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Expressions for the relativistic E'-shell photoeffect cross sections, correct to first order in nZ (inclusive),
are established. For this purpose a second order calculation must be carried out, that is, electronic spinors
correct to second order in nZ must be employed in the matrix element. The final continuum state spinor of
the electron, whose exact analytic form is not known, is described by means of the Born approximation. To
avoid the divergences, peculiar to the application of this method to the pure Coulomb field, the case of the
screened potential is considered at the beginning. The matrix element, which is evaluated in momentum
space, remains singular in the limit of no screening. Nevertheless, it is shown that the differential cross
section, as issuing from a very laborious trace evaluation, is to first order finite in this limit and has the
behavior one would expect. Indeed, its zero-order approximation in nZ coincides with Sauter s formula, as it
should. Further, in the nonrelativistic and extreme relativistic limits the cross section determined reduces to
results established by other means.

I. INTRODUCTION

'HE determination of the relativistic photoeGect
cross sections is an extremely involved problem,

so that no exact analytic expressions have been found. '
In the case of the diGerential cross section the difficulty
essentially comes from not knowing the exact form of
the electron's final state spinor wave function, suitable
to the problem. One can give therefore only approxi-
mate formulas for the cross section. In the case of the
E shell, for light elements (small Z) and high velocities
of the ejected photoelectron (P approaching 1), the
problem was solved long ago by Sauter. ' Subsequently,
Sommerfeld and Maue' succeeded in deriving the same
result by a more direct method, based on the approxi-
mate expression found by them for the final continuum
state spinor. The formula of Sauter represents the zero-
order approximation in nZ to the exact cross section,
for p= 1. It can therefore be applied only to the lightest
elements, for which nZ((1. Now, the few numerical
calculations available4 show that for heavy elements,
for which this condition is not fulfilled, the exact cross
section may differ from that of Sauter by a factor larger
than 2. Such a disagreement naturally raises the prob-
lem of finding the corrective terms of Sauter's formula.
This implies the use in the calculations of a higher order
approximation for the final state spinor, than was done
before. However, the methods used in the past for the
approximation of this spinor become impracticable when
applied to the determination of the higher order cor-
rections. One can use instead the Born approximation
method, whose efficiency in treating such higher order

corrections has been put in evidence by Dalitz, in his
study of the Coulomb scattering. ' ' The successive
Born approximations not only improve the form of the
spinor in what regards the parameter o.Z, but also render
it useful for lower and lower asymptotic velocities p.
However, as is well known, the method cannot be
directly applied to the Coulomb field because of the
infinite range of the potential, which causes the di-
vergence of the occurring integrals. This mathematical
difficulty can be avoided by replacing the pure Coulomb
field by a screened one, of potential energy ebs(r)
= —crZe &'/r, for which the successive Born approxima-
tions are convergent. The higher order approximations
of the matrix element thus evaluated remain singular
in the limit p —+ 0, of the pure Coulomb field. Physical
arguments suggest, nevertheless, that the cross section
itself cannot be singular in this limit; this can happen
only if, when taking the square module of the matrix
element, which appears in the cross section, a cancella-
tion of these divergences takes place in consecutive
orders of nZ. This cancellation has been checked in the
case of scattering, for the first-order approximation, by
Dalitz. As we shall see, it occurs to first order also in
the more complicated case of the photoeffect. Since the
cross section thus obtained (finite in the limit ts-+ 0)
yields in the nonrelativistic and extreme relativistic
limits the results derived by other means, the validity
of the method is once again fully confirmed.

The aim of the present work is to determine the rela-
tivistic cross section of the eGect, correct to first order
in o.Z, by means of the Born approximation method.

II. SPINOR WAVE FUNCTIONS*Work done while the author was granted a predoctoral State
scholarship by the Ministry of Education of the Rumanian
People's Republic.

' For a review of the subject see the article of H. Bethe and
E. Salpeter, EncyclopeCka of Physics (Springer-Verlag, Berlin,
1957), Vol. 35, Part I, especially Sec. 73.

s F. Sauter, Ann. Physik 9, 217 (1931);11, 454 (1931).
'A. Sommerield, Atombatc and Spehtrallinien (F. Vieweg un

Sohn, Braunschweig, 1939), Chap. 6, Sec. 8.
4Hulme, McDougall, Buckingham, and Fowler, Proc. Roy

Soc. (London) A149, 131 (1935).

The photoeGect diGerential cross section for the
ejection of a E'-shell electron, of spinor ft(r), and energy
ns(1 —cr'Z')&, into a continuum state of spinor lbs(r),

d s R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).
6 Higher order Born approximations have also been considered

by H. Mitter and P. Urban, Acta Phys. Austriaca 7, 311 (1953),
and subsequent papers.
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energy E, asymptotic momentum k pointing inside the
solid angle dko, under the inRuence of an incident photon
of momentum sr, energy lr and polarization s (x.s=0,
s'=1), is given byr '

(2s)'rr
do =

i
M i'dro,

derived with the help of (3), terms of order (rrZ)' have
likewise been neglected.

Actually, the quantity of experimental interest,
which we will subsequently calculate, is not (1) but the
cross section of the process summed up over the two
E-shell electrons and the two possible spin directions
of the final state:

where

M=
i its(r)s exp(ix r)fi(r)d'r. (2)

(2s.)'rr
do.s —— P ~

M
~

'dro.
K 4'1tr2

(6)

E= ris+Kq

k'+m'= E' k' —Its = 2nslr k'+s'= 2EK

E=m/(1 —P') *' Ir= EP.

(3)

(4)

(s)

Equation (3) is the Einstein relation for the conserva-
tion of energy, the ground-state energy being in our
approximation equal to m. In the last equation of (4),

r Reference 1, Eqs. (69.5) and (73.1).
The case of hydrogen-like ions is considered; the corrections

for the atomic case are discussed in reference 1, Sec. 69m.
We use the natural system of units, such that A=c=1; we

have then e'Z= e'Z/Ac=—o,Z.
"The y„matrices are Hermitian and de6ned as in reference 1,

Eq. (10.12)."Reference 1, p. 382.
'2 It is also present in the derivation of Sauter's formula, where

a first-order calculation is needed to establish the zero-order
approximation to the exact cross section. See reference 3, Chap. 6,
Sec. 8B."1.e., only after Eq. (29).

In Eq. (2), s is the four-component quantity (s,0).
Here and subsequently, given a quantity m with the
four components w„= (w, stos), we shall denote w—=to„y„
= w y+itosy4 "Fu. rther, given the spinor q, we will
denote 13=io*y4. The spinor Pi(r) is supposed to be
normalized to unity, whereas its(r) is supposed to be
normalized per energy interval and element of solid
angle. In order that it should describe the final state
of the ejected electron, its(r) must represent the super-
position of a relativistic plane wave and a spherical
incoming wave (both distorted by the Coulomb field). "
As we desire to find the expression of the matrix ele-
ment M correct to firs order in aZ, we shall have to
use approximations correct to second order in O.Z for
the position space spinors Pi(r) and fs(r). This rather
surprising circumstance is peculiar to the photoeGect. "
It is caused (as will be explained in Sec. III) by the
special analytic form of the initial bound state spinor,
which can produce the lowering by a unit of the order
of the integrals of M in which it appears.

The quantities which characterize the electron's
initial and final states are related by several equations.
It is sufhcient for our purpose to consider their correct
form only to first order in aZ. This is due to the fact
that they will be used only after the first order approxi-
mation of the matrix element has been set up." We
have thus

Since we adopt the Born approximation method for
the final state spinor, the integration of the matrix
element will be carried out in momentum space. Con-
sidering the Fourier expansions

1 t
it, (r) = Ni(p)e's'd'p,

(2~)'*~

lt' (r)=, t7 (Ii)e "'d'p
(2s)r~

the matrix element (2) becomes

M= )t 1ls(p)sir(p —sr)d p.

The ground-state spinor may be written as

1 p
»(Ii)=, G(p)+tE(p)74Y xi, —

(4~)l

where X, is one of the constant spinors (1,0,0,0) or
(0,1,0,0), according to whether we consider the state of
magnetic quantum number m= —', or m= ——,'. For the
functions G(p) and F(p) we shall use the following
approximate forms":

(32K'y -**

p ~nZ q 1
G(p)=l I i

1+
4 ~ ) & g~ ) (p'+)s)'

)SX'q: p 1
E(p) =

I ) ~(p'+)')'

where ) =nZm. It may be shown that the preceding
expressions describe correctly the exact functions to
first order in nZ. The form of the corrective term in
the expression (9) for G(p) is established under the
additional assumption that p/X»1, " whereas the ex-
pression for F(P) is valid whatever P/X. rs We shall

'4Their exact form may be inferred from H. Casimir, Helv.
Phys. Acta 6, 287 (1933).

"This corrective term Lmrs in the notation of (10)j occurs
only in the matrix element 3fp of (17), where it is considered for
p= k—st. Since in our case

~
k—x~ /X is of order (1/nZ))&1, the

assumption is satisfied.
"This approximate spinor has also been used in the calcula-

tions of Baranger, Bethe, and Feynman, Phys. Rev. 92, 482 (1953),
Appendix. It actually corresponds to the Fourier transform of the
position space spinor pi(r) correct to @scoria order in aZ.
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introduce the following notations:

ul(p) —u10(p)+ull(p)+u12(p) j

The Fourier transform of the latter, defined as it
occurs in (12), is given by

eA0(q) = t eA0(r)e '&'d2r=-
(22r)'i

0!Z 1
(14)

2~2 (q2y~2)

where

QZ
u12 ——&1 4 (p)xi, (10)

2%2

Hence, the spinor u2(p) may be written in the form

u2(p) u20(p)+u21(p)+u22(y) j

u„=1l1,*x,(I )S(p —k),

(15)The final-state spinor wave function u2(y) satisfies
the Dirac equation in momentum space:

t' 42Z p t' 'y4 iq —m
I

&2*X2(k)
(27r2) 0 [(q—k)2+@2] (q2 —P ie)—

2r2 1
&1———(8) ')', X=nZ20, Q(p) =—— . (11) 4

-
(k)7f' 222 (p ) 2~2 [(p k)2+@2] (p2 jp —ie)—

u, (p) (iP+212) =iej u2(q) A(q —p)d'q,

2 m
u, (p) =X2*x2(k) b(p —k) —ieA(k —y)

p' —k2 —ie

f iq —m
+ (ie)' A(k —q) A(q —y)d'q

g2 P2 p2 P2

(12)

ip —
224

where X,(k) is the momentum space spinor for a free
electron of momentum k and a certain spin direction,

q is the four-component quantity (q,iE) and 0 is an
infinitesimal, real quantity introduced to circumvent
the poles. The sign of e is essential in the determination
of the nature of the solution (12). In order that u, (p)
shouM represent a plane wave plus a spherical incoming
wave, as is demanded by our problem, e must be chosen
positive in (12).'2 The coefficient X2 originates in the
change of normalization, from that of the k scale to
that of the energy and solid angle. It may be shown that
its magnitude is independent of the existence of the
external field, being given as in the case of an unper-
turbed plane wave by

lX2/2=us (13)

where p is the four-component quantity (p,iE) and A is
the potential four-vector, in our case (O,iA0). The Born
approximation method for the continuum state spinor
u2(p) consists in expanding it in powers of the external
potential and keeping a suitable number of terms. By a
well-known iteration procedure one finds for the second-
order Born approximation the expression

ip —224

X d'q
[(q—p)'+~'] (p' &' ie—)—

III. MATRIX ELEMENT

For our purpose we need the expression of the matrix
element (6), correct to first order in 42Z. Employing
the expressions (10) and (15) for the spinor wave func-
tions, we may split the matrix element into three terms
M;, giving the contributions of the successive Born
approximations u2; of (15),

(16)

The integration in Mo is immediate, the whole spinor
ui(p) of (10) being required in its expression, to the
order we are interested. We get

~0=&i&2*
[(k—24)'+lt2]2

Z QZ
x,s 1+ (k—24)y4y+ 4(lk —24l) xi. (17)

2m 2m'

3f41
= ~u24(p)sui, 1'(p —24)d p. (18)

Then, to first order, M& is given by

~1 ~10+~11

In the expressions for M~ and M2 only a part of the
terms of ui(y) should be taken into consideration, to
first order in nZ. To emphasize this, we introduce the
notation

where k and E are related by (4).
Since the pure Coulomb potential has strictly speak-

ing no Fourier transform, we shall consider, as discussed
in the Introduction, the case of the screened potential.

'7 See, for inst', nge, reference 1, Sec. 9P.

cxZ
3110 — 1V1A'2*(X2——y4ISX1),

2''

0!Z
iaaf 11 +11'2 (X274 Js74/xl) )

2Ã2 2m

(19)

(20)
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(nZ) s

Ms=Msp=
~ ~

1lt'tlVs*(Xs&4ESXr)& (23)

where

1 (iq —m) y4E=
" " L(»—k)'+p'j (O' I' ie) —L(»——li)'+J"3

(iP —m)
d'pd'q. (24)

ps —ks —ze) L(p —x)s+),

Thus the matrix element (16) is given in our approxi-
mation by

M =Ms+ Mip+Mii+Msp. (25)

We shall now show that all the terms of Kq. (25) are
indeed of zero or first order in nZ and that M contains
no others of this order of magnitude.

It is clear that all the terms of 3fo are of zero or erst
order. Consideration of a higher order approximation
for Nr(p) would lead to the occurrence in Ms of terms of
order (nZ)', which we neglect throughout. Contrary to
appearances, M~0 is of zero order in oZ; indeed, because
of the special analytic structure of the bound state
spinor, the integral I of (21), considered as a function
of the parameter A =aZm, has a simple pole in P =0.We
shall show this taking advantage of the fact that one
of the analytic forms of the 8(y—st) function is"

1
h(p —r) =—lim

~2 x D [(p g)2+)tsjs
We then find

if—m
lim )I=

o (k st)s xs p'

t being the four-component quantity (st,iE). I can
therefore be written

1 m' zf—mI= +I&el
)t „s—p(k „)s

(26)

where I&" contains the zero and higher order contribu-
tions in ). Since we are interested in the expression of

' All the results we shall obtain by the use of the 8 function
may be rederived by using the exact formulas of the Appendix
and the approximations we work in.

where we have put

iP m—
d'p, (21)

& f (p—k)'+)i'j$(y —x)'+) 'j'(p' —k' —se)

iP—m

$(p k)s+psj((y sr)2+as js(ps p se)

X (p—x)d'p. (22)

The term M2 reduces in this approximation to M2o.

M&0 only to 6rst order in O.Z, I"& needs to be evaluated
only to zero order in X. M» is of first order in o.Z.
Indeed, upon introducing similarly the function b(p —st)
in the integral J of (22), one 6nds that owing to the
occurrence of the factor (p—st) in the integrand, the
integral is of zero order, J= J& &; we are interested in
J&sl only to this lowest order. The next term M» of Mi
)see Eq. (18)j should be neglected since it contains the
product of (aZ)' with an integral which, owing to the
presence of the factor

~ p —k~ in the integrand, has no
pole in X=O. &20 is of 6rst order in ~, for, applying
again the 6-function procedure, it follows that the inte-
gral E has a simple pole in P =0. To this lowest order,
the only one needed, X reduces to

where"

7r2

E= Ly —(if—m),
X ~' —k'

(27)

The next term M» of M2 should be neglected by similar
arguments as in the case of Mrs )this time on account
of the occurrence of the factor (p—st) in the integrand$.
As regards the next correction to s2s(p) (the third Born
approximation), it yields a contribution of order (nZ),
which is therefore negligible.

Summing up the different contributions to Eq. (25)
and using Eqs. (26) and (27), the matrix element M
becomes

M =Xs(I'+Q)Xr, (29)

where P and Q contain the zero- and first-order terms
in nZ, respectively. As regards the expression of I' it
should be noticed that Ms of (17) contains in the de-
nominator the quantity (k—st)'+)ts. In our case, using

Eqs. (4) and (5), it may be shown that for relativistic
velocities P, the ratio X'/(k —x)' is of order of magni-
tude (nZ)'. We may thus neglect )t' as being a second
order quantity. " Taking this into account, I' and Q
become, with the help of the second equation of (4):

EgX2*
I'= s+sy4y (k—st)+ y4(if —m)s,

(k—sr)4 2m 4m's

(3o)
0!Z z

Q= 1VtlVs* sp(~ k —v. ~)
—y4I&'&s — y4 J&s&sy4y

27r2 2m

1
y4Ly4(if m)s . (31)—

4m'~

"By applying the b-function procedure, in the expression (28)
for L, p~ should occur in the place of X~. Since in our approximation
this change is of no consequence, we refer for convenience the
expression (28), which, owing to Eqs. A.23) and (A.24), is actu-
ally the exact one for L.

so Practically everywhere in this paper the quantity (k—r)'
occurs in the denominators in the form (k—st)s+Xs. We sha, ll

neglect P' throughout.

iP —m
L= d'p. (28)

$(p —k)s+/is)L(p —~)s+ )tsj(ps —jp —is)
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Since s has a vanishing fourth component and x s=o,
it follows that

sy4 ———y4s, ts= —st.

The notation introduced here is

c= (A"',iEAp"'), e= (B,iEBp),
d = —mA p&P&, f= —mBp, (42)

Thus, P may be put into the form

P= sy4(i a+b),
(k—x)4

(32)

c and e being four-component quantities. The explicit
form of the quantities of (42) is not needed for the
calculations of the next section.

IV. EVALUATION OF THE TRACES

1 (k—v.)'
a= (k—r)+ 1C) go=

2m 4m2~

(k—x)'

(k—x)'
E 1

4m2~

(33)

Equation (31) for Q may be written

where b and the four-component quantity a(a, iap) are
given by

The cross section (6) is expressed in terms of P ~

M
~

'
where the summation is to be performed over all the
possible transitions from the E shell to the continuum
final state of asymptotic momentum k. Due to the
form (8) adopted for the spinor ui(p), the matrix
element M has the same aspect for all these transitions:
the matrices P and Q are the same, only the spinors
Xi and X2 are diferent from case to case. On the other
hand, the spinors X2 and x& satisfy the equalities

x, (k) (ik+m) =0, (il+m)X, =0,
o;Z 4

Q= 1VilVp* Q R„,2'' p=l

where k is the momentum four-vector (k, imp) of a free
particle in motion (kp ——(k'+m')l=E) and l is that of
a free particle at rest (O,im). The first equality is
satisfied by X2 by definition, the second one may be
checked immediately taking into account the explicit
form of Xi. In these conditions the sum + ~

M~' is
found, by a well-known formula, to be

where

E.i——spy(ik —xi), Z2= —~41«)s,

(35)
y4Ly4(i f m) s. —

4m2a
E,= — y4J&p&sy4y, E4

2m P fM/'
&I&2

In view of finding the explicit form of the matrix
element (29), the integrations in the expressions of

I, J, L must be carried out. Putting in evidence the y
matrices in these expressions, we may write

Sp[(P+Q)(il —m)(P+Q)(i&It —m)), (43)
48m

I=i7,A; (E74+m—)A p,

I;=iy; A;; (Ey4+m) A; —«;I, —

L=iv,B, (E74+m)Bp—,

where P and Q are defined by means of the equality
O=y40ty4. Neglecting the second-order terms in eZ of

(37) Eq. (43) and taking into account that the two of first
order are complex conjugates of each other, we find

(38)

I&'& =ic+d (39)

I;"&=iy;A, ,&'& (Ey4+m—)A;&'& «, (ic+d), (40)—
L=ie+f, (41)

where Bo, 8;, Ao, A;, A;, are the momentum space in-
tegrals (A.1), (A.21) discussed in the appendix. All

these integrals are divergent in the limit p, —+0; since
the first and higher order terms in p vanish in this limit,
they will be neglected from the beginning. In this
approximation the results derived are correct in A., but
only the required order of magnitude should be kept in
evaluating the expressions (36), (37), (38). If we denote
the zero and higher order terms in X of Ao, A;, A;, by
Ao«), A, "),A;, &" the dependence of I&" and J;") on
the newly introduced quantities is similar to that given
by formulas (36) and (37). (Actually, as we have
previously shown, J;=J,"&, since J; has no terms in
1/X.) We may then put

P
~

M ~'= Sp[P(il —m)P(ik —m))
O'I |F2 48m

+ Re(-', Sp[Q(il —m)P(ik —m) j). (44)
E'm

In our case, owing to (32), we have

SE
P= y4(ia' —b)s.

(k—r) 4
(45)

Em (I —~)p

AZ 4

X op+ —(k—~)4R.e P n„, (46)
Ã2

&1&2

Here we have denoted by a' the four-component quan-
tity (a, —iap). Using (32), (34), and (45), Eq. (44)
may be written in the form

P [Mf'=
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where we have introduced the following abbreviations: 0,= —m(kp+m)

Qo=-,' Sp[sy4(ia+b)(il —m)y4(ia' —b)s(ik —m)], (47)

Q„=4 Sp[g„(il—m)y4 (ia' —b)s(ik —m) ]. (48)

The evaluation of the traces (47), (48) is a very
laborious task. It may be performed with the help of
the following formulas. I et us put

eo+d'l f gp b&
X (

c+k
I i

a+k
I (63)

k,+m& & k.+m&
'

I'g ———(a S)[(k S)(Q A;;&o&—44C)

W=-', SpII= W,+Wg,

X= 4 Sp(xII) =X&+Xg,

F'= 4i Sp(xyil) = I'~+ I'g,

II=S(il—m)y4(ia' —b)S(ik —m),

(49)

(50)

(51)

—A@&P&s,k,+(c s)(k 44)]+A,;N&s;a, (k s)

—A;;" s,s;[a.k+ (ko—m) (ao—b)]

—(8+m)(« —b)(k s)(A"& s), (64)

0,=-,' [a.k+(kp —m)(ao —b)](P A;;&o&—44 c)
S2~

where x and y are arbitrary four-component quantities,
with (x,ixp) and (y,iyp), respectively. We then find
(with ko =E)

W, =2m(a s)(k s),
Wg= —mLa. k+(ko —m) («—b)], (53)

X,=2im(a s)[(x.s)(kp+m) —xp(k s)],

Xg ——im{xp[a k+ (ko—m) (ao—b)]
—(k x)(ao—b) —(a x)(ko+m)}, (55)

ap —b'
+ a C+(k. C) [k.44+ (ko+m)']

kp+m
(65)

ao—~
a 44+(k 44) [k c+(kp+m)(cp —d)]I,

kp+m

(a s)
I'4= {(e s)[t k—(fp m)(k—p+m)]

2m' —(k s)Le t+(io — )( +f)]}, (66)

Y,=2m(a s){(y.s)[x k—xp(kp+m)]
—(x s)[y k—yp(ko+m)]

+(k s)(x y —xpyp)}, (56)

I'g=m{[a x+xo(ao —b)][k y —yo(ko+m)]
—[a.y+yo(« —b)][k x—xo(ko+m)]
—(» y —xpyo)[a k+(ko —m)(« —b)]} (57)

04= [e t+(tp —m)(ep+f)]
4m'

)&[a k+(kp —m)(« —b)]

ap —b
+[e k+(ep —f)(kp+m)] a t+(k t)

kp+m
(67)

ao —~
e ~ a+ (e ~ k) [k t—(to—m) (ko+m)]

kp+m.

By inserting suitably the product s s=1, the ex-
pressions in square brackets following the Sp symbols
in Eqs. (47) and (48) may easily be transformed so as
to contain the matrix II as a last factor. Taking then
into account Eqs. (35), (39), (40), and (41), the re-
sulting expressions for the traces may be evaluated
using the formulas for 8', X, F. If we denote by F the
s-dependent terms thus found and by 0~ those inde-
pendent of s, we may write generally

In Eqs. (66) and (67) we have used the notation t= 44,

fp
——8, and the fact that t s=0.

V. DIFFERENTIAL CROSS SECTION

Q„=I'„+0., »=0, 1, 2, 3, 4.

We thus finally get

I'p ———4m(a s)(k s)(«—b)

ap —by'
Op ——m(ko+m)) a+k

kp+m )

r, =q(~ k— [)W„O,=@([1— ~)w,
I"

p
= 2m (a.s)[(c.s) (kp+ m)+ (k. s) (co+d)],

It should be noted that owing to the fact that the
quantities a, ap, and b of (33) are real, Qp given by (58),

(58) (59), and (60) is also real. This was to be expected
since Qp corresponds to the zero-order approximation in
aZ of the real sum P ~3II~' of (46). Qi given by (58) and
(61) is also real. However Qo, Qg, and Q4 are complex and

(59) divergent in the limit p —+0, because they involve the
quantities defined in (42). Only the real parts of these
traces are required for the calculation of the sum of
Eq. (46). Since the complex quantities Ao~'&, Ap&'&, B,
Bp, and A;,"' occur in 02, 03, and 04 multiplied by real

(61) factors, only their real parts are needed. These, as
shown in the appendix, are finite in the limit of the

(62) pure Coulomb potential (&t4
—+ 0). The same will also be
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true, because of Eq. (46), for the cross-section (6),
correct to first order in nZ. Thus, the cancellation of the
specific divergences of the Born method is established
also for the case of the photoeffect.

We now set out to 6nd the explicit form of the quanti-
ties Qp and ReQ„. To this end we shall use the definitions
(33) and the relations which derive from them:

1 (k—«)'
a s= (ks), ap —b= 1

2m 4m'

after some elementary transformations based upon (3)
and (4)

E
Reep ———0[k'»' —(k «)'j = —ReOr.

mK
(78)

Rel'p= —'U[a k+(kp —m)(ap —b)j

The calculation of the real part of I'p, given in (76), is
more tedious. From Eqs. (A.27), (A.33), and «a=0 it
follows firstly that

ap —b

kp+m 2m

k' —k.«»' —k «
k +« . (69)

»

k' cp—b
(k s)'J — ci',+—~+@ a «+(k «)

2m m kp+m.
Taking the scalar product of the vector (69) with k
and x, we find

ap —b g
a «+(k «) = [k'»' —(k «)'j. (71)

kp+m 2m'k'

In the case of Qp, employing Eqs. (68) and (69), we
obtain for I'p and O~p of (59) and (60), the expressions

(k—«)'
I'p=2(k s)p 1—

4m'

OH p
—— (k—«) p [kp»p —(k ~ «) pj.

4m'~

The terms I"i and 0'i of Qi, are given by Eqs. (61),
(53), (68), and (69). Expressing @(~k —«~), defined in

Eq. (11) by means of t' of Eq. (A.18),"we get

1 (k s)'
~1 6)

4m (k—«)'

1 [kP»P (k. «)Pf
6.

m'» (k—«)'

(74)

(75)

Taking into account the delnition (42) of the quanti-
ties c, cp, d, their real parts can be obtained with the
aid of Eqs. (A.26) of the appendix. Employing also
Eqs. (68) and (69), we find for the two terms of ReOp

ap —b
a k+k' =a k+(kp —m)(gp —b)

kp+m
1

[kP»~ —(k. «)&] (70)
2m K

(1 ap —b)
+I — )[k'w+(k «)s]

4 2m kp+m)

—(E+m) (ap —b) 8, . (79)

Using the expression (A.31), (A.29) for & and 3, one
then finds

k «—k'
O'W+(k «)8=k'e+-,'t:

kP»P —(k. «)& (k «)P

+-,'~'
kP»~ —(k. «)P

%'e shall replace the other S occurring in Eq. (79) by
1', given in (A.30), since 8= V'; the expression of '0 is
given in (A.32), and from (80) and (4) it follows

ap —b
(k' —k «).

2m kp+m m 2m'k'

Thus, using also Eqs. (68), (70), and (71), we find in
the end after rearranging the terms conveniently,

1 (k' —k. «)6—'k
RCF3 = ——

4 2m'~

(k—«)'
+(l s)' 2E 1— e

4m'

+
4m (k—«)' k'»' —(k «)'.

ReI'p ——2EQ, (k s)'

jV

ReO, = ——O', [kP»P —(k «)'j.

(76)

(77)

k'+k «
(80)

2mPk kP»P —(k «)P J

In order to find the expression of Re04, we note
Using the same expressions for the real parts of c, ep, d firstly that, given the definition (42) of the quantities e,

as above and the formula (A.33) for Re+A;, &", we find ep, f, as well as that of t and tp, Eq. (66) for I'4 may be
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given the form

(k s)
I'4 —— [(B s) (k «—k') —(k s) (B «+Bsx')]. (81)

4m'K

The calculation of ReF4 is done by using the formulas 16m3K2 (k—«)'

4

Re Q 0„= [k'x' —(k «)'](k —«)'8
282K

2mxP'x' —(k.«)s]
+2k'x'

ReB k=(Bk'+-'e (82) —(k.«) (p+xs)+xs(k «)s
ReB «=e(k «)+-', e—-,'~s/k (83)

and ReB.s=Ss(k s), which all derive from (A.20).
We find on their account, after some manipulations,
the result

(k s)'
ReI'4 —— —S(k'+ x')

(k. «) (k—«) s—2[Pcs—(k. «)s]
—6-1

k'x' —(k.«)'

[2P/P —(k «) (P+xs)] (87)
16m3K2k

It is to be noticed that the 8-dependent term of Eq.
(86) may be put, owing to (72), into the form 2EQr, .
Likewise, on account of (73), the 0',-dependent term of
Eq. (87) may be written as 2ESO~s. With the results
(58), (86), and (87) and the preceding remarks, Eq. (46)
may be given the form

k(x' —k «) g /M['=
+-',m' . (84)

kV —(k «)' 1 LXZ

X Qs 1+2EQ,(k—«)4—+xnZg, (88)
(k—«)' 7r2In the case of 04, it should be noted that the real

parts of the terms of Eq. (67) may be calculated using
Eqs. (82), (83), (70), and (71). We thus finally find

2E—[e.—(1 «) ](Il
4mK m'

8
psxs (k ' «)s](ps+ Ks)

4m'O'K

+[2Pxs—(k «)(jP+xs)](P—k «)

In view of expressing the differential cross section (6),
we now introduce the usually adopted coordinate sys-
tem in which x points in the positive s direction and s
in the positive x direction. Let 8 and y be the polar
angles of k in this coordinate system. Then, on account
of (4), we have"

(k—«)'= 2Ex(1 Pcos8) kV——(k «)'= k'x sin'8. (89)
By use of the preceding formulas and the definition of
p of Eq. (A.18), the quantities Qs and occurring in
Eq. (88) may be written

[2kV —(k «) (k'+x')] (85)
4m'kK (k—«) '

2k2

(2Ex)'(1—P cos8)'

We have to consider next the summation of the in-
dividual contributions ReI"„and ReO'„. Addition. of the
results contained in Eqs. (74), (76), (80), and (84)
yields, after expressing in terms of 6, and conveni-
ently rearranging the terms, the result

4 1 (k' —k. «) 6—a'k
Re P I'„=——

2m K

(k—«)'
+(k s)' 4Ee 1—

4m'

EK EK'
X sing cos p + sin'8, (90)

1—P cos8 2m' 4m'

16m'[2Ex�(1—P cos8)]t

k'sin'8cos'y Ex ~k
X 4m' +—cos'qi —cos8—1

iE(1 Pcos8) m & x—
m jpK sin2g ( x

4mEx+4kx'~ —1——cos8
~E 1—P cos8 i

e 2 E k« —x'

4m (k—«)s m pxs —(k.«)'

(k «) (k'+x')
(86)

Sm'kx k'xs —(k. «)'

Similarly, adding Eqs. (75), (77), (78), and (85), we find

Smsx[2Ex(1 —P cos8)]'

X(k(m x)+Ex c—os8—2Em cos8 cos'&o). (91)
"It may be shown that the expression for (k—«)' given in

(89), approximate because of the neglect of terms of order (oZ)s
in Eqs. (3) and (4), is precisely the rigorous one for (ir —«)s+»,
obtained by using the exact form of the same equations. It is in
fact this latter quantity which is of interest; see reference 20.
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The expressions (90) and (91), as well as the coefjj-
cient

I
X&E2

I
2/Emir may be expressed as functions of p,

employing the relations (5) and (3). We also And, with
the help of Eq. (A.26) for (t,

1+286(k—x)4«/2r2 = 1—(2r«/P) .

Thus the differential photoeffect cross section (6),
correct to first order in nZ, can be given the form"

4 P'(1—P')'
daIf, =—Q Z

m [1—(1—P')-:]'

VI. TOTAL CROSS SECTION

Performing the angle integrations in Eq. (92), the
contribution of the F term, found by Sauter, is given by

(1—P')'
t

4 1—3(1—P')-:+2(1—P')

J
MM= +

P2(1—P2) f

The zero-order approximation of the cross section (92) is
precisely the formula of Sauter. It should also be noticed
that contrary to F, the corrective term g does not
vanish for 0=0, m.

( 2r«&
x ~I 1— I+~«b d~, (92)

I i p)
1 P' —1 P—

1+ ln
2P 1+P~

(95)

where we have abbreviated

sin'8 cos'p 1—(1—P'): sin'8 cosset
5=

(1—P cos8)4 2(1—P') (1—P cos8)'

L1—(1—P')~]'
(93)

4(1—P') (1—P cos8)'

[1—(1—P')-:]:

2'I'P'(1 —P cos8):

4P' sin'8 cos'q 4P
X + cos8 cos p.(1—P')' 1—P cos8 1—P'

p2 1—P cos8

1—(1—P')-: [1—(1—P)-:]'+4P', 4P— cos0
(1—P')' (1-P')-:

1—(1-P')-:
cos0 cos p

4P'(1 —P cos8)' 1—P' 1—P'

1-(1-P')' 1-(1-P')'
+ cos8—p . (94)

(1—P')-: (1-P')'-

1.—(1—P') '* 1—(1—P') l sin'8
—4 (1+cos'y) —P'

1—2

d0=
(1—P cos8)'

sin0 cos0
d0=

(1—P cos8)'

P2

2 1 1—p+—ln
P(1—P') P' 1+P

With the above, the contribution of g becomes

The integration of g can be carried out with the aid of
the following formulas

sin'0
d0

(1—P cos8) 2'2

2 (1—P)'-(1+P): (1-P):+(1+P):—

15p' p (1—p2): (1-P'):

sin0 cos0
d0

(1—P cos8)i

4 1(1—P)-:—(1+p)' 1(1—P)f+(1+p)-:

3p p (1 —p2) —:

sin8 2 (1—P)l —(1+P)l
d0= ——

(1—P cos8) ' 3P (1—P')'

sin0

(1—p')' [1—(1—P')*] (1—P)*—(1+P)'
C2dCJ = —-+—(1—P') ' ——(1—P')

J VXP2 p 3 15 15

2 1 23 1 4 2 P pi 2P) 1 1
+[(1—P)-:+ (1+P)'*] —— — +— ——+[(1—P)' —(1+P)**] —— +

I
-+—

I

3 1—P' 15 (1—P')i 15 3 1—P' kP 3 ) (1—P')-' P

1—(1—P')' 1 1—p+, I
(1-P')-:—2(1-P')] 1+—»

2P 1+P
(96)

22 The cross section in ordinary gauss-cgs units is obtained by multiplying formula (92) by A2/cs and giving n and p their usual
values.
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Equation (96) may be given a more suitable form,
making use of the elementary identities

TABLE I.The values of o s/n4Zs vpp, for Al (Z = 13)and A (Z = 18)
as given by the Sauter formula, Eq. (98), and the exact
evaluation. '

(1—P)'—(1+P)'= —{2[1—(1—P') 'j}',
(1—P) '*—(1+0)l =—(21 1—(1—P') lj}'L2+ (1—P') l])

(1—P):+(1+P)'=2P(251 —(1—P') '3} 'L2 —(1—P')'j.
ht //mC2

0.693
2.21

Sauter

29.47
1.68

19.7
1.19

16.2
1.00

Formula (98)
A1 A

22.3
1.24

19.9
1.12

Exact evaluation
A1 A

Thus X may be expressed as a function of the powers
of (1—P') l One finds finally"

1 4 1 34 63
x=——— +——(1—P'):

P' 15 (1—P')' 15 15

25 8
+—(1—P')+—(1-P')-:

15 15

1 1—
+ (1—P') 'L1—3(1—P') '*+2(1—P') l—»

2P 1+
(97)

With Eqs. (95) and (97), the total cross section
becomes

p'(1 —p')
aa=zPon Z

L1—(1—P')'3'

7l QZ )
~+vrnZSI, (98)p)

where po is the Thomson scattering cross section.

~mc'y "' ( e'Zq
o =4v2nZ yp( ) (

1 rr
I hi) & Ae)

(99)

This result entirely agrees with the one obtained by
making the corresponding approximations in the exact
nonrelativistic formula of Fischer. To facilitate the

comparison, we remark that, in the Sommerfeld version

of this formula, '4' the quantity v occurring there is

actually identically de6ned" with the one we intro-

duced in (A.9)—the arc tan function being determined

ss The terms of K in 1/(1 —Ps) cancel.
s4 Reference 3, Chap. 6, Sec. 5, Eq. (6) for p„=nk
"Reference 3, Eq. (VI,5,19b).

VII. DISCUSSION

We will now consider the limiting behavior of the
total cross section (98). The fully nonrelativistic limit

is found by retaining only the zero-order terms of the
expansion of the cross section in powers of 1/c (that is

to say, in powers of P and nZ simultaneously). To do

this, the formula (98) must be considered as written in

ordinary units with n=e' A/c, P=u/c, rpp=8se'/3msc'.

We then find

OI = f) (p), 1—(wrrZ/p) —= 1—m. (e'Z/Ae).

With the above, the nonrelativistic limit of the cross
section (98) becomes

a See reference 4.

in the same way. "Hence, expanding the formula of
Fischer in powers of e'Z/Ao one finds indeed, to first
order, the expression (99).'r

ln the extreme relativistic limit P —+ 1, by keeping
only the lowest power of (1—P')*', we find

4
=-,'rr'Z'&pp(1 —P')'~ 1—rrnZ ——irnZ ~. (100)

15 )
The result (100) is precisely the one obtained from the
extreme relativistic formula (exact in rrZ) of Hall, " if
only first order terms in nZ are retained. "

We finally discuss the range of validity of Eqs. (92)
and (98). The way they involve the quantity wnZ/P, as
well as the aspect of Hall's formula, "suggest that the
error with which these equations stand for the exact
cross sections is of order of magnitude (rrnZ/P)' Equa-.
tions (92) and (98) can therefore be applied to heavier
elements and to smaller velocities P than those of
Sauter. These conclusions are corroborated by the
comparison of the values obtained from Eq. (98) with
those interpolated from the exact computations of
Hulme et al.' (Table I).
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"Indeed, from the definition of the generalized Laguerre func-
tion L„(p), which appears in Eqs. (15a) and (15b) of reference 3,
Chap. 6, Sec. 4, we have L (0)=1.This requires that the deter-
mination of the imaginary power [x/(x —1)g" occurring in the
inte rand of L„(p) should be chosen so that lim[x/(x —1)g"=1,
for x

~

—& ~; hence
—x &arg[x/(x —1))&+x.

The same is true, using the notations of Eq. (VI,4,16e), also for
r—=arg[xp/(xp —1)j; since the imaginary part of [xp/(xp —1)g is
negative, it follows that v &0.We thus And that the determination
of r is the one given by our formula (A.9).

27 To this end it should be noted that employing the noerela-
tivist~c energy conservation relation

k'(1+ ~e~') =2xm,

where (a( =ssZ/As=A/k, one finds

K k +X = —k 1——+f)(~yg~ )2m

Since in a truly nonrelativistic calculation the quantity s/2m
should be neglected in comparison to 1, it follows t'hat

r = arc tan2
(
I

~

= —x+ f) ( ( n ~
).

Hence, in our approximation: r
(
n )

= —~ [I (
.

"H. Hall, Revs. Modern Phys. 8, 358 (1936); the formula for
~I,=g0fTf, on p. 395.

'9 The evaluation, to first order in nZ, of the implicit formula of
Hall has been given by M. Gavrila, Nuovo cimento 9, 327 (1958).
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cussions on quantum electrodynamical topics, as well as roots of equation y'=0, and putting
for his kind interest in this work.

APPENDIX. EVALUATION OF THE MOMENTUM
SPACE INTEGRALS

All the integrals we shall evaluate depend critically
on the screening parameter p. Since in the final result
the limit p —+0 is to be taken, it will be sufhcient to
evaluate them neglecting from the beginning the first
and higher order terms in p, which vanish anyway in
this limit. However, the X dependence of the constant
and divergent (for u —+ 0) terms in p will be determined
exactly. Eventual X approximations will be performed
only in the end. The method of integration we follow
is due to Dalitz. '

Out of the group of integrals

(1,p )
(&o»f) = —d pJ [(p—k)'+fi'][(y —v)'+)I, '](P' —k' —se)

(x,—x,)W[(x,—x,)'—4(x,u+ t) (x,u+~))-'

2(xiu+n)

we find

(xiu+w) (fi—ts) J i (t—f, f t, I—
lnT. (A.6)

[(xi xs) 4(xiu+n) (xsu+t)]l

We now proceed to approximate calculations in p.
Using the explicit form of the quantities appearing in
(A.S), we obtain

(f"—f,) (f' —f,) k' —"—) 'y2ki)~
+ 6)(v') (A &)

(f,
"

fs) (f' fi—) 2k—i[(k—sc) +)i ]

Ã2 k' —Ir' —)~s+ 2kiX )
in] p,

ki[(k —sc)'+)2] E 2ki[(k —sc)'+)t'])

With (A.3), (A.6), and (A.7) the integral Bs then
where k and sr are at the outset arbitrary, we start by becomes
evaluating Bp and shall work exactly in p, for the time
being. "Using one of Feynman's identities, Bp may be
written as

0p= dX d3
J [(p P)2+As]2(ps ks ie)

where we have put

P= vx+k(1 —x),

A'= —x'(k —x)'+x[(k—tc)'+)7—p']+@'. (A.2)

With one of the formulas of Dalitz, "Bp becomes

dx
(A.3)

2ki(k —u)s "s y(ux+v+y)

lnT = ln
~

T
~
+i(r+-,'m)+ g (u);

(A.9)2k), —
—s.& r= arc tan) —

(
&0.

& s' —k'+9 ~

+ 6) (p). (A.8)

We must now specify which of the many values of the
logarithm appearing in (A.8) has to be chosen. To this
end we have to follow the variation of the arguments of
(t fi) and (t—f—s) along the integration path in (A.6).
One finds that, whatever the sign of (Ir' —k'+)'), one
may write

Here we have denoted by

A,
'—p,

'
pP

y=+ —x'+x 1+ +
I (k—sr)' (k—u)'

k' —s' —) '+ps
I= k' —s'

in/ p
ki(k —sr)' ( 2ki(ir —u)')

(A.10)

Changing the integration variable according to x
=(xit'+xs)/(t'+1) where xi and xs(xt)xs) are the The imaginary part of the logarithm of (A.10) is given

by (A.9), taken for X —& 0 and our case lr' —k'+&'&0;
we thus Gnd 7.= —x. For the real part of Bp of Eq.30 This integral has been calculated also in reference 5, Appendix,

under an assumption (X=p -+ 0) not suitable for our case. Besides,
the formula (A.9) derived there is misprinted, the conclusions
drawn being correct.

"Reference 5, Eq. (A.3).

~ According to (4), for relativistic energies the difference ks —~s

is of the order m'; B and X' will then be, respectively, quantities
of 6rst and second order. See also reference 20.

It should be noticed that Bs of (A.8) is divergent in the
limit of no screening (ii~0).

The group of integrals (A.1) occurs in Eels. (28) and
(38), where k and s are now related by (3) and (4). In
this case the result is required only to lowest order in X.

(A 4) Bp of (A.8) becomes then"
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(A.10) we accordingly obtain the value, finite in the
limit p —+ 0,"

S=—ReBp= —m'/[2k(h —x)sj (A.11)

The integral 8; of (A.1) may be put into the form'4

28;=$k;+rid;+{ (k&«);. (A. 12)

Following the variation of the arguments of (t—i) and
(/+i) along the integration path, we find for the
imaginary part of the logarithm of (A. 17) the value
'L—-+~() )j

To lowest order in X, the integrals C~ and C3 of
(A.15) and (A.16) yield

It may be shown that in our case the coefficients $ and

g are given by

im' %3

Cg= ——ln, C3=
k+a

=8. (A.18)

{s'[(2k'+p,')Bp—Ci+Csj
[k'as —(k st)'j

{k'[(k'+a'+)t') Bp—Cs+C,j
[ksas —(k. sp)sj

In this case we note that C& is purely imaginary, whereas

C3 is real."
The expression for 8;, to zero order in p, exact in

(& sp)[(&'+k'+&')Bp —Cs+Csjj, what concerns )t, is obtained combining Kqs. (A.12),
(A.13), (A.S), (A.15), and (A.17). In contrast to that,
to lowest order in X, 8, is expressed with the aid of
(A.12), $ and ri being given by

—(k st) [(2ks+ps)Bp —Ci+Cs]),

(where we have put e=0), whereas {=0 In (A. .13) the
following notations have been introduced:

$=28p-
[k's' —(k.x)']

i7r2

p I' p pCi=, Cs=, C,= ~ . (A.14)
~ [23(3) " E1j(3) & [13[2j

Using one of Dalitz's formulas, " the integrals Ci and
C~ become

X lr'(Ct —Cs)+(k x)C,—(k. sp) ln
k (k —sp)'

(A.19)

i~' k —le+i)t
Cg= ——ln

k+a+i)t

Zp
C2= ——ln

k 2k+iii
(A.15)

IP k
X ~ (It sp) (Ci—Cp)+k'C —is'k ln

(k—sp)'

The analysis of the quoted formula'5 shovrs that the
imaginary part of the logarithm appearing in C& is

i8()t), while that of the one appearing in Cs is:
s[(~/2)+ &(f )3.

The integral C3 may be reduced, by use of one of the
Feynman identities, to

In these formulas, the expressions (A.10) and (A.18)
should be used for 80, C&, and C3, the imaginary part of
in[(a' —k')/(k —x)'j being i~ O—ne t.hus sees that 8;
is divergent in the limit p, —+ 0. However, ReB; is finite
in this limit; indeed from (A.12) and (A.19) we find

ReB=S kPS„~;

dp f' dx
C3= dx (A.16)

~ [(u—P)'+A'7

the notations being the same as in (A.2). Changing the
integration variable in the same way as for Bp and
using the notations of (A.4) and (A.5), Cp becomes

1 (s' —It x)e+pr't. sp/k
Ss= S+—

2 k'a' —(k sp)'

1 (k' —ir sp)6 —m'k
S„=—

kslrs (Q. sp)s—

(A.20)

r 'dx i7rs f'( 1 1 )
(I, ~(Jp y (I, ~[Jp (f, fy;)

irr' )t —i) k—st(
Cs —— ln + f) (li).

f
k —x

i
)i+s

f
k —st [

(A.17)

Ps The conclusions drawn from (A.10) and (A.9) for Re8p are
in agreement with those obtained in reference 5, following Eq.
(A.9).

~ Reference 6, Appendix.
"Reference 5, Eq. (A.2).

We obtain finally, after neglecting the first-order terms
in p,

where we have introduced 8 defined in (A.18).
We now proceed to the evaluation of the integrals

(1,p;,p.p;)
dsp

~ [(p—k)'+p'j[(y —sp)'+)t')'(p' —k' —ie)
(A.21)

where k and x are again at the outset arbitrary. This

"The results (A.18) and others that can be derived from (A.15)
reduce, in particular cases, to those of reference 6, Eq. (A.14).
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task reduces to that of the evaluation of the integrals
in (A.1), since

1 BBp 1 88p 1 (98&
Ap= ——,A;=K,Ap+-

2X N 28m; 2KB

188,
A„=K,A,+—

2 BKj

(A.22)

1 7r2

Ap= ——
X ki[(k—

2p) 2+F2]

In evaluating Ap, one must use, on account of the
differentiation involved, the expression (A.8) for Bp,
exact in X except for terms of order f&(p). (Differentia-
tion with respect to X does not change the orders of
magnitude in &i). As seen from (A.22), A, may be
calculated in two different ways, the erst alternative
being the shorter one. ' We thus find for Ap and A;

1 7r2

A.= ——~
(k' —K' —l&'+2»») [(k—2p)'+l~']

1 7r2

ReAp= —— +ReAp&P&
y (k ~)2(k2 K2)

1 7r2

ReA;= ——~; +Red, &P&,

(k—
2p)

2 (k2 —K')

Z3

(A.25)

ReAp&'&=—O', =—,ReA, &P&= ek;, (A.26)
2k(k —r)4

O' —K' —X2+ 2kiX )-
+k, 1+in/ fi

ki[(k—x)2+&2]2 Q 2ki[(k —2p)2+&&,2] P

+ 8 (&2), (A.24)

where the logarithm has the same imaginary part as
in (A.9). The integrals Ap and 2; occur in Eqs. (36) and
(37), which should be evaluated to zero order in X. We
obtain for their real parts, in this approximation,

X—
k' —K' —X2+2kzX (k—x)2+F2

7r2 ( O' K' X—2+—2 kiX )
in/ &

ki[(k—z)2+$2]2 ( 2ki[(k —z)2+$2] j

where now k and K are related by (4).
The expression of the integral A;;, appearing in (37),

is needed itself only to zero order in p and P. Hence, for
evaluating its real part, in this approximation, use may
be made of Eq. (A.22) combined with (A.20) and
(A.25). We thus find

ReA, ,= (Rz;K,+8k,K+ V~,k,+'ttk, k+'Ubo. , (A.27)
+~&(&a)~ (A 23) where we have denoted

2(k 2p)(k2 —k 2p) K'—k 2p k(k 2p)

g lg —-7r3
[k2K2 —(k.g)2]2 [k2K2 —(k. 2p)2](k g)2 [k2K2 (k. ~)2]2

2k'(k' —k 2p) k' —k. ~
8,= —— 1g + 222r'

X (k —x)'(O' —K') .[k2K2 —(k. 2p)2]2 [k2K2—(k 2p)2](k —2p)2 [k2K2 —(k. ~)2]2
(A.28)

(A.29)

2k2(k 2p)
—(k. x)2—k2K2

[k2K2 (k. ~)2]2

k' —k x k(k. v.)——7r3

[k2K2 —(k ~ /)2] (k—~)2 [k2K2 (k. ~)2]2
(A.30)

2K2(k' v.) (k' tc)2 k2K2

[k2K2 (k. ~)2]2

1 (k' —k. tp)C —&r'k
'U=—

4 O'K' —(k x)2

O'K'+ (k x)2+-
[k2K2 —(k 2p)2](k —~)2 4k [k2K2 (k. 2p)2]2

(A.31)

(A.32)

It should be noted that 8=V as it should, since

A;;=A;;; also, out of the preceding quantities, only (R

has a term in 1/X, which does thus not appear in the
expression of ReA;;&". From the above formulas one
may derive the result

In the second alternative, the expression for 8; exact in p
Lto terms of order 8(p)j must be used. One ascertains that both
alternatives lead to the same result.

3 1 7r2

Re+ A;;= —— K'+k'R.
j=l lt (k 2p)2(k2 K2)

(A.33)

Re Q A;;&P&=kse.
j'=1

As one sees, while the integrals (A.21) are divergent for
&2~0, their real parts (A.25) and (A.27) are finite in
this limit.


