial and final pion momenta eiXki and
esxks, respectively; g„—g =4.7, and f'=0.08.

To conclude, we have shown in this paper that the
form factor analysis of electron-proton scattering (cor-
rected of course for the Schwinger radiative correction
to the electron current) is accurate to es=1/137 for
all angles and energies into the Bev range. In par-

s Precisely P(k') =PP&(k )+e„ts(k'))/(1+e„) in the notation
of reference 1. Within experiments Ii1=Ii2.' Fubini, Nambu, and Wataghin, Phys. Rev. 111, 329 (1958)."Y. Vamaguchi (unpublished, 1955); Karzas, Watson, and
Zachariasen, Phys. Rev. 110, 253 (1958).

"G. Chew, Encyclopedia of Physics /Springer-verlag, Berlin (to
be published) j.

's R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).
In this pqper the static charge corrections are computed; this
result holds also for charge-moment cross terms,
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ticular we have used dispersion theory methods to
formulate the electron-proton scattering amplitude in a
manner which allows us to evaluate the e' contribution
due to Compton scattering of the virtual intermediate
photons by the proton. In this way we have extended
an earlier result' and have shown that this Compton
scattering, which leads to a big resonance in real
photon-proton scattering, plays a minor role for the
virtual photons in electron-proton scattering up
through Bev.

and
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n= q2+aE,
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It is then easy to verify that

APPENDIX

In order to exhibit the dependence of the amplitude
(1) on the momentum transfer f we pass to a special
coordinate system, which we shall call the "Breit
system, "in which one can see explicitly the independent
variation of the matrix element with respect to 8 and t.

We define

ordinates in which n has only a time component and
therefore A. has only space components.

We rewrite Eq. (4) in terms of these variables by a
simple shift of coordinate origin,

Z

(P281& IPlS) = (2~)'~'(P2+92 —Pl —8)
(4~Pl&n2) *'

2EQE'= M2 1— — cos2(8/2)
M

2EQ
1+ sin'(8/2),

d'x e—"*g(x)((n—aE)
~
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X[n+(1+a)E]). (A1)

We then consider the matrix element (A1) as a
function of

~p ——(n lr)/(m2 —nl)-:,

keeping E' fixed. The whole dependence on such a
variable is contained in the exponential (since 22 K=O).
The further derivation of a dispersion relation en-
counters similar difficulties due to the nonphysical
region as the usual treatment of pion nucleon scattering.

One extra diKculty found here is that the "Breit
system" does not always exist. The vector E is space-
like only for rather large momentum transfers. Indeed
in terms of the laboratory energy of the incident elec-
tron, EQ, and the scattering angle, 8,

m2=o.~= m~ —828

E (z=E m=o, and E2(0 only for 2Epcos2(8/2))M. We do not
understand the meaning of this limitation but, in any
case, are interested in scattering conditions which

By the "Breit system" we mean that system of co- satisfy it.


