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on rare occasions, be an essentially impenetrable barrier
for low-energy cosmic-ray particles. It is quite possible
these conditions at the source would change with solar
activity cycle to account for the effect found by Firor4
near the minimum of cycle.

Additional investigation of this problem during the
approaching period of lower solar activity is required.
In particular, it would be desirable to study the hard
component as well as the nucleonic component of

cosmic radiation so that the diurnal e6ects and Rare
e8ect may be more eGectively separated.
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Nucleon-Antinucleon Scattering*
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By use of the model of the nucleon-antinucleon interaction proposed by Ball and Chew, a calculation of
the complex phase shifts at 50 and 260 Mev has been made. The values of annihilation, elastic-scattering, and
charge-exchange cross sections, and the angular distributions for p-P and p-e elastic scattering are obtained.
A comparison with the experimental data shows reasonable agreement. Finally, the parameters of an optical-
model potential for antinucleon interaction with complex nuclei are presented.

A MODEL of the nucleon-antinucleon interaction
at intermediate energies has been presented re-

cently by Ball and Chew' (hereafter referred to as I).
They used the Gartenhaus' and Signell and Marshak'
potentials, with a "black central hole" to account for
the annihilation, and their WEB calculation of the
cross sections and angular distributions' at 140 Mev
has proved to be in good agreement with experiment.

In view of this success we have extended the calcula-
tion to 50 and 260 Mev, to cover the range where ex-
perimental data have become available. ' We have
assumed that these two energies are the extreme points
between which the model should be reasonably valid.
At higher energies the details of the annihilation
boundary condition become more important and a
partial penetration of the higher waves can be expected,
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FIG. 1.N fi cross sections as a fu-nction of energy. (The charge-
exchange cross sections of Coombes, Cork, Galbraith, Lambertson,
and Wenzel have been modi6ed according to what it is proposed
jn their paper. )

increasing the annihilation cross section. At energies
lower than 50 Mev the wavelength of the incident
particle becomes of the same order as the wavelength
associated with the barrier and the WEB method of
calculation breaks down.

The transmission coeKcients and the real phase
shifts are given in Table I.

We have modified the singlet-isotopic-spin, singlet-
spin potential by cutting oB the large repulsive central
region; since this potential produces an unphysical
bound state in the E-E system. ' For this reason, the
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TABLE I. Phase shifts (S) and transmission coefficients
(T= 1—1V).

A comparison with the experimental data available
up to now is shown in Fig. 1. The agreement is fairly
good, except for the value of the theoretical annihila-
tion cross section at 260 Mev, which seems to be too
small. However, by allowing partial transmission of the
most strongly attractive effective potentials one may
obtain larger values of this cross section. Various
possible modifications and their results are shown in
Table III.

The angular distributions are plotted in Figs. 2 to 7.
For their calculation we have used the method de-
scribed in reference 4. A comparison with the experi-
mental data at 133 and 265 Mev is also given.

The general agreement of the theory with experiment
in this energy range seems reasonably good in view of
the crude nature of the potential description of the
cV-X interaction and the approximations made in our
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'50' transmission coe%cient at 140 Mev has been
changed from that given in I, and is now consistent
with the values at 50 and 260 Mev. This state is of such
a small statistical weight that the change in the cross
sections is negligible.

The total annihilation and scattering cross sections
are given in Table II.

TAnLz II. Cross sections (mb) for nucleon-antinucleon
interactions at different energies.
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FIG. 2. Differential scattering cross sections in the c.m. sys-
tem for p-P (neglecting Coulomb scattering) and fI mat E~-,b=50 Mev.
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P-P P-'fg
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~ ~ ~
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TABLE III. The effect of partial transmission on p-p
scattering at 260 Mev.
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FIG. 3. Differential scattering cross sections (in the c.m.
system') of p-I and A-p at EI b=50 Mev.
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calculations. Our main conclusion is that no long-range
annihilation interaction is required by the existing
experimental facts; the ordinary pion-exchange force
appears to be suKciently attractive on the average to
produce the observed annihilation cross sections at
intermediate energies. It is also reassuring that this
model leads to only a small charge-exchange cross
section, as required by experiment. In fact, one may say
that in its predictions our model behaves not too dif-

ferently from a black absorbing sphere of radius ap-
proximately equal to the pion Compton wavelength.
That it should do so, however, appears to be an acci-
dent, following from the detailed nature of the pion-
exchange force.
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OPTICAL-MODEL POTENTIAL

An optical model for the scattering of nucleons by
nuclei has been proposed and developed by many

I
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FIG. 6. Differential scattering cross section (in the c.m. system)
of fI-p (neglecting Coulomb scattering) and n nat E«b=26-0
Mev. Experimental data obtained by Coombes, Cork, Galbraith,
Lambertson, and Wenzel.
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Fro. 4. Diiferential scattering cross section (in the c.m. system)
of p-p (neglecting Coulomb scattering) and n eat E«b=140-
Mev. Experimental data obtained by Coombes, Cork, Galbraith,
I ambertson, and Wenzel.

35 '
I

' ' I
' '

I
' '

I
' '

I Fro. 7. Differential scattering cross sections (in the c.m. system)
of p-e and 5-p at E~,q= 260 Mev.
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authors. '~ To apply it to the antinucleon-nucleus
system we have followed the method of Riesenfeld and
Watson, ~ suitably modified to account for the annihila-
tion process.

The optical-model potential is then given (in units
where )s= c=p= 1, and p is the a.-meson mass) by

1dp
V,r b(X) = —[VCS+i VCrjp (&)+[frSrr+i VSrj —(O' 1), —

x dg
where
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FIG. 5. Differential scattering cross sections (in the c.m. system)
of p-e and n-p at E~,I,=140 Mev.

' Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).
7 W. B. Riesenfeld and K. M. Watson, Phys. Rev. 102, 1157

(1956). This paper contains a more complete list of references
about the optical model.
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QR (Mev}

Vcs (Mev)
VSR (Mev)
Vsr (Mev)
Voi (Mev)

50

—0.66
3.5—4.2

64

140

—12.1.

29
1.7

77

260

—14.8
5.4—1.2

84

TABLE IV. Optical-model potential depths for X=0.8571. mass system; X and Io(x) are defined in reference 7, and
R is the amplitude of the rejected partial wave
LR= (1—&)'*].

In these expressions 0 is the effective antinucleon-
nucleon cross section given by

1 1

&eD'(0)]= 2 2 2 (2I+1)
32k r=o s=o s, ~

&& (21+1)sRz Ii sin(2 spy Ii)

3 k 30.
Iml f(o)]=-

Sf&~ M 4~&3

fl sR+iVsI] fl(0),
MX' 4k'

1 1

fi(0) = Q Q (2I+1)(2J+1)
321k r=o ~, i, s=1

X f L1—'Rz, I=z «p(2i '&z, I=z )]
—(J—1)[1—~Rg, I g I exp(2i 8g I g I )]

+(J+2)L1—'Rj, I—J+I exp(2i '5J I—J'+I )]),
k being the antinucleon momentum in the center-of-

where y is a factor that takes into account the effect
of the Pauli principle upon nucleons inside the nucleus.
This effect tends to forbid collisions with small mo-
mentum transfer, thereby decreasing the scattering in
the forward direction.

A calculation of the y factor has been performed
considering a Fermi gas model of the nucleus and an
E Xdiffe-rential scattering cross section of the form

kiddo. (0)/dQ]= K+L cosg+3I cos'() which fits the meas-
ured angular distributions fairly well in the energy
range considered here. ' The results are shown in
Table IV. Using these potentials, Fernbach et ul. are
now carrying out an optical-model calculation of the
scattering of antiprotons from several light nuclei.
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The asymmetry of neutrons produced by bombardment of C, Al, Cu, and Pb by 143-Mev polarized
protons, at angles 20' to 70, has been measured. The asymmetry is almost independent of target element
but is inconsistent with that from a free p-n collision. The mechanism for the process is discussed.

INTRODUCTION

'HE (p,n) reaction producing neutrons by proton
bombardment of nuclei is primarily of interest

as a source of neutrons from high-energy cyclotrons.
It has usually been assumed that the process is an
elementary collision with a neutron inside the nucleus.
Early work on the polarization of the neutron' was
consistent with this view. If this is indeed the case then
the relation, which holds for elastic scattering, con-
necting the asymmetry of the outgoing neutrons from
a polarized proton beam to the polarization of the
neutrons from an unpolarized beam should still hold;

* Supported by the OKce of Naval Research.
f Now at Atomics International, Canoga Park, California.
R. G. P. Voss and R. Wilson, Phil. Mag. 1, 175 (1956).

this relation is e=I'1I'2. Thus it should be possible to
compare directly the polarizations previously meas-
ured' ' with asymmetries. Roberts, Tinlot, and Hafner'
and later Bradner and Donaldson4 showed a deviation
from the simple picture. They found a large asymmetry
in the (e,p) reaction on carbon by polarized neutrons
at 150 Mev, at 45 lab, of a sign opposite to the free
m-p scattering. Stafford, Tournabene, and Whitehead'
confirmed this by measuring the polarization of neu-
trons produced in the (p,n) reaction at 160 Mev. It is
the purpose of this paper to extend this work by

2 Stafford, Tournabene, and Whitehead, Phys. Rev. 106, 831
(1957).

3 Roberts, Tinlot, and Hafner, Phys. Rev. 95, 1099 (1954).
4 H. Bradner and R. Donaldson, Phys. Rev. 99, 890, 892 (1955).


