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for decay to the ground state of Crs, is less than 0.1%%uz.

This )imit is an order of magnitude smaller than the
best previous experimental limits. It is not, however,
inconsistent with current descriptions of helium burning.

A limit on I' can be used as a basis for a choice
between the 0+ and 2+ assignments if the partial widths
for the various decay processes can be estimated with
su%.cient accuracy. Previous estimates by Rasmussen, "
CFLL,' and Salpeter' indicate that for a 0+ state I' is
probably of the order of 10 'or 10 ', while for a 2+state
transitions to the ground state should be comparable to,
or predominate over, alpha decays. It was therefore
concluded by CFLL, from an experimental upper limit
on I' of about 10 ', that the state is very probably 0+.

A 2+ assignment, however, could not be completely
ruled out due to the uncertainties in the theoretical
estimates of the decay rates. The present limit makes it
still more unlikely that the state is 2+ and this, together
with the angular distribution results, strengthens the
0+ assignment.
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The penetration factor for spontaneous 6ssion has been calculated from the liquid-drop model. The
transformation of the Gamow integral over the nucleon coordinates into an integral over the deformation
parameters u has been carried out hydrodynamically, assuming irrotational motion. The transformation
requires evaluation of the kinetic energy in terms of u and a„. Series expansions are used for the kinetic
energy and for the potential energy of deformation. We have neglected all parameters but u2 and carried
the hydrodynamic calculations through terms in e&4. While the potential barrier is subject to several
uncertainties, it has nevertheless been possible to estimate the spontaneous 6ssion hindrance factor for
the highest Z elements. We find for Z=100 and Z'/A =39 that a 1-Mev increase in barrier height should
correspond to a 10'~-fold increase in the half-life. This result agrees closely with the empirical hindrance
factor formula deduced by Swiatecki from a correlation of fluctuations in half-lives with deviations of
ground-state masses from the semiempirical mass formula. We have included some details of both the
hydrodynamic and the electrostatic calculations.

1. INTRODUCTION

'HE successes and limitations of the liquid-drop
theory of nuclear fission are well known. In

addition to the qualitative explanation of the fission
process and the simple calculation of the energy released
in fission, the drop model has had reasonable success
in predicting approximate activation energies for
nuclides, such as the uranium isotopes, which are not
close to classical instability. "However, the variation
of the predicted activation energies with Z'jA is more

rapid than the variation indicated by measured

thresholds for photofission and neutron-induced fission.

The calculation of the activation energy is a difficult

and laborious problem requiring the determination of

*Based in part on work done by W, D. Foland in partial ful611-
ment of the requirements for the Ph. D. degree at the University
of Tennessee.

t Present address: University of Massachusetts, Amherst,
Massachusetts.

' Present, Reines, and Knipp, Phys. Rev. 70, 557 (j.946).' S. Frankel and N. Metropolis, Phys. Rev. 72, 914 (1941').

the potential energy in terms of the deformation
parameters for large deformations. It is not surprising
that the drop model should give a good account of
these essentially classical aspects of the fission process.

The possible occurrence of spontaneous fission as a
quantum-mechanical tunnel eGect was first suggested
by Bohr and Wheeler, ' who made, however, no attempt
at a detailed calculation. In order to evaluate the half-
life, the integral appearing in the exponent of the
penetration factor, which is a multiple integral over the
nucleon coordinates, must be transformed into an
integral over the deformation parameters of the drop.
The transformation can be carried out if one assumes
that the motion of the nucleons during the deformation
process can be represented as an irrotational flow of
an ideal incompressible Quid along classical streamlines.
The first attempt at such a calculation led to unsatis-
factory results'; a later attempt, while more successful,

». Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).
4 F. Reines, doctoral thesis, New York University, December

1943 (unpublished); see also reference 1.
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was based on an incomplete analysis of the hydro-
dynamics of the deformation process. '

It may seem an unwarranted extension of the drop
model to employ classical hydrodynamics in the
treatment of an eGect so intrinsically quantum-
mechanical as barrier penetration. Justification rests
on the circumstance that the exponent of the penetra-
tion factor is related directly to the characteristic
action function of classical mechanics and can therefore
be calculated classically. The further assumption of an
irrotational Qow is justified by the fact that it leads to
the greatest possible penetration factor for a given
barrier. Since the potential energy terms of the liquid-
drop model determine the barrier to be penetrated, it
is then possible in principle to calculate the half-life
for spontaneous fission. Because of the sensitivity of
the exponential factor to slight variations of the
exponent, if the assumptions and approximations were
not reasonable ones, the answer could disagree with
experiment by many powers of ten. This type of
calculation therefore constitutes a severe test of the
liquid-drop model.

The present work is based on a more complete
analysis of the hydrodynamic problem than has hitherto
been given, but is restricted in two essential respects:
(1) only one deformation parameter, a&, is taken into
account (the surface of the drop is the locus r=Ep[1
+P a„P (cos8)] and (2) the kinetic and potential
energies are expanded in powers of a2. Both of these are
good assumptions if the nuclide in question has a
high enough Z to be close to classical instability.
Since instability sets in first with respect to second
harmonic (P2) deformations, the potential barrier for
such a nuclide will correspond to small values of a2 and
much smaller values of the other a„.The results will be
applied to fermium, which is the highest Z element for
which spontaneous fission half-lives have been measured.

2. THE PENETRATION FACTOR

The penetration factor is obtained from the solution
of the Schrodinger equation for a system of A nucleons
by means of the WEB approximation method. The
customary substitution

f=e' ii with S=Sp+(5/i)Si+(5/i)'Sp+ (1)
gives the successive orders of approximation, and it is
a familiar result that Sp satisfies the Hamilton-Jacobi
partial differential equation. The identification of So
with the characteristic action function makes it possible
to use Jacobi's form of this function for a parameterized
motion. of the particles: r, = r, (n) where n is a parameter
completely specifying the path of the system point in
configuration space. Thus

Sp ——f [2(E—V)]-:[Qm;(ds;/dn)']'*dn
'e

[2m*(E—V)]-'*dn, (2)

where V(n) is the potential energy and m*(n) is the

effective mass, which is related to the kinetic energy 2'

by T= —,'m*cP. Since the kinetic energy is a homogeneous
quadratic function of the velocities, the eGective mass
is independent of ci. The exponential part of the
first-order WEB wave function is then given by

exp ~— [2m*(E—V)]'dn, E)V

1
exp +— [2m*(V—E)]ldn, E(V.

A~

(3)

In the absence of a theory of barrier-penetration in
many dimensions (the WKH connection formulas hold
only for one-dimensional problems or three-dimensional
problems reducible to one dimension), we proceed by
analogy. The one-dimensional WEB functions take on
the same form as (3) if one replaces the particle co-
dinate x by the parameter e and the particle mass m

by the efkctive mass m*. We assume that the penetra-
tion factor for the present case can be obtained by
substituting m* for m and n for x in the formula for the
one-dimensional case. The desired formula for the
probability of penetrating the barrier is then

2 go.'2

P'= exp [2m*(V—E)]~dn,

where n~ and n2 are turning points marking the entrance
and exit of the barrier, respectively.

In the application of Eq. (4) to spontaneous fission,
the values of the parameter n specify a sequence of
shapes for the fissioning droplet. In the hyperspace of
the deformation parameters c„, defined in Sec. 1, the
system point follows a path defined by the relations
a =a (n). The barrier to be penetrated corresponds to
a potential energy surface in many dimensions, and
the largest possible penetration factor is obtained for the
functions a„(n) that characterize the saddle-point path.
The potential energy V(a„) is the sum of the Coulomb
and surface energies of deformation, calculated from
the liquid-drop model. In order to simplify our calcula-
tion, we neglect all deformation parameters except a~
and set n=ap. The barrier given by V(ap) ns ap is
theoretically too large since the saddle-point path is not
followed; an adjustment, to be described later, will be
made to compensate for this.

Many possible parameterized motions of the nucleons
are consistent with any given change in the droplet
surface —e.g. , with the sequence of shapes obtained by
varying a2. Of all these possible motions consistent with
a prescribed motion of the boundary, there is one
motion which minimizes the kinetic energy and this is
an irrotational motion of the particles along the
classical streamlines (Kelvin's theorem). The smallest
value of the effective mass and the largest value of the



H YD ROD YNAM I C THEORY OF SPON TAN EOUS F I SS ION 615

penetration factor are obtained by assuming an
irrotational Qow of the incompressible nuclear Quid.
The possibility of a classical calculation of V and of
m* rests, of course, on the fact that these quantities are
defined through the classical action function of Eq. (2).

3. HYDRODYNAMIC CALCULATION OF THE
EFFECTIVE gMSS

Since the eQ'ective mass can be obtained directly
from the kinetic energy, we shall take up next the
classical hydrodynamic calculation of the kinetic energy
of the Quid in the deforming droplet. The motions of the
Quid particles are described by a velocity held, which is
uniquely determined by the condition of irrotational
Qow and the boundary condition for the free liquid
surface. Because of the assumed incompressibility, the
velocity field v is solenoidal. Since v is also irrotational,
we introduce the velocity potential C. Thus

v(r, t) = 7'C (r, t),
724=0.

The changing surface of the deformed drop can be
represented as the locus: F(r, t) =0. Since a Quid

particle in the surface must remain in the surface

v V'F+BF/Bt=0, (6)

where v represents the velocity field at the surface.
The first term in (6) arises from the motion of the
Quid particles and the second from the changing
parameters of the surface. The general boundary
condition is then

V'C V'F+BF/Bt=0. (7)

We now assume that the drop has an axis of symmetry
along the s axis and represent the radius vector from
an origin at the center of the undeformed drop to an
arbitrary point on the deformed surface by the series of
I.egendre polynomials:

r=R(ti, t)= Rot1+ P a„(t)P—„(ti)g,
n=O

where LM
= cos0. Since the velocity potential is a harmonic

function, finite at the origin, we have

C'= Z b-(t)r"P-(()

Inserting F (r, t) = r —R(p, t) in Eq. (7), we obtain

where b,R is the increment in r resulting from the
change in a„(t) and boR is due to the change in the 8
coordinate of the particle. Evidently

5gR BE rBO BR BC
lim

St rB0 Bt rB8 rB0

6,R BE
lim

8t Bt

(12)

leading again to Eq. (10). It is convenient to set Ro= 1

in Eq. (8). Substitution of (8) and (9) into Eq. (10)
then gives

Q nb„R" '(p)P„(p) —P P a,b„R"—'(ti)Pii(p)P„'(p)

= + aiPi(t ) (13)

127 107
ao'+0 X ao'— (15)

3'X5'X7' 3'X3'X7'

Equation (13) becomes

where I'~' is the associated Legendre function and
di ——dai/dt. If we assume the deformation shapes to
have reflection symmetry about the equatorial (x,y)
plane, then R((I) and C(ti) will be even functions of p,

and the sums in Eqs. (8), (9), and (13) will be over the
even integers.

Equation (13), which provides the relation between
the deformation parameters a and the coe%cients b

of the velocity potential, can be solved by successive
approximations. If the deformation is specified by
certain nonvamshing a„, Eq. (13) can be used to obtain
the corresponding b to various orders of approximation
in the a„. Conversely, if the velocity field is specified
by certain nonvanishing b„, Eq. (13) can be used to
determine the corresponding deformation parameters
a„. We shall assume in the following that u„=0 for
e& 2; thus the deformation shapes are restricted to

r =R (ti) = 1+ao+aoPo (p),

where ao is adjusted to maintain constant volume.
If a2 is small, the condition for this is

aoo( 2 2
ao ————

~
1+ ao+0xao'+ C2

5 E 3y7 &X5X7

BC BE BE BC
+.

Br Bt rBO rBO
(10) P (Nb„R"—'(ti)P (p) —aob„R"—'(p)P, '(p)P„'(p))

n=2

=ao+aoPo(p). (16)
This simpler form of the boundary condition can be
obtained more directly by observing that the radial
component of velocity of a surface particle is given by

BC (8,R boR)
o„=—= lirn

(
+

ar o'~o ( bt bt )

Evidently the b„s are linear in i2 and successive
approximations for small a2 correspond to retaining
successively higher terms of the form a2 d2. The
zero-order solution of (16) is seen immediately to be

ho a/2, ob„=0 f——or ro) 2.
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The 6rst-order approximation is obtained by sub-
stituting

b2
——-', a2+p2" a2a2, b„=p„"a2d2 (I)2), (17)

in Eq. (16), neglecting terms of order a2 d2 and higher,
and expressing all powers of p in terms of Legendre
polynomials. The resulting equation is an identity in
which the coeS.cients of all the E„are separately
equal to zero. It is readily found that

27

where A is the mass number and m the mass of one
nucleon. ' Carrying the calculation of the effective mass
to fourth order (see Appendix 1), the following result
is obtained:

3 ) 9 134
m*=—mA

i 1+—a2 — aP —1.395225a~'
10 E 7 245

—0.171995., i. (23)

p2o) = p40) =-
2X7 2X~X7 This value of m*(a2) will be used in calculating the

„()=0 ~)4. 18

penetration factor.
The calculation of the higher order approximations

is somewhat lengthy and we have not gone beyond
fourth-order terms (see Appendix 1).The determination
of the b to terms in a24 makes it possible to calculate
the kinetic energy T also to the same approximation.
Since the mass density K is assumed to be uniform in
the liquid-drop model, the kinetic energy can be
written as

4. THE SURFACE AND COULOMB ENERGIES OF
DEFORMATION

The next step involves the determination of the
barrier represented by V(a2) vs a2 where V(a2) is the
sum of the surface and Coulomb energies ofdeformation.
Denoting the surface tension by 0, the surface energy
of the axially symmetric deformed drop is given by

T= ~K V-dz.
J U'=2Ã0 d)M r'[1/ (1—p') (dr/rdp)')& (24)

)) ~ R(p)

dp
Jo

=XK dP
J ~ 4o

dr r't [Q b„nr" 'P„(p)]'

dP "2

+(1—w') 2 b-»" '

Upon introducing (8) into (24) and expanding the
radical, the surface energy can be obtained as a power
series in the deformation parameters.

The electrostatic self-energy is

1
I

I' p1d»1p2d»2
Uc

~1 p B(P)

=%K dp drr' g P b)b.r"+'—'
I ~. '"

x [N1P)(p)P-(p)+P)'(~)P-'(p)3

b,b.
dp gn+)+1(p)

l+e+1~ )

xl ~iP&(p)P. (p)+P~'( )P.'( )j. (19)

T= (4/5)mxb22(1+a2),

and, using (17) and (18),

~xa22 p 9
I

1+-a2
i
=2m*d2',

5 (

(2o)

(21)

The evaluation of T to first order is very simple since
only the terms in b2' and b2b4 contribute and the latter
term vanishes upon integration. The result to first
order is

p2+ ~1
~'=kp

o

dp) dr) »PV(r)(b)
-~o

where pi ——p~= p=Ze/(4xE0'/3). The evaluation of
(25) is less straightforward than in the case of (24),
and will be discussed in some detail since it has not yet
appeared in the literature. We restrict the deformation
shapes to prolate figures of rotation possessing reAection
symmetry about the equatorial (x,y) plane; thus
R(—p)=R(p). We further assume that any sphere
drawn about an origin at the center of the drop, if it
intersects the surface, will intersect at only two values
of 0, namely Oo and m —Oo. Referring to Fig. 1, we see
that a sphere of radius b=E(0) is the largest sphere
that can be inscribed within the 6gure of the drop. The
electrostatic potential must be calculated diGerently for
points that lie inside and outside of the sphere of radius
b. Thu, s

where m* is the effective mass. Hence to 6rst order dry r)'V(»)) b), (26)

3
t

9
m*=—mai 1+-a, (,

10 i 7 )
(22) 'Equation (22) is given erroneously in reference 2 as m*

= (3/10)ngA (1+a2).
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pT1

X «2 y2 p (y2/r1 )Pl(p12)J,
&

R(pq)

dy2 y2 2 (ri'/r2'+')Pl(I212) (27)
L=p

Equation (27) cannot be used for ri&b because it is
incorrect in the range Op(0(x —ep or ppW pW —pp

(shaded region of Fig. 1). It is convenient to express
V(ri&b) as

where V(ri&b) is obtained by using the expansion for
1/r12 in terms of Pl(I212) where Il(2 is the cosine of the
angle between r1 and r2.

2m 1

V(ri&b) =p ~ d&2 F2
~0

where

Uc P c+U' c (29)

p
27I

Uo'= ~p
4o

~
&(w)

dg 1, dI11 dri rpV(ri&b)
O

oo

= 22r'p' g dI21 Pl (Ii))
Z=p 4 "—1

&&( I)

dp2 Pl(I12) dri ri'

where Ilo(ri) defines the intersection of the surface with
a sphere of radius ri, i.e., E(I10)=rl, and Ilo is taken to
be positive. The first term in brackets in (28) corrects
the erst term in brackets in (27) for the shaded region
of Fig. 1, which is not part of the drop. The second
term in brackets in (28) cancels the second term of (27),
WhiCh iS SpuriOuS betWeen —Ilo and +)Mo. One Can nOW

write for the total Coulomb energy

V(ri&b) = V(ri(b)+d, V,
pT]

yi (+1)
ll y + dr2+yil r21—ldy2 (3O)

2' yO(T1)

~V=, I dp,
I'

~
O

J—yo(c»

dy2 y2 2 (y2 /yl )Pl ()((12)
L=p

dr2 r2' p (ri'/r2'+') Pl (p)2), (28)
Z=p

tc2c 1

+1'=2P d(t)1 ' dpi
0 1 Jb

dr1 r126V

c&

= 22r'p' p ' dpi Pl (I21)
l=o ~ 4 b

dr1 r1 (31)

upon using the addition theorem to expand Pl(I212) in
terms of Ii), P2, $1, and &2. The second term of (29) is
given by

X
~

dp Pl(p)"—~0(TI) ll (V2)

( yi r2

l+1 y 1+1)

oo I cll

=22' P 2
~

dp(1 Pl(P(1) dP2 Pl(P2)
l-O J "—l~il

I' '"» (yl yl
X yiyi' ' dy2r2'I — I, (32)

~ )2(V2) ~ 12(S2)

where the addition theorem has again been used and
the order of integration inverted. Since R(I1) is an even
function of p, , this becomes

Ui = 82l' p p djli Pl(Ii)) djll2 Pl(I22)
even/ ~p JO

(+(4» t" ( ri' r2' )
dri ri' ' dr2 r2'~ —

~. (33)
J llo 2) & ll(cc) E r2'+' ril+')

FrG. 1. Diagram used in calculating the electrostatic potential.

It is readily seen that U1' contains no linear or quadratic
terms in the deformation parameters a„. While the
individual terms of the infinite sum in (33) do not
separately vanish, the series of terms has been found
to converge to zero for third-order to seventh-order
deformations. This is further discussed in Appendix 2
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where

U&' ——P u, ,
L=p

where the convergence proof is given explicitly for
the third-order c2' terms. For all deformations con-
sidered in this paper, the contribution of U»' to the
electrostatic energy vanishes.

Returning to Eq. (30), we set

where P= U'/(4trRO'0) and 2x= (3Z'e'/5Re)/(4irR(PO).
Classical instability with respect to second harmonic
(P~) deformations sets in for x=1. Since the value of
x for ~ppFm"' is in the neighborhood of 0.815, it is
clear that large amplitude deformations must be
investigated. This may be done by developing Eqs. (24)
and (35) into a multiple power series in the a„.We shall
again assume that a„=0 for e&2; then a straight-
forward calculation' gives the following results for
(' and j'

2' p
Q l

(/+3) (t—2) 4 i
dt Pt(t)R' '( )

1

dt's' P, (ti')R'+'(p, ') for l/0, 2,
—1

~2'
uo'= dp R'(p) dp' R'(p')

—1 "—1

2g 2p~

15

(34)

2 4 38 36
p = 1+—a22- ti2'+ 82

5 3XSX& 5'X& 5X7X11

+0.053162g2a —0.088832a2 +0.0043574a2' (37)

157 2161 4
('= 1——aP— ti2 + ti2 + 82

5 3X5X7 52X7~ 5 X7'X11
—0.042411a2'+0 0057942ag +0.0027802a2' . (38)

R'( )dt,

27r2p2
p

1

u2'= dp P2(tr)R'(p) dp' P~(& ) lnR(& ).
5 —1

Introducing the dimensionless quantities $'= U'/
(3Z'e2/5Ro) and $t'= 'u/t(3Z'e /5RO), one finally obtains

3 ~1
+- dp P (p) [1+2 ~-P-(t )j'

1

XJ
dP P2(ti')»[1+ 2 ti.P-( ')3, (35)

—1

where, for //2,

15

8(t+3) (t—2) ~, dp P~(p) I:&+ 2 ~-P-(t )j' '

1

X dt
' Pt(t ')[1+P rt.P ( ')]'+'

6U = U'+ U' 4rrRe20 3Z'e'/5RO)— —
g= AU/(4rrR(PO) = (P—1)+2x(P—1),

(36)

If only even harmonics are included in P u„P„(corre-
sponding to symmetric deformations), $&' will vanish for
odd l. The number of terms to be taken in the sum

P Pt' will depend on the number of harmonics included
in P a„P„and the order of approximation desired for
a power series in the deformation parameters u .

The potential energy of deformation is given by

where ao has been eliminated with the aid of Eq. (15).
Through substitution of Eqs. (37) and (38) in Eq. (36),
the potential energy of deformation is obtained as a
function of a2. The resulting expression for AU(a~),
which has been previously denoted by V(a&) in Sec. 2,
will be used to calculate the penetration factor.

5. APPLICATION TO THE SPONTANEOUS
FISSION OF FERMIUM

The penetration factor for spontaneous fission is
obtained from Eq. (4) on substituting the effective-mass
expression of Eq. (23) and the potential energy of
deformation given by Eqs. (36), (37), and (38). Since
the eGective mass and the deformation energy are
both expressed as power series in the deformation
parameter u2, the applicability of the formulas is
limited to nuclides for which the value of a2 at the exit
of the barrier is small enough to ensure good con-
vergence. No known nuclide satisfies this condition at
the present time; however, faute de mieux, the formulas
will be applied to yppFm"' whose spontaneous fission
half-life of 3.5 hours is the shortest that has yet been
measured. ~

The deformation energy is expressed in terms of
4gEp'0 and x for the nuclide in question. In terms of
the usual parameters rp and y of the Weizsack. er
semiempirical mass formula, we have: Ep ——re ',
4~R 'O=yA'*, and x= (Z2/A)/(10yro/3e') The values
of fp and p are not well fixed. The barrier depends
sensitively on x and thus on harp, which is uncertain by
about 3%. The value of x appropriate to Fm"' is
about 0.815. Two further di%culties arise in attempting

'These terms were erst calculated by one of the authors
(R.D.P.) in collaboration with J. K. Knipp; an error in the earlier
work, Grst noticed by M. E. Rose, has now been corrected.

~ Ghiorso, Harvey, Choppin, Thomson, and Seaborg, Phys.
Rev. 98, 1518 (1955).
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to apply the formulas; one of these is inherent in the
liquid-drop model and the other is a result of approxima-
tions made here. It has been mentioned in Sec. 1 that
the liquid-drop model activation energies or barrier
heights fall oG more rapidly with increasing Z'/A than
experiment indicates. The barrier height for the Fm"'
fission should be about 3.0 Mev according to the
calculations of references 1 and 2 with a reasonable
choice of y and ro. In view of the observed trend of
fission thresholds with Z'/A, this barrier height is
undoubtedly too low. The second difhculty arises from
our neglect of the deformation parameters a„ for
e)2; since the saddle path is not followed, the barrier
obtained is theoretically too large. A barrier height
close to 8 Mev is obtained for Fm'5 from the a2 terms
given in Eqs. (37) and (38).

The absence of threshold data for photofission and
neutron-induced fission of the highest Z elements makes
it difficult to estimate the true barrier height. Some
attempts" to use spontaneous fission half-lives to
estimate fission thresholds have been based on a semi-
empirical formula which gives fairly good results in
the neighborhood of Z=92. The extrapolation of this
formula to Z 100 is very questionable, however, in
spite of some interesting correlations with slow neutron
fissionabilities. The barrier height estimates of reference
8 give 4.9 Mev for Fm'"; this value, which is probably
too large, includes an uncertain allowance for the
induced fission threshold being below the top of the
barrier.

Because of the sensitive dependence of the penetra-
tion factor on the height of the barrier, no reasonable
value of the half-life can be expected from a barrier
whose height is not approximately correct. We have
therefore proceeded by treating x as an ad hoc parameter
whose value is adjusted to give the theoretical barrier a
reasonable height for the Fm isotopes. Although the
height of the barrier is made empirical, its width and
general shape are determined by Eqs. (37) and (38).
It is found by comparison with the saddle point
parameters of reference 2 that the adjusted barrier is
somewhat too wide for its height, and that it is therefore
better to underestimate than overestimate the height.
In view of these uncertainties, we shall not attempt to
assign a definite barrier height or x value to the Fm
isotopes, but we shall assume that the barrier heights do
lie between the liquid-drop value of 3.0 Mev and the esti-
mate of 4.9 Mev from reference 8. It should be noted that
uncertainties in the liquid-drop values arise from zero-
point effects, which have not been taken into account,
and also from a possible nonspherical shape of the
nucleus before undergoing fission. Further uncertainty
in the barrier for any specific nuclide comes from

' G. T. Seaborg, Phys. Rev. SS, 1429 (1952); R. Vandenbosch
and G. T. Seaborg, Phys. Rev. 110, 507 (1958).

9 J. R. Huizenga, Proceedings of the International Conference on
the Peacefll Uses of Atomic Energy, Geneva, i%55 (United Nations,
New York, 1956), Vol. 2, p. 208.

possible effects of shell structure on the ground state
energy, similar effects being absent from the activated
state.

The considerations of the preceding paragraph might
appear to preclude the possibility of a significant
comparison between the theoretical formulas of this
paper and experiment. While such a comparison would
not be very meaningful for the half-life of a specific
nuclide, e.g. , Fm'", we are nevertheless able to make a
reasonably reliable estimate of the variation of the
penetration factor and half-life produced by a variation
in the barrier height for nuclides of the highest Z values,
e.g. , the Fm isotopes. If T denotes the spontaneous
fission half-life and r—=logioT, then the change br
associated with a change in barrier height 6e can be
written as: 8r=k8e, where k is defined" as the spon
taneols fission hindrance factor In gen. eral k will be
expected to vary with Z'/A and this variation has been
studied in reference 10; we shall now calculate k for
the fermium isotopes (Z'/A =39).

The evaluation of the penetration factor is straight-
forward when the choice of x has been made. The
values of x were selected to give barrier heights of 3.0
Mev and 4.9 Mev. Since the eGective mass has been
determined through terms in a24 and since the deforma-
formation energy expansion begins with the a&' term,
consistency requires that terms through a2' in Eqs.
(37) and (38) be included in the integrand of the
penetration integral. The additional terms in a2" and
c&' have been used only to fix more accurately the
upper limit of the integral, which corresponds to the
exit of the barrier. The exit values of a~ are so large
( 0.8 to 0.9) that the convergence is not satisfactory.
Some indication of the error that can arise in this way
is given by dropping the a2' term in the deformation
energy and also by omitting the a24 term in the eGective
mass. The ratio of the penetration factors or reciprocal
half-lives corresponding to barrier heights of 3.0 Mev
and 4.9 Mev is found to be 10'4+" where the limits of
error correspond to the convergence uncertainties
mentioned above. The resulting value of the hindrance
factor is 3.7&0.8 per Mev—i.e., an increase of 1 Mev
in the barrier height corresponds to an increase of
10'~ in the half-life. This result disagrees with the
half-life formula proposed in reference 2, which gives a
constant hindrance factor of 7.85 per Mev. While the
latter formula has received some confirmation for the
uranium isotopes, our results indicate that it must
fail badly for higher Z values.

The hindrance factor has been deduced from experi-
mental data in an ingenious way by Swiatecki. " He
finds that deviations of individual r values from a
straight-line graph of r ns Z'/A are correlated with
deviations of the nuclear masses from the Weizsacker
semiempirical mass formula. The latter deviations
are probably associated with shell-structure eGects

' W. T. Swiatecki. Phvs. Rev. Ioo. 937 |'1955').
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that are presumably absent in the activated state
at the top of the barrier; hence the mass Quctuations
correspond to fluctuations in barrier heights and these
are connected with fluctuations in the half-lives.
A study of 28 spontaneous fissions of elements from
Z=90 to Z= 100 has shown a variation of the hindrance
factor with Z'/2 which is well represented by":
k=42.5—Z'/A per mMU. Our calculated value of k

for the fermium isotopes is in good agreement with
this formula,

APPENDIX 1

The calculation of the velocity field for the liquid
drop was begun in Sec. 3. Equation (16) is used to
determine the coefficients b of the velocity potential;
any b„can be written as

b„=aors~

oP~' &ao'". One
obtains the kth order approximation by terminating
the sum with m=k. Equation (16) is an equation in

two diGerent sets of linearly independent functions;
one set is the set of Legendre polynomials. All products
of Legendre polynomials can be removed by the
combination laws; one then equates the coefficients of
the separate P„(p) for the left and right sides of Eq.
(16). The other set of independent functions is the set
of powers of a2,' this set also leads to equating of
coefFicients for each member of the set. The P„™are
chosen to satisfy these requirements for the two linearly
independent sets.

Two combination laws are used in reducing the left
side of Eq. (16) to a linear combination of the P„(&i).
The two are

3 (++1)(v+2) e(m+ 1)
P2P =- Pn+2+ P„

2 (2n+ 1)(2m+3) (2e—1)(2&o+3)

3 ii(m —1)
P

2 (2e—1)(2m+1)

P'P '= 3m(m+1) m+2 2io+1
P~o+ P

2ii+ 1 2m+3 (2e—1)(2m+3)

P —2.
2s 1
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d o = o [1+(iso/7) ]ii2+2.

Equating the coe%cients of Po in the reduced form of
Eq. (16), one gets

2bo ( ,'az)—+—4b4aoo[2/(5X7)]=do

Since P4&o&=0, b4aoo is of order of ao' and is therefore
dropped. The resulting equation,

bo ———,'a.o[1+(ao/7) ],
checks the first-order result for b2. Equating the coeffi-
cients of P2 yields

»oI 1—-&o—-~o' I+4f41 -~o
I
=do,

5 ) (7i
and, using the first-order result for b4, one obtains

274
+-ao— 8292 =Q2,

2X~X7

which is an identity in ao to quadratic terms if Poi'&

=54/(5X7'). Equating P4 coefficients leads similarly
to the value of P4i'& and equating Po coefFicients leads
to the first nonvanishing term (Po"&) in bo. On equating
P„coefficients for e&8, the corresponding b„are
found to vanish in second order. The second-order
result is

(1 1 54
f&o = bio

I

—+ ~io+
(2 2X7 5X7'

( 27
f4=dol 0— iso+

2XSX7 SX7'X11

459

( 45
bo=doI 0+0+ ao' I,

7X11

b„=0 for e &8.

tion these products contribute to the coeScient of
P (&i) only when X&n+2k.

We now calculate the b„'s to the second approxi-
mation. In this approximation

E"(&ti)
—+ 1+mao+maoPo(&i)+ ', m—(m —1)ao'[P, (p)]',

When all powers of a2 greater than a2~ are discarded
from the reduced form of Eq. (16), the coefficient of
each P (&i) is reduced to a finite number of terms. For
large E, P&(&i) in the original form of Eq. (16) con-
tributes to P„(p) in the reduced form through combina-
tions such as [aoPo(p)] P~(&ti); in the kth approxima-

In the higher orders of approximation it is found
that (1) the kth order equation for the Po coefficient
merely checks the value of bo found in the (k —1)th
order, (2) the first nonvanishing term (P„') in b„
appears in the lth order equation for the coeKcient of
P„, and (3) with each new order there is a single, new,
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TAsLE I. Coe%cients of the velocity potential. It is readily seen that

p„(o) 0
P~(» 1/(2 )(7) —27/(2 )&5 &&7)
P~(2& S4/(5 X72) 459/(5 &(7~ )&11)
P &» —0.033439 —0.92474
P «) 0.133007 0.70465

0
0

45/(7 )(11)—0,67367
2.8667

0
0
0—1.05734

1.99330

10

0
0
0
0

2.0834

N

(2~+ 1)(p' —p")P (p)P (l ')
l=O (even)

(xV+1)(IV+2)
[PNj2(P)PN(P ) PN(p)PN+2(P )].

nonzero b . In the kth order approximation,
k

b —g' Q P (m)g na

$(n—2)

and when e)2k j2, b„ is zero in the kth order. The
results to fourth order are given in Table I.

APPENDIX 2

We wish to evaluate formula (33) for U~'. The
integrations over r2 and r1 are carried out and we then
substitute 1+ao+a2P2(p) for E(p). Expanding in
powers of a2 and neglecting terms beyond third order,
it is readily found that the terms in a2 and a2' vanish
[as may also be seen by inspection of Eq. (33)] and
that the a2' term is given by

00 ~1
U,.—4~'p'~, s P (21+1) I dp P, (

even l

X dp' Pi(p')[P2(p) —P2(p')]'
o

f1 p+ t oo

=2vr2p a2I dp dp,
' Q (21+1)(p —p')

O "O l O

The a2' term is then proportional to

(X+1)(X+2) t'
lim 'L +() (')

2cV+3 0 & 0

P&(u)P&+2(p )][P&(u) P2(p )] .

(%+1)(%+2) I'
J dp P~(p) dp P&(p )

021V+3

(%+1)(%+2)
dp P~(p)[Pz+x(p, )—Pl g(y)].

(2A'+3) (2K+1)"0

The integral fp'P~(p)Px(p)dp with 3f even and E
odd can be readily evaluated in closed form and, when
3f and E are both large and of order E, can be seen
to vanish as S ' as E~ ~. The a2' term therefore
vanishes. A similar proof can be given to show that
higher order terms also vanish.

A typical term in the integrand is of the form: P~+2(p)
XPx(p') p2™p"".We set p2™P~+2(p)=P A~P~(p) and
p""Peg(p')=P BI,Pr, (p, ') and note that, when N is
large, I. and M are large even integers and the coeffi-
cients A~ and BI.become independent of 1V. Thus one
obtains a finite number of integrals of the form


