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where k is the center-of-mass momentum and m is the
reduced mass of the E -proton system. The photon
spectrum is then given by

dw(stP, rc)/dk=2. 6&&10'kQ t '(k) kev ' sec ', (4)

where k is measured in kev. A particular value of the
dimensionless function for argument k= 1.79o.'rrt/2
=15.4 kev is Qst (1.79)=0.34. The curve is given in
Fig. 1 for m=2, 3. Inclusion of nuclear damping does
not change the shape of the curve in the part plotted.
The rest of the curve may be approximated by a normal
line shape with a maximum of roughly 10"sec ' kev '
and a width of 0.31 kev.

For comparison we mention the total radiative transi-
tion rates from 2I' and 3I' states,

w(2P~1S) 4)&10" sec '

w(3P -+ 2S)+w(3P -+ 1S) 1&(10"sec '.

We may also estimate the direct nuclear capture rate
from the 2P state to be given by

w (2P,c) (1/128)n'w (1S,c)=4&&10" sec—'.
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The pion-nucleon coupling constant is determined from the pion
photoproduction angular distribution. The method is based upon
a certain conjecture concerning the analyticity of the photo-
production amplitude, and does not depend on the validity of any

specific theory of photoproduction. It consists of an extrapolation
of the angular distribution at any given 6xed energy to cosg = V„',
where V is the pion velocity divided by the velocity of light. The
amplitude at this nonphysical angle has a pole, and the pion-
nucleon coupling constant is simply related to the residue of the
amplitude. The quartic representation of photoproduction angular
distributions is used as the functional form of the extrapolating
curve, The most important feature of the new method is in the
fact that it measures, at least in principle, the pion-nucleon
coupling constant at any given 6xed energy, while previous
determinations in general measure the coupling constant in the
low-energy limit, or require assumptions concerning the behavior
of the cross section at all energies.

In addition, the new method does n~t depend on the assumption
of charge independence, and in fact measures explicitly the inter-
action of positive pions with nucleons. The scheme cannot be used
for photoproduction of neutral pions. The method is applied to
available data at 230, 260, 265, and 290 Mev photon energy in the
laboratory system, and an over-all value of f'=0.064~0.041 is
obtained. In view of the large error, a detailed discussion is given
of possible improvements in experiments which could give a more
accurate value. Also discussed is the sensitivity of the value of the
coupling constant to various features of the experiment, such as
the energy of the photons, the relative importance of the various
angles, the relative importance of the relative and absolute
normalizations, and the statistical errors on the individual pieces
of data. Finally, numerical illustrations are given of the accuracy
obtainable for certain given conditions on the factors listed above.

1. DESCRIPTION OF THE METHOD

A REASONABLE understanding of pion photo-
production has come by means of the dispersion

relations of quantum field theory, ' ' and a value of the
pion-nucleon coupling constant has been obtained,
which is in reasonable agreement with that obtained
from pion-nucleon scattering. We consider in this paper

* Work done under the auspices of the U. S. Atomic Energy
Commission.

t On leave of absence from Christ's College, Cambridge,
England.' Chew, I ow, Goldberger, and Nambu, Phys. Rev. 106, 1345
(1957).' Uretsky, Kenney, Knapp, and Perez-Mendez, Phys. Rev.
Letters I, 12 (1958).

an alternative and quite independent method for
determining the pion-nucleon coupling constant from
pion photoproduction data. This method depends on
the property of analyticity of the production amplitude
as a function of momentum transfer for fixed total
center-of-mass energy.

Such analyticity of scattering amplitudes and, pro-
duction amplitudes has already been discussed in
connection with the proof of dispersion relations in
quantum field theory, '4 and in connection with a two-
dimensional spectral representation. ' An application of

' H. Lehmann (to be published).
'R. Oehme and J. G. Taylor (to be published).
'S. Mandelstam, Bull. Am. Phys. Soc. Ser II, 5, 216 (1958).



690 TAYLOR, MORAVCSIK, AND URETSKY

v+ N

1

(a)

FIG. 1. Processes giving
rise to poles in the photo-
production amplitude: (a)
the one-meson direct inter-
action leading to a pole at

(b) the crossing
term, which gives the pole
at 6'= (W —M' —p'). W'= —(p —p')'= —lV,

4"= (p'+q)'= —W,
(1 3)

Thus the poles are for W' =p' and —(p —q)'= M', and
the branch points are for W'&~ (2p)s and —(p —q)'
&~(M+p)'. If we now continue 1V (k,q; p', p) to
M(p', g; p, k) by the transformation k —+ —k, p' —& —p',
then the variables W, 6" become

W' = —(p+p')',
6"= (p' —q)s.

(1 2)

The scattering amplitude is then a function lV(W', 6")
of these invariants.

The expected analyticity region of E in the H/" plane
for fixed 6" is the cut 8" plane, except for two poles.
The poles arise from intermediate states in the absorp-
tive part of 1V(W', 4") corresponding to one pion (or, in
the crossed term, one nucleon) and the branch points
arising from intermediate states with at least two pions
(or, in the crossed term, at least one pion and one
nucleon). We are neglecting here all matrix elements for
processes with more than one photon present in initial
or final state with the usual justification that such
matrix elements are of order 1/137 of these involving
only one photon in initial or Anal state.

6 Geoffrey F. Chew, Phys. Rev. 112, 1380 (1958).

this analyticity to a determination of the pion-nucleon
coupling constant from nucleon-nucleon scattering data
has also been discussed. '

The analyticity behavior we use is just the reverse of
that used in the dispersion relations, where the ana-
lyticity variable is the total center-of-mass energy when
the momentum transfer is held fixed. In order to under-
stand how the reverse analyticity, which we wish to use,
may come about, we denote by M(p', g; p, k) the
amplitude for the pion photoproduction process
y+X~ s.+X, where p, p', q, k are the 4-momenta of
the initial and Anal nucleon and of the pion and photon,
respectively. We need not consider the spin, isotopic
spin, or polarization variables of the particles in this
discussion. These variables do not acct the analyticity
properties of the scattering amplitudes, provided we
take into account in our discussion all relevant selec-
tion rules.

We denote by X(k,g; p', p) the amplitude for the
process N+g —+ y+m, the annihilation of a nucleon-
antinucleon pair to produce a photon and a pion; the
momentum variables p, p', g, k are for the nucleon, anti-
nucleon, pion, and photon respectively. From crossing
symmetry we have

X(—k, q; —p', p) =M(p', q; p, k), (1.1)

so that the matrix element M(p', q; p, k) is a continua-
tion of cV(k, q; p', p) by the transformation k~ —k,

p
The two invariants formed from the momenta which

describe the annihilation process may be taken to be

(y-I P + 2M+
)N 2kq

lfn) ir
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N
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Fro. 2. The L9 'plane, showing the singularities of
the photoproduc tion amplitude.

where 8'&, 6 are the usual total energy and momentum
transfer for the photoproduction process. Hence ana-
lyticity of JV (W', b") in W' for 6" now is transformed
into analyticity of M(W, d') in L9 for fixed W. The
analyticity region is the cut 6 plane, with branch
points from LP&~ —(2y)' and —(p —q)'&~(M+@)'.There
are also poles at dP= —ps from the process (a) of Fig. 1

and at (p —q)'= —M' from the process (b) of Fig. 1.
Then the analyticity region is the cut lV plane with
poles at —p' and (W—M' —p') and branch points at
—4p' and W+2Mp —M'

We introduce the scattering angle 0 between k and q
in the center-of-mass system, so that in the cos0 plane
the analyticity region is the cut plane, with poles at
V ' and —V~ ' and branch points at (U '+3@'/2k')
and —LV~ '+(p'+2M')/2k']. Here V, Vsr are the

. pion and nucleon velocities and q, k the pion and
photon mornenta (all in the center-of-mass system).
This region in the cos0 plane is shown in Fig. 2.

What we have said so far does not constitute a proof
of analyticity of M(W, cos8) in this cut cos8 plane for
fixed t/I/. It is not possible to obtain a proof of this
property by using the methods of references 3 and 4.
We do not even wish to use such a large region of
analyticity. Indeed, it does not seem possible at present
to make such a use of the cut-plane analyticity region in
cos0 as was made of the cut-plane ana]yticity region in
W, since now the absorptive part ImM(W, cose) is
known only along the region

~
cos0~ (1, and not along

the branch cuts. Our method requires only that we have
analyticity in some region E containing the physical
region

~
cose~ (1 and including the pole at cos8= V

as an isolated singularity.
It has not been possible to prove this result yet by

methods similar to those of references 3 and 4. Although
for nucleon-nucleon scattering the corresponding poles
and branch points always lie outside or on the boundary
of the ellipse of analyticity in the cos0 plane, the
situation in photoproduction is that the pole at
cos0=V lies inside the ellipse of analyticity for
photon energies up to 980 Mev (laboratory system).
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This paradoxical result is understood when it is re-
membered that the ellipse of analyticity is the region
of analyticity for only one term in the reduced S-matrix
element. The pole at coso= V ' must come from the
remaining terms. This situation is being investigated
more fully by one of us (J.G.T.) and will be reported
on elsewhere.

Thus we have no rigorous proof of our analyticity
conjecture that M(W, cos8) is analytic in cos8 in a
region R which includes the physical region/ cos8~ (1
and the isolated singularity at cos8= V ' with a
simple pole there. However, the conjecture seems very
reasonable physically, as was seen in the discussion at
the beginning of this section, and also from the fact that
we are concerning ourselves mainly with the re-
normalized Born-approximation terms in the scattering
amplitude.

We wish to obtain the residue of M(W, cos8) at the
pole cosa= U '. We may write the angular production
amplitude at a given energy 8' as

do g(W, cos8)
+f(W, cos8),

dQ (1—V cos8)'
(1.4)

where f, g are analytic at cos8= V '. The first term in
this expression contains all the e8ects of the meson-
current term, as well as interference effects between the
meson and nucleon currents. At coso= U ' these
interference effects are zero, and we have'

do
(1—V. cos8)'—

dQ Coa 8=V& 1

q l 1—V.'

i k') (1+(v/M)'

fq) 1—V'
= 147f'( —

~
mb/sterad,

& ised (1+re/3I)s
(1.5)

where f is the pion-nucleon interaction coupling
constant, o. the 6ne-structure constant, and A., the
reduced pion Compton wavelength. We shall obtain a
value for the left-hand side of this equation at a given
energy, and so a value for f' by continuing the function
(1—V cos8)'(do/dQ) from the physical range

~
cos8~ (1

to the value cos0= V ', using experimenta, l data in
this physical range. Before we do this in detail, some
general properties of this procedure are discussed.

2. GENERAL PROPERTIES OF THE PROCEDURE

The value of fs that we shall obtain will be inde-
pendent of the assumption of charge independence in
the pion-nucleon interactions. This is since we are
considering only charged-pion production, and neutral
pions do not come into the picture. Of course we are
using charge symmetry. We cannot obtain even the
coupling constant for the neutral-pion-nucleon inter-

action by this method, since the pole at cos0= V ' has
a zero residue for this case.

Our method has an advantage over the usual dis-
persion-relation one in that we need not make any
assumptions about the high-energy behavior of the
production amplitude. Of course, as was found in
references 1 and 2, we do not obtain here any under-
standing of the angular shape of the production cross
section nor its energy dependence. But we feel that an
independent method of determining the value of the
pion-nucleon coupling constant is of value in giving a
further check on the general axioms from which the
dispersion relations and analyticity in cos8 may be
proved.

It may finally be remarked that the pole at
cos0= —V~ ' is not useful to us in comparison with the
pole at cos0= V ', since it is very far from the physical
region. For example, at a photon energy (lab) of 260
Mev we have V~ '=5 75 and U '=y 33) and at 500
Mev we have V~ '=3.2 and V '= 1.09.

3. PROCEDURE

The procedure leading to the determination of the
residue at the pole begins by plotting the experimental
value of the quantity Q(cos8)= (do./dQ)(1 —V cos8)'
vs cos0. The residue is then given by the value at the
pole of some curve that is fitted to the experimental
points in the physical region. The problem is to select
the appropriate functional form for the 6tting curve.

We have used. experimental points in the whole
angular range. The justification for using the whole
physical range is in our assumption that Q(cos8) is
analytic in the region R which includes the physical
range and the point V '. Then one knows that
Q(cos8) can be well represented by a fourth-order
polynomial in cose. Such a representation takes into
account the meson-current contribution for all values
of the angular momentum, and further assumes that the
contribution of the nucleon-current interaction is
significant only in the S and P states. The validity of
this assumption has been borne out by direct com-
parison with photoproduction up to 440 Mev, as well as
by analogous' data on pion-nucleon scattering. These
latter data indicate' that up to 300 Mev (corresponding
to 450 Mev for photoproduction) there is no evidence
for D waves, and even at 360 Mev (or 510 Mev for
photoproduction) the D wave, if it exists at all, is very
small. If D waves contributed appreciably, Q(cos8)

r Michael J. Moravcsik, Phys. Rev. 104, 1451 (1956) and 107,
600 (1957).

8 K. M. Watson, Phys. Rev. 95, 228 (1954);M. Kawaguchi and
S. Minami, Progr. Theoret. Phys. (Japan) 12, 789 (1954).

9 Munshin, Ozerov, and Pontecorvo, J. Exptl. Theoret. Phys.
U.S.S.R. 31, 371 (1956) (translation: Soviet Phys. JETP 4, 237
(1957)j; 1. Mnkhin and B. Pontecorvo, J. Exptl. Theoret. Phys.
U.S.S.R. 31, 550 (1956) )translation: Soviet Phys. JETP 4, 373
(1957)j;N. A. Mitin and E. L. Grigorev, J. Exptl. Theoret. Phys.
U.S.S.R. 32, 445 (1957) /translation: Soviet Phys. JETP 5, 378
(1957)j.
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would be represented by a sixth-order polynomial in
cos8.

In principle, of course, the higher angular momenta of
the nucleon-current interaction also contribute some-
what to the difkrential cross section even below 450
Mev. After all, we saw in Sec. 1 that the pole we are
considering is not the only singularity and hence in
principle Q(coso) contains terms that have denominators
originating from the other singularities. These de-
nominators, if expanded into a polynomial, would give
contributions in all angular-momentum states. In
practice, however, the other singularities are much
farther removed from the physical region than the pole
we are considering, and hence the other denominators
can well be approximated by the first two terms in their
polynomial expansion in coso.

It is an important advantage in the extrapolation
procedure to have a physical argument for the deter-
mination of the functional form of the extrapolating
curve. It would also be possible to rely exclusively on
statistical criteria such as the chi-square test and the
Il test."As will be seen, however, these criteria are not
always decisive or unambiguous, and therefore it is
very reassuring to have theoretical physical criteria as
well as statistical tests available. For practical reasons
it is important to use the lowest order polynomial
compatible with these criteria, and a double method of
selection helps to assure this economy. The motivation
for the lowest order polynomial is not so much in the
fact that polynomials of different orders woaM, give
violently diferent residues, because this is usually not
the case. The real motivation is in the fact that for a
given set of data, the error ascribed to the residue
increases rapidly as one increases the order of the
polynomial, and hence an economy in the order of the
polynomial contributes greatly to the precision of the
determination.

4. RESULTS

In this section we give the results of our applying our
scheme to the angular-distribution data presently
available for positive pions produced from protons.

Data have been used at four energies, and altogether
six determinations have been made. These determina-
tions used the complete set of data in the range between
225 Mev and 235 Mev" " the Berkeley data at 260
Mev, '4 the complete set of data at. 260 Mev, " " the

"For a practical summary of these statistical criteria as well
as for other properties of the method of least squares, see P.
Cziffra and M. J. Moravcsik, University of California Radiation
Laboratory Report UCRL-8523, 1958 (unpublished).

U Beneventano, Bernardini, Carlson-Lee, Stoppini, and Tau,
Nuovo cimento 4, 323 (1956).This paper also contains a summary
of data obtained at Cornell University."J.H. Malmberg and C. S. Robinson, Phys. Rev. 109, 158
(1958).

» Tollestrup, Keck, and Worlock, Phys. Rev. 99, 220 (1955).
"Uretsky, Kenney, Knapp, and Perez-Mendez, Phys. Rev.

Letters 1, 12 (1958).
» Walker, Teasdale, Peterson, and Vette, Phys. Rev. 99, 210

(1955).

TAsI.K I. Values of the residue as obtained from experimental
extrapolation, and the corresponding coupling constants, at
various photon energies, given in the laboratory system.

(Mev)

230
260
260
265
290
290

Data

complete
Berkeley
complete
complete
Berkeley
complete

Experimental residue Coupling constant,
(microbarns/steradian) f2

0.852&1.48
1.86 ~0.52
1.54 &0.91
1.74 &1.59
0.165+0.32
0.167&0.66

0.042&0.073
0.131&0.037
0.108&0.064
0.129&0.168
0.016&0.031
0.016a0.064

Average of complete data 0.064&0.041

'6L. S. Osborne, ProceeChngs of fhe Sixth Aeelal Rochester
Conference on High Energy Physics, 1956 gnter-science Publishers,
Inc. , New York, 1956), p. 25.

» Edward Knapp (private communication). We are indebted to
Dr; Knapp for giving us the results of his experiment prior to
publication.

complete set of data at 265 Mev"" the Berkeley data
at 290 Mev, " and the complete set of data at
290 Mev."""We singled out the Berkeley data at
260 and 290 Mev for special consideration simply to
illustrate the point that the chi-square test tends to be
much more favorable for a single experiment than for a
collection of experiments from various laboratories, and
that therefore the accuracy of the coupling constant
cannot always be improved by increasing the number of
experimental data used in the determination. We also
calculated the average coupling constant as obtained
from the four complete sets. All these results are given
in Table I.

Table II gives the quantities obtained from the chi-
square tests and the Ii test, as a function of the degree
of polynomial used to represent Q(cosg). For the x' test
the value of y' is given together with the pertaining
probability percentage. This latter entity gives essen-
tially the probability that a good fit to the set of data in
question wouM yield a x' of that value or larger. The
Ii test has been applied to the question "What is the
probability that a one-higher-order polynomial is
needed to represent the data?" Again the value of Ii and
the percentage probability are given. It is evident from
the table that these statistical tests alone would not
give a very definite indication as to the degree of
polynomial to be used.

The over-all average we obtained is not inconsistent
with the usually accepted value, which is around
f'=0.08. It should be mentioned, however, that this
present average is more illustrative than factual. Even
in addition to the uncertainties that are expressed in the
large error on f', there are other sources of possible
inaccuracy. Firstly, the 225-, 230-, and 235-Mev data
were all lumped together, and this 10-Mev-wide band
introduces an error which is unknown in magnitude but
certainly not negligible. This lumping together was
necessitated by the scarcity of data at the three
individual energies. Secondly, as is well known, the
results in references 13 and 15 are inconsistent with each
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TABLE II, Results of the statistical tests applied to the experimental extrapolating procedures.

Set
Order

of~ 230 Mev complete
polyn+ Value

260 Mev Berkeley
Value

260 Mev complete
Value

265 Mev complete
Value

290 Mev Berkeley
Value

290 Mev complete
Value

2 x'
F

3 x2
F

163.5
13.3

76.44
3.55

&O.i
&99

&0.1
93

6 x'
F

7 x'
F

65.12
0.246

64,42
0.0027

64.42
0.175

63.88
0.473

&0.1
40

&0.1
8

&0.1
30

&0.1
50

1 x' 1532 &0.1
F 23.2 &99

2289 (0.1
9.69 99

69.7 &0.1
7.80 98

9.31 30
2.99 85

5.82 60
2.52 80

372 75
5.14 92

0.53 99
1.04 70

0.42 98
1.18 70

179 &0,1
13.3 &99

70.4 &0.1
2.62 80

61.62 (0.1
1.40 75

29.33 &O.i
012 25

56.98 &0.1
0.10 25

56.67 &0,1
0.09 25

48.3
7.04

24.1
2.54

1.9.3
3.81

13.2
0.008

13.2
0.012

13.2
1.31

&0.1
98

3
85

8
95

27
9

22
10

15
80

3000 &0.1 696 &0.1
21.6 &99 13.96 &99

2053 &0.1
8.41 98

135.7 &0.1
5.60 92

40.6 &0.1
6.20 95

4.61 60
0.010 10

4.60 48
0.020 12

458 35
0.048 15

4 53 21
2.64 70

149.4
5.44

110.7
0.04

110.5
0.18

&O.i
95

&0.1
15

(0.1
30

109.5 &0.1
0.00 1

109.5
0.19

&0.1
30

3410 &0.1
21.0 &99

2883 0.1
10.6 &99

other, and either of these is in turn inconsistent with
the Berkeley data of references 14 and 17. This fact is
in part expressed by the large y' value for the complete
sets at 260 and 290 Mev. It is also peculiar that the
shapes of the angular distributions obtained at 260 Mev
and 265 Mev are so diferent from each other. It is our
belief, therefore, that in addition to carrying out new
experiments perhaps some attention should be paid to
the clearing up of some of these obvious systematic
inconsistencies in the presently available data.

S. SUGGESTIONS FOR FUTURE EXPERIMENTS

The results presented. in the preceding section have
been derived from the experimental data already
available. Although the results are encouraging, it is
clear that improved experiments will have to be carried
out in order to extract the maximum amount of benefit
from the method described in this paper. In this section
we give a few qualitative and quantitative hints con-
cerning future experiments in this direction.

The first remark is directed toward 6nding the
optimum energy for an accurate determination of the
coupling constant. It can be seen from Fig. 3 that the
absolute value of the residue drops oG rapidly with
increasing energy. This would suggest that for the same
percentage accuracy in the coupling constant, ceteris
paribus, a lower energy would be preferable. On the
other hand, the distance of the pole from the edge of the
physical region decreases with increasing energy. This
fact alone would suggest that, again other things being
equal, a higher energy would be preferable. A closer
investigation shows that the second eQect wins out,
and therefore a given set of experimental data (for
instance differential cross sections at ten given angles,
all with given percentage errors) determines the

coupling constant more accurately at higher energies

30—

I.O—

I

150 ZOO
I

300 400
Mev

I

500

FIG. 3. The value of the residue es the photon
energy in th.e laboratory system.

than at lower energies. At the same time, however, once
we reach the energy at which D waves begin to con-
tribute appreciably, the precision decreases again be-
cause a higher-order polynomial is needed to represent
the angular distribution. Thus, the optimum energy
appears to be the highest energy at which D waves are
not yet important. This energy seems to be around
500-Mev photon energy (lab). At present no measure-
ments at all are available in the neighborhood of this,
energy.

The second remark concerns the relative importance
of the various angles. It is easy to see that the knowledge
of the differential cross section at small angles is
particularly important for the determination of the
coupling constant. This is so far two reasons. Firstly,
these angles are the nearest to the pole we are con-

sidering, and hence have the largest inQuence on the
error ascribed to the extrapolating curve at the pole.
Secondly, the function Q(cosg) has a small radius of
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curvature at small angles and hence the extrapolation
depends very sensitively on how well we know the
curve in this region. This point is quite evident from
Fig. 4. It is just another way of saying that the quad-
ratic" representation of the photoproduction angular
distribution fails to give the proper functional de-
pendence only at small angles. "

The third remark is directed toward the relative
importance, in obtaining an accurate coupling constant,
of the relative and absolute errors in the measurements.
On account of the extrapolation procedure, the per-
centage error ascribed to the coupling constant is
larger than the error pertaining to the experimental

' This does not mean, however, that the meson-current term
has an effect on the angular distribution only at small angles. The
quadratic representation obtained from the data excluding the
small-angle region is very much affected by the meson-current
term. To see this we just have to observe that the meson current
term vanishes at zero angle, and hence the quartic and quadratic
representations should give the same differential cross section at
zero angle in the absence of the meson-current term. The quadratic
representation based on data excluding the small-angle region,
however, gives a strikingly different prediction for the zero-angle
differential cross section. Some confusion resulted in the past from
attempts to identify the coe%cients in this limited quadratic
representation with theoretical coeKcients describing the nucleon-
current interaction.

I t i I i i i i i i i i i I i i

I.4 IB I.O 0.0
cos 8

Fto. 4. The quantity Q(cosa)= (do/dQ)(1 —P cos8)' ss cosa in
the center-of-mass system for 260-Mev photon energy in the
laboratory system, as obtained from the polynomial 6t of all
experimental data at this energy. The figure shows the extra-
polated part of the curve in the unphysical region which leads to
the value of the residue at cos8=1.31, together with the forward
half of the physical angular region.

points or to the curve in the physical region. Thus a
small change in the shape of the angular distribution in
general brings about a large change in the coupling
constant. On the other hand, a certain percentage
change in the absolute normalization of the whole
angular-distribution curve results in the same per-
centage change in the coupling constant. Thus it would
appear that it is more important to get a high relative
precision in the angular distribution than high accuracy
in absolute normalization. In the past there has been
more experimental uncertainty with respect to the
absolute normalization of the angular distribution than
with respect to relative errors. Such a normalization
should be possible, even with present-day techniques, to
within 1%. If this is accomplished, most of the error in
the coupling constant will come from the relative
errors in the angular distribution, even if the errors on
individual differential cross sections can be reduced to
1%—a 6gure only one-third that in the best presently
available experiment.

The fourth remark simply states that for a given set
of differential cross sections at a given set of angles with
a given set of errors, if the errors are all multiplied by n
the error on the coupling constant will also be multiplied
by e. This plausible result follows immediately from the
method of least squares. "

In conclusion we give some illustrations of the
accuracy that can be obtained from the present method
in determining the coupling constant. Let us consider
for this purpose a set of measurements of the differential
cross section at every five degrees from 0' up to and
including 30', and at every 10' thereafter up to and
including 180'. Let us assume that the absolute
normalization of these data is known with infinite
accuracy. (From what has been said above, a deviation
from this assumption introduces only a trivial modifica-
tion in the results to be quoted below. ) Let us also
assume that the relative errors on these differential
cross sections are all 1%. Then the coupling constant,
f', will be determined at 260 Mev with an absolute
error of about 0.006, at 400 Mev with an error of about
0.003, and at 500 Mev with an error of about 0.001.

Since this illustrative set of experiments is by no
means outside the realm of possibilities, we are confident
that our method will soon result in a quite accurate
determination of the pion-nucleon coupling constant.
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