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A discussion is given of the theory of 8-y correlations in the unique and nonunique first forbidden transi-
tion. In particular, numerical results are presented for the Coulomb corrections to the 8-y directional
correlation and transverse 8 polarization—vy correlation. The energy dependence of the contribution associ-
ated with violation of time-reversal invariance is given.

INTRODUCTION

T is the purpose of this article to show what kind of
information can be obtained from various 8-y cor-
relation and transverse polarization experiments. In
particular, the Coulomb corrections are given for these
processes. Some features of the 8-y directional correla-
tion were discussed many years ago! while the parity
nonconserving processes have been discussed by Alder,
Stech, and Winther,? Curtis and Lewis,®> and Morita
and Morita,* and by the present authors.? The Coulomb
corrections have been independently investigated by
Iben.t
We shall discuss the first forbidden g-decay transition
probability in terms of an expanison in powers of p, the
nuclear radius. (Actually the lepton wave functions are
expanded.) The orders of magnitude of successive
terms in this expansion are as follows:

Allowed transition:

14+aZp+- -, (1a)

Nonunique first forbidden:

aZN\? faZ
(m) +(-—~)+1+aZp+- )
2p 2p

Unique first forbidden:
14+aZp+---.

(1b)

(1)

Here p is in units of electron Compton wavelengths, so
these expansions converge rapidly. According to the
usual definitions, the second term in any of the expan-
sions (1) will include contributions of “higher forbidden-
ness.”” Thus in (1a) the aZp term involves allowed and
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second forbidden contributions.® The second and per-
haps higher terms become of interest if the first term
in the expansion is unusually small due to small nuclear
matrix elements (e.g., I-forbiddenness in the allowed
transition), if the energy of the decay is very high, or
simply if a very accurate experiment is performed. A
high-energy decay causes difficulty because successive
terms in the expansion generally involve one higher
power of Wy, the end-point energy, in units of the
electron rest energy.

The second term in the expansion for the allowed
transition (la) and nonunique transition (1b) also
contains the first nonzero contributions to the B-y
directional correlation and transverse 8 polarizations.
The magnitude of these contributions yields information
about the rapidity of convergence of the expansions
and about nuclear matrix elements.

In this article, we confine ourselves to the leading
term in the expansion (1) which contributes to an
observable. We will include, however, all Coulomb
corrections and nuclear finite size effects. This approxi-
mation is seen to be somewhat better for the allowed
and unique transitions than for the nonunique. Indeed,
because of the structure of the expressions in the latter
cases, we must also keep in mind the possibility of
cancellation of nuclear matrix elements in the leading
terms.

We shall assume that the (local) ¥V and A4 inter-
actions® and the two-component theory of the neutrino,
Cy=Cy' and C4=C4',* characterize the 8 decay.

THE NONUNIQUE TRANSITION

In a previous Letter" we discussed the accuracy and
utility of the “£ approximation” for the nonunique first
forbidden transition. In the & approximation only the
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TaBLE I. The numerical coefficient for the B-y correlation: § is the ratio of the matrix element for the electric quadrupole transition
to that for the magnetic dipole transition, Ao= (148271, A= (1+2v36—52)Ao, Az=(142V35/5+26%) A0, As= (1-+106/V3—582/21)A,,
A= (14-25/v3+138%/27)A¢. See Eq. (8) for the definition of Gy (%).

Jo J1 Ja Go2(2) G11(2) G12(2) Go(1) Gu(l) Examples
0 1 0 0 —Ao/A/6 0 —Ao/V2 sCel (?)
‘% % % 0 —A1/2\/6 A1/2\/10 0 —5A2/6\[2 49111“7
b 3 3 AY24/5 (38 A,/5V2 —342(5/3)  —As/3V2  1Au®
% % % 0 — Ay 10‘\/6 —'11—0A1(7/6)§ 0 Az/Z\/i SOHg203 (?)
1 2 0 0 1/24/6 —1/24/6 0 —1/2v2 69 Tm!1"
2 20 —(1/14)%  —1/27/6  —1/24/14  —1/3/6  —1/6VI  1,CB8 K2, ;oPri® o Auis
3 T % —3AB/35) —A(BYT  —Ay/T/10 —3A4/2¢/T —A/TVZ  5Ce
leading term for any observable is kept in the expansion  using the substitution:
(1b) in descending powers of é=aZ/2p.
In this approximation the energy spectrum has the CrMx—nV, .
allowed shape. The shape correction factor is Calor— Y. ()

(2)

where ¥V and YV represent certain combinations of
nuclear parameters:

V= ¢"v+28wo(14v1)7,

CM)=|V]+[Y[3

3)
V'=£yo— 28 uo(1)+x0(1) JA+v1) 7,

where v;=[k?— (aZ)*]}, and the subsidiary nuclear
parameters have the significance:

77=—Cver(-2), nw0=CAf(r-rR(1),

5,771)0=CAf7:’YER<—1), 17%0(1)=CAf1:0‘X1'R(1), (4)

E'my0=—Cy f iaR(—1), muo(1)=—Cy f eR(1).

These parameters can all be taken as real if there is
time reversal invariance. The energy independent
quantity R(k) entering in the matrix element accounts
for finite nuclear size effects’ (x is an electron angular
momentum quantum number). The parameters
%o, * ,¥o are defined so that they may be of order
unity. One of the interesting unsolved problems of
forbidden B8 decay is to determine the magnitude of the
parameter § relating the relativistic to the non-
relativistic matrix elements. 112

Certain other observables in the nonunique decay
depend just on these same parameters V" and V. It can
be shown that for every observable of the type that
normally occurs in the allowed transition [i.e., that
occurs in the leading term of (1a)], the expression for
the same quantity in the nonunique first forbidden
transition can be obtained in the & approximation by

12 See Sec. 3A of reference 5.
18 Crudely perhaps, §=¢'. It is however, indicated in reference
11 that this relation probably does not hold for low Z.

For these observables, as in the allowed transition,
there are then no Coulomb corrections. In (5), Cr, M,
Cqer, and Mgr are coupling constants and matrix
elements for the Fermi and Gamow-Teller transitions,
respectively. Thus, for example, the measurement of
circular ¥ polarization—@ correlation is defined by

N(R)—N(L)

Py=—
N(L)+N(R)

=w(p/W) cosf, (6)

where N (R) and N (L) are the numbers of vy rays with
right and left circular polarization, respectively. Here
p and W are momentum and energy of the 8 ray,
respectively. w depends on the relative magnitude of
V and V. We have, in the ¢ approximation,

w=[2Gn(1) Re(VY*)—V2G, (1) |V |ZJC(W)~1. (7)

Here C(W) is given by (2), and, for the transition
Jo—(B) = J1— (v) =T,

G (1) = (— D)I=20W (JL TN 5 1T o) (2T 14 1)}
X[ oo (=) F L (LL T oJ 1)61*61,/2 1] 61] %],

where

F.(LL J2J1)
= (=171 2] +1)2L+1) (2L +1)
XC(LL'n, 1= V)W (J1J1LL' ; nJ>).
The F coefficients, F,(LL',J.J1), are tabulated by
Alder, Stech, and Winther.? The §.,s are reduced
matrix elements for 2Z-pole y-ray emission.} Numerical

values of Gy () are listed in Table I for some 8 decays.
Similarly, the longitudinal 8~ polarization with or

®)

4 F, Boehm and A. Wapstra, Phys. Rev. 109, 456 (1958).

I Note added in proof—Concerning the definition of 8, a sign
ambiguity is pointed out by Biedenharn and Rose [Sec. II-F of
their paper, Revs. Modern Phys. 25, 729 (1953)]. We define the
reduced matrix element for the y-ray transition from the J; to J,
states as follows:

o= (J4||L||J2),

8=06r41/6L.

and the ratio 8 is
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TaBiE II. A; as function of Z and electron momentum p. The
units are Z=m,=c=1. The nuclear radius is taken to be p=1.14
X10784% cm. The values of 4 used were 43, 93, 148, 200, and
258, respectively. The same numbers apply to electron and
positron decay. If a different nuclear radius is used, all the
numbers in any column should be multiplied by a constant
according to Eq. (14). The change would be very unimportant.

B
N
1N
S
N
5
o
S

80 100
0.3 1.173 1.592 2.013 2.191 1.926
0.4 1.078 1.265 1.440 1.470 1.248
0.5 1.035 1.117 1.177 1.140 0.935
0.6 1.012 1.038 1.037 0.963 0.769
0.7 0.998 0.991 0.953 0.859 0.670
0.8 0.990 0.962 0.901 0.793 0.609
0.9 0.985 0.943 0.867 0.750 0.568
1.0 0.981 0.930 0.845 0.721 0.542
1.2 0.977 0.915 0.818 0.687 0.511
14 0.974 0.908 0.805 0.671 0.498
1.6 0.973 0.904 0.799 0.664 0.494
1.8 0.973 0.903 0.797 0.663 0.495
2.0 0.973 0.902 0.797 0.664 0.499
2.2 0.973 0.903 0.798 0.668 0.505
2.4 0.973 0.904 0.801 0.672 0.512
2.6 0.973 0.905 0.803 0.677 0.520
2.8 0.974 0.907 0.807 0.683 0.528
3.0 0.974 0.908 0.810 0.688 0.536
3.5 0.975 0.912 0.818 0.703 0.558
4.0 0.976 0916  0.827 0.717 0.579
4.5 0.977 0.920 0.835 0.731 0.599
5.0 0.978 0.923 0.843 0.745 0.619
6.0 0.980 0.930 0.857 0.769 0.656
7.0 0.981 0.936 0.870 0.792 0.690
8.0 0.982 0.941 0.881 0.812 0.722
9.0 0.984 0.945 0.891 0.831 0.751

without a y-ray coincidence, P or Py, in the £ approxi-
mation is seen by (5) to be

PrM=—p/W. 9

Angular dependence between 8 and vy enters to an
order 1/¢ smaller than this, as does different energy
dependence.

The B-y correlations which are very small (aZp)
corrections in the allowed transition occur as small
(i.e., 1/£) effects in the nonunique first forbidden transi-

NNN N
nuwu n

Z=100

F16. 1. \s as a function of Z and electron energy W. The units are
#=m,=c=1. Negative values of Z apply to positron decay.
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tion. In the latter case, in the £ approximation, the
B-v directional correlation has the form

N=14¢(3 cos¥0—1), (10)
where®
#\ R W\ Is
e=7\2(—)——[1+aZ(———-)—]. (11)
w7Ccw) Phe/ Ry

The A/s here, and in (21) and (22) below, contain
Coulomb corrections of order («ZW/p). If these are
neglected, \;=1. In particular,

Na=M#4[cos (—0:)+y sin(0:—6,)/ (va+27)],  (12)
and
Ns=4A2A[y~ sin(02—01) — cos(0:—01)/ (va+2v1) ], (13)
where

M= Q2+72)F1(Z,W)/2(1+v)Fo(Z,W)

(242 12T (14-2v1) \ 2
=———(2pp)*re-—m-D (—
2(1++1) T(1+42y,)
T 1y) |2
)———(”w) . (19)
T(yi+y)
A=3@+v2—71) 24+2v1)}2+v2) 7, 1)
0 =argl (vi+iy)+3w(ve—k),
and
y=aZW/p. (16)

Numerical values for A\; and A, are presented in Tables
II and IIT, respectively. Curves for A\; have been given
by Davidson'® [the actual numbers shown by him
differ from ours because the size of the nucleus has
changed, and he made an (aZ)® approximation].
Curves for A, are given in Fig. 1, and for WA3/pA; in
Fig. 2.

In Eq. (11), R; and I3 are energy-independent
quantities. If the time-reversal assumption is correct
for the weak interaction, I3 vanishes. The detailed
expressions are

M= (3)HGoa(2)[20(—=2)V]*
—2Gu(2)[(1—3uo(—2))V*]}

—Gu(2)[z(—2)Y*], (17)

Ry=ReM;, I;=3%ImM;, (18)

where Gy (n) was defined in (8). Some numerical
values of Gy (2) are listed in Table I. It is seen that to
describe ¢ we need two more matrix element ratio

15 J, Davidson, Phys. Rev. 82, 48 (1951).
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TaBLE III. A; as a function of Z and electron momentum p. See caption of Table II for units.
The negative Z values apply to positron decay.
z 20 40 60 80 100 —20 —40 —60 —80 —100
A
k 43 93 148 200 258 38 90 143 199 256
0.3 1.022 1.068 1.088 1.018 0.763 1.028 1.117 1.247 1.386 1.467
04 0.999 0.986 0.931 0.797 0.532 1.003 1.024 1.054 1.081 1.067
0.5 0.989 0.950 0.863 0.705 0.440 0.993 0.981 0.966 0.943 0.883
0.6 0.984 0.932 0.830 0.661 0.398 0.987 0.960 0.920 0.869 0.786
0.7 0.981 0.922 0.812 0.637 0.377 0.984 0.947 0.893 0.826 0.729
0.8 0.980 0.917 0.802 0.625 0.367 0.982 0.939 0.877 0.799 0.694
0.9 0.979 0.913 0.796 0.618 0.362 0.981 0.935 0.867 0.783 0.671
1.0 0.978 0.911 0.793 0.615 0.361 0.980 0.931 0.860 0.772 0.657
1.2 0.977 0.910 0.791 0.614 0.362 0.979 0.928 0.853 0.760 0.642
14 0.977 0.910 0.791 0.616 0.366 0.979 0.927 0.851 0.756 0.636
1.6 0.977 0.910 0.794 0.620 0.372 0.979 0.927 0.851 0.756 0.636
1.8 0.977 0.911 0.796 0.624 0.377 0.979 0.928 0.852 0.757 0.638
2.0 0.978 0.913 0.798 0.628 0.383 0.980 0.929 0.853 0.760 0.643
2.2 0.978 0.914 0.801 0.633 0.388 0.980 0.930 0.855 0.763 0.648
24 0.978 0.915 0.803 0.637 0.394 0.980 0.931 0.857 0.767 0.653
2.6 0.978 0.916 0.806 0.641 0.399 0.980 0.932 0.860 0.771 0.659
2.8 0.979 0.917 0.809 0.645 0.403 0.980 0.933 0.862 0.775 0.664
3.0 0.979 0.918 0.811 0.649 0.408 0.981 0.934 0.864 0.778 0.670
3.5 0.980 0.921 0.817 0.658 0.419 0.982 0.936 0.869 0.788 0.684
4.0 0.981 0.924 0.822 0.666 0.429 0.983 0.939 0.874 0.796 0.698
4.5 0.981 0.926 0.826 0.674 0.437 0.983 0.941 0.879 0.805 0.710
5.0 0.982 0.928 0.831 0.681 0.445 0.984 0.943 0.883 0.812 0.722
6.0 0.983 0.931 0.839 0.693 0.460 0.985 0.946 0.891 0.826 0.744
7.0 0.983 0.934 0.845 0.703 0.472 0.986 0.950 0.898 0.838 0.763
8.0 0.984 0.937 0.851 0.713 0.483 0.986 0.952 0.904 0.849 0.781
9.0 0.985 0.939 0.856 0.721 0.493 0.986 0.954 0.909 0.859 0.797

parameters, in addition to V and Y,

50(—2)=11Cx f BuR(—2), (19)

%0(—‘2)=7]_ICAf1:0'xrR(_2). (20)

The transverse 3 polarization in the plane of 8 and ¥
(in the direction [p.Xpy ]Xp.) is*®

Pry=—% sinf coshe{ —

C(W)

Whq
X[l—}—%aZ(
Phe
and the transverse 8 polarization perpendicular to the
plane of 8 and v (in the direction p.Xp,) is'®

4

p Rs
Pr=(9/8)aZ sinb cosG)\s— —_—
cw)

WXo\ I3
X [1+%aZ(———)—:|. (22)
PAs / Rs

16In the case of very low Z nuclei, where this leading term
becomes fairly small because of the coefficient «Z, it may be
necessary to look for the (1/%) correction terms which have no
aZ coefficient. This additional contribution to Pri among many

other terms is
sing cosdho(p2/W)[L/C(W)],

Here, in both expressions, R3 and I3 are the same as in
¢, (11), and C(W) is as in (2). Also,

Ne=M[ (yat+1+v1)/(B+ve—v1) 14 cos(6:—61) (23)

and

As=4L (vitvet+3)/ A+7) A+71i+H72) Des.

A is plotted in Fig. 3. The Coulomb coefficients of the
time reversal violating term are essentially the same in
(21) and (22). That is,

W)\7/P)\6= W)\g/p)\g= tan(ﬂz—()l)/aZ.

(24)

(25)
This quantity is shown in Fig. 4.

Fic. 2. WX3/prs as a
function of Z and W.

Z=-80

where,
o= 6A1#4 (14-v1)1(2y1+1)"[v1 cos(B2—6:)+y sin(6:—61)].

I,/C(W) is of order of less than (1/£)? (see Sec. 4 of reference 5)
and vanishes, if time reversed assumption is correct.?
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F16. 3. N\¢ as a function of
Zand W.

THE UNIQUE TRANSITION
The energy shape correction factor is
C(W)=1/12[¢*| 20(—1) |24 p*A1] 20(—2) | 2],

where ¢ is the neutrino momentum (¢=W,—W), and

(26)

so(—1) =n1Cs f BuR(—1), @)

and A is defined in Eq. (14) and tabulated in Table II.
The difference between zo(—2) [Eq. (19)7] and z,(—1)
should be very slight.!” The more commonly given
expression for C,'8

C=(*Lo+9L)[6(14+v1) 1, (28)

differs from (26), in that certain aZp terms [see expan-
sion (1c)] are retained in (28). Terms of order aZp due
to higher forbidden contributions and finite nuclear
size effects are not retained in (28), however, so there
is little to choose between (26) and (28). This is just
to say that the accuracy of (26) is the same as that of
the ordinary allowed transition expression.

Letting zo(—1)=20(—2), the B-y correlations in the
unique first forbidden transition are, briefly,®

PLV=—p/W,
e=—(2)!Gu(2)pPN/ (¢+p™\),
(54301 Gaa(1) — 3N (5 cosi—3)Gas(3)
T et o—n]

(29)
(30)

(31)

There are no transverse 8 polarization—y correlations
in the unique forbidden transitions.

DISCUSSION

As far as general properties of the B decay are
concerned, in principle, a test of time reversal invariance

17 See Sec. 3D of reference 5. According to Sec. 3A of reference
5, and the results of Matumoto and Yamada, Progr. Theoret.
Phys. 19, 285 (1958),

[20(—=2) =20 (= 1) ]/2o(—= D= {L(R(—2)—R(—= 1) V/R(—1)}r=p
~0.04(aZ)?
for a uniform distribution of charge in the nucleus.
18 M. E. Rose, in Beta and Gamma-Ray Spectroscopy, edited by
K. Siegbahn (Interscience Publishers, Inc., New York, 1955),
p. 884.
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F1c. 4. W1/ pNe
=Wh¢/prs as a function
of Z and W. For any Z
in the case of positron
decay, the curve lies very
close to the Z=0 curve.

of the 8 interaction can be made by searching for the 73
term in the nonunique decay. A careful energy-
dependence measurement is needed to distinguish the
two terms R; and /3. From Fig. 2 it is seen that the
difference in energy dependence of the two terms is not
large, in the B-y directional correlation. The situation
is more favorable in the case of transverse polarization,
Fig. 4. This experiment is, however, much more difficult
than the directional correlation. In either case, even
if there is no deviation from the energy dependence of
the first term, namely, A2 (p%/W) for € or Xs(p/W) for
either Pry or Py, limits on the accuracy of time-
reversal invariance could not be deduced without some
information about the unknown nuclear parameters.
This is true because I3 involves a different nuclear
parameter combination than R;. Therefore many ac-
curate experiments for various quantities in the same
decay would have to be done to get some relations
among the involved unknown nuclear parameters, as
discussed below. If there is a different energy depend-
ence than Ay (p?/W) for € or \s(p/W) for the transverse
polarization of the 8 ray, it would have to be shown
that contributions from the term of order unity in
(1b), like R3"” in (33) below, could not be responsible.
It seems that these measurements do not offer a
possibility for a clear cut check of time reversal
invariance.

Up to the present time, it has not been possible to
determine nuclear matrix elements reliably in the non-
unique decay. For the study of nuclear matrix elements
it is convenient to consider the four parameters V, ¥,
2o, and #o(—2). In the £ approximation, the ratio V/¥
can be determined from observables of the type that
occur in the allowed transition. Thus the circular y-ray
polarization, Eq. (7), yields a quadratic expression in
V/Y. Measurement of the B-» correlation by means of
resonance fluorescent scattering of the ¥ would be
useful to fix the quantity V/Y. The theoretical expres-
sion for this process may be obtained by the substitution
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of (5) in the allowed transition expression.’® Other B~y
correlations discussed here involve the combination R;
(and also I3). Clearly, measurements that can be
wholly described within the ¢ approximation will not
yield enough information to determine simple matrix
element ratios. Such measurements can be used, how-
ever, to determine spins, and in special cases we may
obtain Jimited information about matrix elements. In
a 0-1 B decay, for example, zo(x) and V vanish. Measure-
ment of the B~y directional correlation would yield a
value for Re{[[1—3u,(—2)]V*}/| V|2 In this case the
circular polarization coefficient is just w=—V2G;(1),
depending only on the mixing of different multipole
v rays. In a $-3 8 decay, the quantity

Re{[1—3uo(—2)JV*}/| V|2

could be deduced by combining measurements of these
two quantities since (k) =0.

The situation becomes more promising if, in addition,
deviations from the & approximation or lack of them
can be measured for the same decay. As illustration,
we note that very accurate measurements of the
deviation or its lack from the allowed shape energy
spectrum, give values for, or upper limits on, the
constants, a, b, and ¢,® defined by

C(W)=k[1+aW+ (b/W)+cW2].

The constants, @, b, and ¢, are functions of unknown nu-
clear parameters. The ¢ and b arise from the &-order term
of (1b) and so should be of order 1/¢ for heavy nuclei.?
(In a case where ¢ and & are comparable with unity,
like RaE, the expressions in this paper are not sufficient.)
By including the next term of the & expansion, the B~y
directional correlation coefficient has the form?®

(32)

P Rs
e=>\2—
W Cc(w)

Wiz I3
[1+aZ *+R3’+WR3”], (33)
PAe R3

where R; and R;” are energy independent to order
(aZW /p)? and are of order 1/¢ C(W) must be defined
by (32). Here some 1/¢ terms are neglected, which
vanish if time reversal invariance is correct. In addition,

S, B. Treiman, Phys. Rev. 110, 448 (1958); Frauenfelder’
Jackson, and Wyld, Phys. Rev. 110, 451 (1958); R. R. Lewis and
R. B. Curtis, Phys. Rev. 110, 910 (1958); Morita, Morita, and
Yamada, Phys. Rev. 111, 237 (1958); M. Morita and R. S. Morita
Phys. Rev. 111, 1130 (1958); C. C. Bouchiat, Phys. Rev. 112,
877 (1958).

2 The measurement of longitudinal polarization of the v ray
can help to check the numerical values of ¢ and b as discussed in
references 5 and 11.
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one can, in principle at least, look for deviations from:
(1) the p/W energy dependence in longitudinal polariza-
tion [see Eq. (3-20) of reference 5], (2) isotropy in the
longitudinally polarized 8-y correlation [see Eq. (4-20)
of reference 5], (3) p/W energy dependence in the
circularly polarized ¥-8 correlation [see Eq. (4-18) of
reference 5, or (4) As(p/W) energy dependence of Py,
or Pr; [where expressions similar to (33) apply].

Let us consider the simplest case, a 0-1 8 decay.
Here we introduced the two nuclear matrix element
parameters ¥ and #,(—2). When we examine deviations
from the £ approximation, we find that other parameters
such as #o(1) and ueo(—1) occur explicitly.® These
parameters differ only in the finite size effect function,
R(x). It would seem a reasonable procedure to calculate
R(x) for a particular charge distribution and then to
assume approximate relations between the various
u(x), ¥(k), and x(x) that occur.?! If this is done we will
have two parameters, say ¥ and #. Measurement of the
B~y directional correlation, e (and thus Rj), gives us
one relation. Measurement, then, of one of the devia-
tions from the & approximation such as e of (32) or
R of (33) would suffice in principle to determine the
nuclear matrix elements (the parameter 9 is fixed by
the ft value). In this discussion we have ignored the
case of no time-reversal invariance. In that case we
would have one additional parameter.

In other B decays, we must consider more nuclear
parameters. The problem of determining them experi-
mentally is similar, but correspondingly more difficult.

In this article the two-component theory of the
neutrino has been assumed. To remove this assumption,
the following changes should be made: C,C;/*— 3K,;
=1(C.C;#+C/C{*) in the expressions for C, ¢, and Pr,,
and Cij*—>%L,-jz%(cicj'*—i—ci'c,-*) for P»,, _PL'Y, and
Py, where ¢ and 7 stand for either V or 4.

All the results in this article are shown for the g~
decay. The corresponding expressions for the 8+ decay
are obtained by making transformations: (Z,P.,,Pr,
PL'Y,CA,Cv)—) (—Z,—P’y,—PT”,—PL'Y,—*—CA*,"‘Cv*). If
the two-component theory of the neutrino is not
assumed, the transformation is (Z,Ku,Ly)— (—Z,
+K;*,FLji*), where the upper sign applies to the case
with =7 and the lower sign to 75%;.
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