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A basic assumption of the semiclassical treatments of ultrasonic
absorption in metals is that of “collision drag.” This assumption
states that, in the presence of an impressed ultrasonic wave, the
velocity distribution toward which the conduction electrons relax
is a Fermi distribution centered, not at the origin of velocity space,
but at a point, v;, equal to the local, impressed lattice-displacement
velocity. In the present paper, the explanation of this collision-
drag effect in terms of basic electron-lattice theory is investigated
for the case of collisions with thermal vibrations. The effect is
found to originate from those higher-order terms in the electron-
lattice interaction whose matrix elements are bilinear in the
amplitudes of impressed and thermal lattice displacements. In the
conventional perturbation-theory treatment, these matrix ele-
ments give rise to transitions in which both a thermal phonon and
an impressed phonon are simultaneously either absorbed or
emitted. However, in such a treatment, no collision-drag effects
appear. In order to obtain them, it is necessary to alter the
standard perturbation treatment so as to provide for space-time
localization of collisions to within an interval small compared to

the wavelength and period of the impressed sound wave. It is then
faund that the impressed ultrasonic wave produces a modification
in the energy-conservation law of electron-lattice collisions, ey’
= ex/w), in which the effective electron energy, ex, is the Bloch
energy, augmented by a term proportional to the impressed dis-
placement velocity [Eq. (2.30)]. When this modification is intro-
duced into the collision term of the Boltzmann transport equation,
the equilibrium distribution (defined as that for which the collision
term vanishes) is found to be a Fermi distribution centered about
a point in k space equal to mv;/%; for the free-electron model, this
result is in accord with the collision-drag assumption as stated
above. An additional result of the treatment is that the crystal-
momentum conservation law of electron-lattice collisions is altered
by the inclusion of terms linearly proportional to the impressed
strain; this modification, however, turns out to have no effect in
ultrasonic absorption. The final section of the paper is devoted to
an investigation of the effects on energy transfer arising from the
bilinear matrix elements; these effects are shown to be describable,
also, in terms of the collision-drag picture.

INTRODUCTION

N theoretical treatments of ultrasonic absorption in
metals the interaction of the impressed ultrasonic
wave with the conduction electrons of the metallic
sample is generally assumed to take place in two ways.
One of these is via the standard first-order electron-
lattice interaction linear in the lattice-displacement
amplitude; it is in fact the same interaction as that re-
sponsible for the scattering of electrons by the thermal
vibrations of the lattice.

A second basic mechanism of interaction—designated
in this paper as the collision-drag effect—comes into play
when the electrons undergo collisions either with im-
purity centers or with thermal lattice vibrations. In
published theoretical treatments this interaction has
generally been assumed! to take the following form.
Namely in a lattice which is vibrating under the action
of an impressed sound wave, the velocity distribution
towards which the electrons relax, by virtue of collisions,
is a displaced Fermi distribution centered, not at the
origin of velocity space—as would be the case in a lattice
at rest—but rather at a point, v; equal to the instan-
taneous local, lattice-displacement velocity. This as-
sumption corresponds to a physical picture in which the
electron is viewed as colliding with an effective “colli-
sion” center; the latter, oscillating in response to the
impressed wave, ‘“drags” the electrons with it.

In the present paper, the validity of the collision-drag
picture will be investigated from the standpoint of basic
electron-lattice interaction theory. The treatment will
be focused primarily on the case of collisions with
thermal vibrations. In the case of electron-impurity

1A. B. Pippard, Phil. Mag. 41, 1104 (1955).

encounters, the circumstance that the collision centers
themselves move with the local lattice displacement
velocity provides an intuitively obvious explanation of
collision drag. For electron-phonon collisions, however,
the situation is not comparably obvious. In particular,
if thermal and impressed vibrations are assumed not to
be directly coupled to each other—i.e., if anharmonic
terms in the lattice displacement energy are ignored—
it would seem that the collisions of electrons with
thermal phonons are not influenced at all by the im-
pressed sound wave. This conclusion is valid, however,
only in the approximation in which electron-lattice
interactions are treated to the first order in the lattice
displacements. When account is taken of higher-order
interactions, specifically those bilinear in the amplitudes
of the two types of displacements—thermal and ex-
ternally impressed—collision-drag effects are obtained.

In Sec. 1, the matrix elements of the bilinear electron-
lattice interaction are computed explicitly ; they assume
a relatively simple form for the case of interest, in which
the wave vector of the impressed vibration, q;, is small
compared to that of a typical thermal vibration, qx. The
introduction of these matrix elements into the con-
ventional first-order perturbation calculation—that of
transitions between plane-wave Bloch states—yields
nonvanishing probabilities for transitions of the type
k — k4-qx=+q,, in which an impressed and a thermal
phonon are simultaneously either absorbed or emitted.
This calculation is carried out in Appendix II, together
with the resultant energy transfer from the impressed
ultrasonic wave to the combined system of conduction
electrons and thermal phonons.

As pointed out at the beginning of Sec. 2, however,
such a treatment does not, and, in fact, cannot be ex-
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pected to yield collision-drag effects. The reason is as
follows. Collision drag by its very nature—namely, its
dependence on the instantaneous local displacement
velocity—implies a physical description in which colli-
sion events are localized to within a space-time interval
small compared to the ultrasonic wavelength and period.
On the other hand, a calculation of transitions of the
type k — k-tqx=£q; implies a physical description in
which the crystal momenta and energies of the electrons
are defined to within intervals small compared to ¢; and
fiw s, respectively (w;=ultrasonic frequency). By virtue
of the uncertainty principle, these two descriptions are
not simultaneously realizable. In order to explain colli-
sion drag, one requires an approach which features
localizability, and which therefore makes no predictions
about the probabilities of individual impressed-phonon
processes. An approach of this type is developed in
Sec. 2. It consists of a modification of the conventional
first-order perturbation treatment, in which the requisite
collision localization is achieved by the use of Bloch
wave packets (in place of states of sharply defined
crystal momentum). The results of the treatment are
contained in explicit expressions [Eqgs. (2.35), (2.36),
and (2.37)] for the probabilities of transitions, k — k
=qy, in which a thermal phonon is either emitted or
absorbed. The influence of the bilinear matrix elements
is found to manifest itself in an alteration of the energy
and crystal-momentum conservation laws of electron-
lattice scattering. Of particular relevance for collision
drag is the energy conservation law, ey =exz-%wy, in
which each “effective’” energy, ex, is equal to the
corresponding Bloch energy, Ex, minus a term #v;- vy
(where v; is the above-defined local impressed dis-
placement velocity, m the electron mass, and v
=(1/%) gradxEx the expectation velocity in a Bloch
state, k). The connection between this result and the
collision-drag effect is established in Sec. 3 via the intro-
duction of the transition probability expressions of Sec. 2
into the collision term, (9f/df)cn, of the Boltzmann
transport equation. Defining the “relaxed” distribution
as that for which (9 f/9¢)co11=0, one finds that it is equal
to a Fermi distribution, fo(ex), differing from the con-
ventional one in that the energy argument is ex rather
than Ex; this replacement corresponds to the fact that
ex (rather than Ex) is a so-called “summational in-
variant” of electron-lattice collisions. Taking account of
the fact that, to the first order in the amplitude of the
impressed ultrasonic wave, ex=FEy—mv;/%, one sees
that fo(ex) is a Fermi distribution whose centroid in k
space is located at the point mv,/%. This result consti-
tutes a generalized statement of the collision-drag effect,
valid for arbitrary k dependence of Ex; for the special
case of free electrons, the corresponding centroid in
velocity space is v;, in accord with Pippard’s original
statement! of the effect as given above.

The final section of the paper is devoted to an in-
vestigation of the effects on energy transfer arising from
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the bilinear interaction ; it is shown that these effects are
also describable in terms of the collision-drag picture.

1. BILINEAR ELECTRON-PHONON INTERACTION

Let it be assumed that, in addition to the impressed
sound wave, a single lattice vibration mode is thermally
excited. The displacement, R,, of the gth lattice site is
then a sum of the “impressed” displacement

R, i=u;expli(q:-§—wd) ], (1.1)
and the “thermal” displacement
Rer=uy exp[z’(qyg——th)]. ) (1.2)

In these expressions, the u’s are complex vector ampli-
tudes, the q’s wave vectors, and the w’s the associated
frequencies (multiplied by 2). The subscripts ¢ and A
refer to the impressed wave and to the Ath (traveling)
mode of thermal vibration. Finally, it is to be under-
stood that (1) and (2) are each to be supplemented by
their complex conjugates, in order that R, ; and R, ) be
real?; this prescription will be understood to apply to all
equations containing complex lattice-displacement am-
plitudes.

In the presence of the displacements (1.1) and (1.2),
the one-electron potential takes the form

V()= Vo(r)+2 exp[i(qr- §—wx) Jur- gradgV (1)
g
+3 expli(q:- $—wif) Ju,-gradgV (r)
g
+ 2 expli(ar- g—ont) Jexpli(qi- g —wit) ]
g8

X (uy-grady) (w;- grady) V (x)
+(-0) (1.3)

Here, V(r) is to be regarded as a function of the
electron coordinate, r, and of the displacements of the
individual lattice sites, R,; Vo(r) denotes the electron
potential of an undisturbed lattice (R,=0); and grad,
means the gradient in R, space. The second and third
terms give the conventional electron-lattice interaction
in terms of the amplitudes of thermal and impressed
waves, respectively ; the new, “bilinear” potential, which
is the subject matter of this section, is represented by
the fourth term; it will henceforth be denoted by the
symbol V a(r). Finally, the terms in (1.3) denoted by
(+++) are either of third or higher order in the u’s, or of
second order in uy; in the latter case, the inclusion of
such terms would only result in corrections to the
standard electron-lattice relaxation theory, uninfluenced
by the presence of the impressed wave.

2 For the time being, the vector amplitudes, uy, ux*, u;, u;*, will
be treated as classical amplitudes. In the eventual quantization
process, the positive exponentials of (1.1) and (1.2) get associated
with phonon absorption, their complex conjugates with phonon
emission.

3 Under this category one should also include terms proportional
to the products, upuy/, of the displacement amplitudes of different
lattice-vibration modes; these terms are also uninfluenced by the

impressed wave, and hence make no contribution to collision-drag
effects.
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Turning to V,\(r), one may write this term as
V() =2 exp{i[ (qi+aqn) - §— (witwr)t]}
gh

Xexp(iq;-h) (uy- grad,) (u;- gradg,n) V (1),

where

h=g'—g (1.4)

is a relative lattice-site vector. Let it now be assumed
that (uy-grad,) (u;- gradgs) V (r) is “short-range” in that
it vanishes for sufficiently large |h| = /Amax. Then, if

§ilmax<<1, (1.5)

as will here be assumed (the assumption being con-
sidered appropriate in view of the extreme largeness of
the ultrasonic wavelength, 2w/¢;, in comparison to
lattice spacings), one may replace the factor exp(iq;-h)
by unity in (1.4). Then, upon applying the operator
relation

> grady+grad, =0,
h

(1.6)

which is a statement of the invariance of V (r) with re-
spect to a rigid displacement of all particles (lattice
atoms and electrons), one has

Va(n)=—X exp{i[ (qi+a) - §— (witwr)t]}
X (uy-grad,) (u;-grad,) V (r)
=2 exp{i[ (qi+a)) - — (witw)t]} Var(r), (1.7)

where

Vag(r)=— (ux-grady) (u;-grad,) V(r). (1.8)

Having obtained the “bilinear” potential in the form
given by (1.7) and (1.8), one may now proceed to
compute its matrix element, (#k’|V »®|#k), between
two Bloch states, Y.k and ¢, i.e., states of differing

crystal momentum, but belonging to the same band.*

Using the operator relation
m
grad, (uy-grad,V(r))= ;[v,ux -grad,V(r)], (1.9)

where the square-bracketed expression is the commu-
tator of the velocity operator, v= (%/im) grad;, with the
operator uy-grad,V (r), one has

(nk’| V 18| nk)
im .
= —Z ;{ (n]ug vie |#') 'k’ |uy- grad,V (x) | nk)

— (nK’ |uy-grad, V (r) |#'k) (' |u;- vi| %)}, (1.10)
where use has been made of the circumstance that v is
diagonal in k.

4 As will be seen later, this matrix element represents only part

of the total effective bilinear interaction; hence, the use of the
parenthesized superscript (1).
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A useful simplification of ‘(1.10) may be achieved by
noting that

('K’ |uy-grad.V (r) | nk)

= f e ()L gradgV (0) Wi (1)

- f Ve (r+- @) [ur- gradV (r-+@) Wk (r+)dr

=exp[i(k—k')-q] f Yo * () gradg—oV (1) ,x(r)dr

=exp[i(k—Kk')-q]J ('K’ |uy- grad,—oV (r) | nk), (1.11)

where R,_o denotes the displacement of the ‘“zeroth”
site, located at an arbitrary origin; the next to the last
equality of (1.11) obtains by virtue of the translational
symmetry properties of potential and wave functions.
Introducing (1.11) and (1.10) into (1.8), one then has

(k' | V 0 | k)

imlN )
= _75k+Qi+QXv k' exp[ — i (witwn)t]

XZ;{ (n|u; vie | #") (WK’ | un- gradg—oV (1) | nk)

— (k' |uy-gradg—oV (v) |’ k) (%' |u;- vi|m)}, (1.12)

where N is the number of unit cells in the sample, and
where 0y, - indicates the Kronecker delta symbol : unity
for k’=k, zero otherwise.

At this point, it is necessary to recognize that, as
indicated by the parenthesized superscript (1), the
matrix elements (zk’| V@ |#k) do not by themselves
provide a complete description of bilinear transitions,
i.e., those transitions in which both an impressed and a
thermal phonon are absorbed (or emitted). Transition
amplitudes, (nk’|V a®|nk), of comparable strength
arise from two-stage processes, each stage consisting of
an interband (and hence virtual) transition, the matrix
elements for which are provided by the linear terms of
(1.3). Denoting the second and third terms of (1.3) by
the symbols Vi(r) and V(r), respectively, one has,
according to standard second-order perturbation theory,

(nk’ | V 2@ | nk)
(”k,l Vkln,) k+q1) (1’1:’, k+q%| V‘»I"k)

n'#n Enk—En’,k—f—qi—hwi
(%k,l V1| nly kl_qi)(nl, kl_q'i] V | ﬂk)
. (1.13)
n’#n EnkI—En',k'—qr;‘{"hwi

In writing down (1.13), use has been made of the
crystal-momentum selection rule for the matrix ele-
ments (#'k”|V;|#k), according to which k" =k-+q.. It
should furthermore be understood that E, = E,x+7%w)
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~+#w;; this condition is imposed in view of the fact that
(1.13) [together, of course, with (1.12)7, is to be used to
compute real transitions.

It is now proposed to utilize the extreme smallness of
¢: (and w;) to approximate (1.13) by the relation

(k' | V 2@ | k)
(nk' [ Va|n', k+q.) (0'k| V ;| nk)
Eux—Epx
(nk' | V| #'k) (', K’ +q;| V| nk)
For— Eorer

n'#n

. (1.19)

n'#n
where (n'k|V ;|nk) is to be understood as the limit of

(0, k4-q;| V| nk)= e iwit
X @' ket s g expliay gui grady V() [ k), - (1.15)

as ¢; goes to zero (w; being kept fixed in the time
exponential). By applying the translational symmetry
properties of the potential and the Bloch wave functions
in a manner exhibited by the various steps in (1.11), one
readily establishes that the right-hand side of (1.15) is
equal to

N, k+q;|u; grade_oV (r) | nk)e @it
which, in the limit of q;=0, becomes

N(@, k|u;-grad,V (1) | nk)eiit
=(n', k| X, u;-grad,V (r) | nk)eiwst,

The utilization of (1.6) then yields
(n'k|V ;| nk)=— (n'k|u;- grad,V (r) | nk)e—ivit

=— (k| u;-grad,Vo(r) | nk)e—@it, (1.16)
the last equality holding by virtue of the fact that all
derivatives are evaluated for R,=0, at which V()
=V, (l‘)

It should now be noted that, since the one-electron
Hamiltonian for the undisturbed crystal is

Ho=(1/2m)p*+Vo(1),
one has
grad.Vo(r)= (i/h) (pHo— Hop)

= (im/h) (vHo— Hov), (1.17)

so that
(n'k|V ;| nk)
= — (im/h) (0’ |u;-vi| 1) (Enx— Epx)e~ it (1.18)

Substituting (1.18) and the equivalent relation for
(nk’| V;|n'k’) into (1.14), one has

(ﬂkl| Vi)\(z)lnk)
im
=—— 2 {(n, K| V|7, k4+q;) (% |0; Vi | 7)
n'#n

— (nlu;vi| ) (0, K —q;| Va|nk) ye—ioit. (1,19)
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Now
(n', K'—q;| V| nk)
=, K'—q;| X exp(igr- g)ux-grad,V () [nk)
) Xexp(— i)
= Nok+ar+a;, k’ exp(—iwat)
X (0, K —q;|uy- gradg—oV (1) | nk)

>~ Nok+qr+aqs, k’ €XP ( - iw)\t)

X (' K |uy-gradeoV (r) | nk). (1.20a)
Correspondingly,
(nk' [ V[ 7/, k+q.)
= Nok+ar+as, k’ €xp(—iwyt) :
X (nk’ | uy- gradg—oV (r) |#'k). (1.20b)

Substituting (1.20a) and (1.20b) into (1.19), one has
(nk’| V 2@ | nk)
= (im/h) Nox+ar+a:, &’ exp[ —2(w;+wr)t ]
X X {(n|us v |n') (K |uy- gradg—oV (1) | 2k)

n'#Zn

— (nk'|ur- grade—oV (r) | ' K) (%' |w;- vi|0)}. (1.21)

The total bilinear matrix element is obtained by
adding (1.21) and (1.12). It is to be observed that (1.21)
is the negative of all the #'s£# terms of (1.12); the final
result is then given by the #»'=# terms of (1.12). Thus

K[ Valk)
= (1/h) Nox+ar+a;, k’ exp[ — ¢ (ws+wn)f Jmu ;- (vie— vyr)
X (k' |uy-grad,—oV (1) | k), (1.22)

where the band index, 7, has been dropped, since all
quantities now refer to a single band.

A significant feature of (1.22) is that the matrix
element, (k’|uy-grad,—oV (r)]|k), contained therein is
the same as that which appears in the conventional
electron-lattice interaction theory; it is, in fact, the
transition amplitude for electron scattering by the Ath
lattice-vibration mode. It is this feature which, as will
be seen later, permits one to express the effect of the
bilinear interaction in terms of such a basically simple
concept as collision drag.?

The generalization of (1.22) to the case in which each
of the two types of phonons—thermal or impressed—is
either absorbed or emitted, is readily achieved, and will
be stated without proof. Namely, all the quantities in
(1.22) remain unchanged except for the Kronecker
delta and the time exponential, which take the forms

8 In particular, (1.22) assures the absence of new electron-lattice
interaction parameters which, in general, would be expected to
occur with the introduction of higher-order matrix elements,
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Sk qr+q,, k’ and exp[ — (Fwrzw;)l ], the notation =+ re-
ferring to phonon absorption and emission, respectively.

Equation (1.22) (generalized as indicated above),
together with the in-band matrix elements, (k’| V|k)
and (k’| V;|k), of the first-order terms of (1.3), consti-
tute the basic ingredients for the treatment of problems
involving the simultaneous interaction of conduction
electrons with thermal and impressed lattice vibrations.
In the following sections, it will be shown how, under the
appropriate conditions, the transitions associated with
these matrix elements give rise to collision drag.

2. TRANSITION PROBABILITIES

In the event that the mean free path of electrons is
large compared to the wavelength of the impressed
sound wave, the effects arising from the bilinear inter-
actions may be treated straightforwardly. Namely, one
inserts (1.22) into the conventional formulas of first-
order perturbation theory, and thereby obtains transi-
tion probabilities from which one may compute, e.g.,
transfer of energy from the ultrasonic wave to the con-
duction electrons and thermal vibrations of the metal.
This particular calculation is, in fact, carried out in
Appendix II of the present paper. However, as has
already been discussed in the Introduction, such an
approach does not yield specific collision-drag effects—
at least, none in the sense of Pippard’s assumption,!
which expresses them in terms of the local lattice-
displacement velocity, v; such effects could be expected
only if the domain of collision is localizable to within a
wavelength, and if its temporal duration is capable of
specification to within a period of the impressed sound
wave. These requirements, however, are not compatible
with a description of electronic states in terms of infinite
plane waves; hence, the conventional theory, in which
one computes transitions between states of sharply
defined wave vectors k and k’, will not yield collision-
drag effects. In particular, if the required space-time
localization is to be achieved via a wave-packet ap-
proach, as is the case in the present paper, it will be
necessary that the wave-vector and frequency spreads
(Ak and Aw~woAk) of the wave packets be large com-
pared to ¢; and w,, respectively. (v, is the velocity at the
Fermi surface.)

In the event that the electron mean free path, /,, is
small compared to the wavelength of the impressed
sound wave, it is all the more necessary to tolerate wave-
vector and frequency spreads in excess of ¢; and w;. In
fact, they must be large compared to 1/7, and vo/l., re-
spectively; otherwise, quantal, multiple-scattering ef-
fects would have to be considered explicitly.

On the other hand, there does exist an upper limit to
the magnitude of Ak, which is determined by the
requirement that the resultant uncertainties in the
wave-vector and energy conservation laws of electron-
lattice scattering,

k’'=k=+q,
Ek'=Ek:’:h€0)\,

(2.1)
(2.2)
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be sufficiently small to permit their application to
transport problems. A discussion of this requirement is
presented in Appendix IIT; it is shown therein that it
corresponds to the condition

AR To/xT, (2.3)

where « is Boltzmann’s constant. Since Ak also has to be
large compared to ¢, it is necessary that

q:&hvo/T. (2.4)

In what follows, (2.4) will be assumed to hold. It is
shown in Appendix III that this condition does not
impose any significant restrictions on the application of
the theory to experimental conditions.

A typical electron wave packet is built up as a
superposition of Bloch waves, thus:

Y(r) =2k A(Kyx(r) exp(—iExt/%).  (2.5)

It is convenient to choose 4 (k) to be the space-Fourier
transform of a function, e***G(r— ro), which, in essence,
represents the space-probability amplitude of the wave
packet. Thus

N+

fe“"“‘k) IG(r—ro)dr,
%4

AK)= (2.6)

where V is the volume and V the number of unit cells of
the sample, ko the ‘“wave-vector centroid” of the
packet, and G(r—r1,) a function which, on the one hand,
varies little over a thermal-phonon wavelength, and, on
the other, differs from zero only for | r—r,|<<);. Equa-
tion (2.6) may be written in the form

A(k)=¢itk® 1B (k), 2.7

where

B(k)E(N%/V)fei(k"‘k)"G(r)dr (2.8)

is the space-Fourier transform of ¢ *G(r). In view of
the properties of G(r), it is apparent that, whereas
B(k)—and hence A4 (k)—differs from zero only for
| k—ko| Kqn, it also varies sufficiently slowly that in the
Taylor expansion

B(k+q,)=B(k)+q; gradiB(k)+- - -,

each term is an order of magnitude smaller than its
predecessor.$

It is of interest to evaluate the Fourier sum of (2.5);
this evaluation may be carried out with sufficient accu-
racy as follows. Writing

(2.9)

Y= Nt 1y (r) = N3 kotkn 1 ko1 x,(1),

where Ux(r) is the periodic part of the wave function
(normalized per unit cell) and k,=k—kq is the relative
6 In fact, the degree of smallness is ~¢;/A%, where Ak, the spread

in k of the wave packet, is related to the spread in r, Ar, of G(r)
by the standard uncertainty formula AkAr~1.
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wave vector (referred to the wave-vector centroid, ko),
one observes that Ug(r) is a sufficiently slowly varying
function of k that, over the relatively small range of k,,
Uko+k,(r) may be approximated by Uxko(r) for all r. On
the other hand, k-dependent terms in the exponentials
behave altogether differently (i.e., for sufficiently large r
and ¢, the factors e**'* and exp (¢Ex/%) vary arbitrarily
rapidly with k). One thus has for (2.5)

Y (r,t) = Uk exp{i[ ko- r— Exot/% |} (1/V)
X3« A (k) exp[ik, (x—viot) ]+ - -,

which, in view of (2.6) and Fourier’s theorem, may be
written as

Y(1,t) = Uk exp{i[kor— Exet/% |}G(r— 10— Viot). (2.10)

According to (2.10), the wave packet, in essence,
consists of the Bloch function yxo(r) exp(—iExet/%),
modulated by the relatively slowly varying amplitude
function, G(r— ro— vi!) ; this amplitude function moves
uniformly with velocity vk, and hence possesses the
required quasi-classical behavior.

With these preliminaries out of the way, one may now
consider the scattering undergone by the wave packet
under the simultaneous action of (1.22) and the ordi-
nary electron-lattice interaction’

(k| V\| k) =Nox’, k+qx exp(—iwxl)
X (K |uy-gradg—oV (r) | k). (2.11)

This scattering will be computed according to first-
order perturbation theory. Writing

lpsc:Zk’ Asc(k,)‘l/k’(r) eXp(—iEk’l/h)a
one has
04 50(K")
ih—(%h:exp[i(Ek»—Ek—hwx)t/h]
XN (&' |ux- gradg—oV (r) | k)4 (k)

+>" expli(Ew— ExFa;—fionFhws)t /%]
) «

imui
e -
/2

XN (K [uy-gradg—oV (r) | k) A kFqs,

(2.12)

where k has been fixed at the value k=k’—qx (i.e., that
value which satisfies the wave-vector selection rule for

7 In what follows, the in-band matrix elements, (k’| V;| k), of the
impressed deformation field will be ignored. This is done primarily
in the interests of simplicity. There is, in fact, no intrinsic relation-
ship between the (k| V{f’k) and the matrix elements of the
bilinear interaction; in principle, the (k’|V:|k) may vanish.
(Indeed, in the case of a transverse wave, the conventional matrix
element, applicable to a spherical energy surface, does vanish.) A
discussion of the effects to be expected from the eventual inclusion
of the (k| V;|k) will be given at the end of the section.
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ordinary electron-lattice transitions), and where the
sum, Y 4, goes over the two possibilities of absorption
and emission of an impressed phonon, in accordance
with the text subsequent to Eq. (1.2). (It is thereby to
be understood that the vector amplitude factor, u,, is to
be replaced by its complex conjugate, u;*, in the
“minus” emission term.) '

Integrating with respect to time from —7/2 to
+T'/2, and replacing 4 (k) by B(k), according to (2.7),
one has

e k0rod o (k)
=A(Ek/——Ek—hw)\)N(k/ I u)- gradg=oV(r) l k)B(k)

7
Xe"“‘"”-{—% Z A(Ek' — Ek¢qi—hw)FFhw¢)mu,-
(1)

- (vi— v ) N (K |y gradg—oV (r) | k)

+Bk_qie—i(k*qi)~ro’ (213)
where

eieTl2h— g—izT2h ) sin(xT/2%)

Alx)= = .

(2.14)

% x

It is now to be observed that, apart from the ex-
ponentials, e~ #T4) 70 and the A’s, the q; dependence of
the right-hand side of (2.13) is of the slowly varying
type represented by (2.9). As far as the A’s are con-
cerned, their q; (and w;) dependence may also be
considered slow provided that one limits the “inter-
action” interval, T, in (2.14) sufficiently. In particular,
for A(Ex'— Ex¥q;—funFhw;) to be representable as an
expansion about the point q;=0, one requires

q:* gradkEkT/h:i:w.;T= (ql . ‘Z)k:l:qics) T<<1,

which, since |vi| is generally >>¢, (the velocity of
sound), reduces to

| vil| TN (2.15)

The significance of (2.15) is that interaction time
intervals must be taken small enough so that the
collision can be localized to a region of linear dimensions
small compared to the impressed wavelength. As
pointed out at the beginning of this section, such
localization is a basic feature of the present treatment.
Admittedly, the arbitrary time-chopping procedure
embodied in (2.15) is not wholly satisfactory. It is used
here in lieu of some kind of ‘“thought-construct,” which
would serve to limit the duration of collisions in a
physically more natural way; such a construct could
conceivably be achieved by the use of localized wave
packets for thermal phonon.®

Using (2.15), then, one arrives at the situation where,

8 A treatment based on the construction of classical lattice-
vibration wave packets, in which the uy are to be considered as
specifiable vectors (rather than as operators), will be given in a
later report.
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apart from the exponentials e~ #*=4) 10 al] the quantities
on the right-hand side of (2.13) are slowly varying func-
tions of q; in the sense of (2.9). One then has, up to
terms linear in q; and w;,

e~ i(ko—k) 1o 4 se (k/)

=N (¥ |ur-grade—ov(r) | k) I A(Eyw — Ex—#uw)\)B(k)

wm
X [l‘l";(vk_ Vi) 2. “ieii‘”""]

)
7
+- Z m(vk— Vk’) . uieiilh"fo
)
X (Fgs- gradi) [A (Ew — Ex—hen) B(K) ]
z
+-> m(vi— Vi) -ugetizrrB(k)
@
a
‘9B

N -
=N (K| ur-grad,_oV (1) | k) l A(Ew— Ex—#an) B(k)

im
X[i‘l';ui(fo) “(vi— Vk')]

‘—%(Vk— Vk') . C,;(l'o) . gradk[A(Ekf— Ek—hw)\)B(k)]

+mv;- (Vk‘“Vk')Bk
0FE

x[A(Ek,—Ek—h;,o]}, (2.16)

where
u;(ro)=u,eti-ro4-c.c., (2.17)
vi(ro)=1wmei-v4-c.c., (2.18)
ei(ro)Eiuiqiei“"o—}—c.c., (219)

are the displacement, displacement velocity, and strain
dyadic® associated with the impressed wave; these
quantities are all evaluated at r=rgand at =0, i.e., the
point in space and time at which the collision is pre-
sumed to occur. In general, of course, the time is some
arbitrary #, so that the factor -7 should be replaced
by eilai-rotwito]

It will now be noted that, up to and including terms
linear in the amplitude of the impressed sound wave,
(2.16) is equivalent to

9 Actually, e;(ro) is not quite the strain dyadic, since the latter
is by definition a symmetrical tensor, in contrast to the right-
hand side of (2.19), which is clearly unsymmetrical, and which, in
fact, includes the rotational part of the displacement.
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e—i(ko—k)-roAsc(k’)
= (K| ux-gradyoV (1) | &) expl (im/B)u(xo) - (vi—oa)]
XA(EkI—-Ek—-xi'—'hwri—mVi‘ (Vk— Vk'))
XB(k—" ¥;),
x,=-+ (m/ﬁ) (Vk— Vkl) . ei(l‘o).
Upon taking the absolute square of (2.20), one obtains
| Ase(K) 2= (/%) | (K'|ux- grads—oV (1) | k) |2
XL Ew — Ex—ci—hor+mv;- (Ve— Vi) ]
X |Bk—xs) |2, (2.22)

(2.20)
(2.21)

where

where
4 sin?(xT/2h)

=72 2
Y |A()]

(2.23)

Qx)=

is the energy-resonance function introduced in Sommer-
feld and Bethe’s article.!? It has the property that

limQ(x) = 2775 (x),

T—®

(2.24)

where &(x) is the Dirac delta function.
It is convenient to change the notation as follows:
instead of k being taken equal to k’—gqa, it is now to be

defined as

k=k’——q)\—m. (225)
In terms of this new definition of k, (2.22) takes the
form!!

| Aso(K') 2= (V2/52) | (&' | r- grade—oV (r) | k) |2
X[ Ew— Ex—hox+mv;- (Ve— Vi) ]
X |BW)|-

Equation (2.26) states that | 4.(k’) |2, the probability
that, at time (=7T/2, the electron is to be found scat-
tered into a state k’, is the product of two factors. One of
these, | B(k)|?, is the probability that, initially, at time

= —T/2, the electron is in a state k (independent of
other features of the wave packet, e.g., phase or ampli-
tude relationships between the different Ay). It is then
appropriate to consider the remaining factor to repre-
sent the probability that an electron makes a transition
from k to k’ (while absorbing a phonon of mode X). If
this interpretation is accepted, one then has for the
transition probability (per unit time) the expression

PNk —K)
= (VD) | (K |- grad,—oV ()| k) ?
XL Ew— Ex—haox+mv;(vi— Vi) ]
KXok, k' —qr—xik, k%), (2.27)

10 A, Sommerfeld and H. Bethe, Handbuch der Physik (Verlag
Julius Springer, Berlin, 1933), Vol. 24, Part 2, p. 514, Eq. (34.34).

11 The small change in the matrix element (and in vy) arising
from the redefinition of k, is ignored in (2.26); this change involves
only the magnitude of the transition probability, but not the
selection rules for wave-vector and energy conservation which, as
will be seen, are the important effects of the bilinear interaction.

(2.26)
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where the notation x;(k,k’) is used in recognition of the
fact that x; depends on k and k’ [via the factor, vi— vy,
as shown in (2.21)7].

It will first be noted that, in the absence of the im-
pressed wave, (2.27) reduces to the standard transition-
probability expression for electron-lattice transitions.!?
The effects of the impressed wave are then seen to be
twofold. Firstly, the wave-vector selection rule is
altered, in that the difference between initial and final
wave vectors, previously equal to the phonon wave
vector q, is augmented by the term x;(kk’). Second-
arily, the energy conservation rule no longer holds;
instead, in the transition from k to k’, the combined
energy of the system of electron and thermal phonons is
increased!® by an amount mv;- (Vir— V).

An alternative way of stating these results is as
follows. Firstly, it is expedient to introduce a ‘“local”
wave vector

ki=k+ (m/%) vi-e:(xo). (2.28)
Equation (2.25) then becomes
k/'=ki+q. (2.29)
Similarly, one introduces a ‘“local’”’ energy
ex=Ex—mv; V. (2.30)

Inserting (2.28) and (2.30) into the Kronecker delta and
the energy-resonance factor of (2.27), one then has

POk — k)= (N¥/#T)| (K'|ux-grade—oV (r) | k)|?

Xﬂ(ekf - ek—ﬁw)\)lSkl, ki’ —ax. (2.31)

It will later be seen that the occurrence of ex and exs, in
place of Ex and Ey, in the argument of Q(x), is of crucial
significance for the explanation of the collision-drag
effect.

At this point, one may readily generalize to the case
in which thermal phonons are emitted, as well as
absorbed. One has, in place of (2.31),

Pigy® (k— k)= (V¥/#*T) | (K| ux-grad,—oV (r) | k) |*
Xﬂ(ek:— Gk:Fhw)‘)akl’, kiq), (232)

where the plus-minus sign refers to the two cases of
absorption and emission of thermal phonons, re-
spectively.

For application to transport problems, two further
steps are needed. One of these, the introduction of (2.24)

2 See A. H. Wilson, Theory of Metals (Cambridge University
Press, Cambridge, 1953), second edition, p. 258, Eq. (9.32.3). In
comparing this equation with (2.27) of the present paper, one
should note that (a) Wilson’s Q(x) is 3 that of (2.27), and that (b)
Wilson defines the transition rate as a time derivative, rather than
as a time average. The two definitions are in effect equivalent
since they are both used only in situations in which (2.24) holds,
so that the total transition probability is linear in T'.

1371t is, of course, to be understood that, strictly speaking, all
final energies are allowed ; the phrase ‘“‘selection rule’ refers to that
choice of Ey for which the argument of Q(x) vanishes.
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into (2.32), is permissible for the transport problems of
interest, in which it is assumed (see Appendix IIT) that
the energy variation of the characteristic transport
quantities (e.g., distribution functions) is small over the
effective width (~%/T) of the resonance function Q(x).
The insertion of (2.24) into (2.32) yields

Piy® (k— K)= (2rN*/1) | (K'[ux-grad,—oV (1) [ £) |2
X&(ek:— ék:Fhw)\)(Skl’, kitqn. (233)

Equation (2.33) is the standard expression!* for the
transition rate; it possesses the two features of being
independent of the collision-time interval, 7, and of
providing infinitely sharp energy selection.

The second step is to render explicit the dependence of
(2.32) on the lattice-vibration state—specifically, on the
initial number of phonons, N,, contained in the Ath
mode. This dependence is contained implicitly in the
complex displacement amplitude, ux. Up to the present,
u) has been treated as a classical field. On the basis of a
simple correspondence-principle argument, one would
take |up|? to be proportional to N,. As is well known,
however, the correct recipe is

Ny
]]u)\(O)IQ,
1

(2.34)

where the upper and lower factors are to be used for the
cases of phonon absorption and emission, respectively,
and where |u,@|? is independent of Na. (It is, in fact,
the absolute square of the matrix element of the quan-
tized uy between states of Nyx=0 and Ny=1.) It then
follows that (2.33) may be written as

P(i)()\) (k — k,) = [ }W(;};)()\) (k — k/)y (235)

A

with a vibration-independent transition probability
given by

Wy ® (= K) =y

X&(Gk'—fkq:hw)\)akz’, ki+qy, (236)

where
Wi, V= 20 N¥/%) | (k' |n© - grad,_V (r) | k) |2 (2.37)

It remains to discuss the question, raised in reference
(6), of the neglect of the first-order matrix elements,
(k’| V i|Kk), of the impressed deformation potential in the
basic equation (2.12) of this section. These matrix ele-
ments give rise to transitions of the type k — k4-gq;,
which, in view of the smallness of ¢; with respect to the
wave-vector spread, Ak, result in an essentially continu-
ous alteration of a typical wave packet in k space—in
sharp contrast to the transitions associated with the
matrix elements (k’| V|k) and (K'| Vi k), which pro-

14 See R. Pelerls, Quanium Theory of Solids (The Clarendon

Press, Oxford, 1955), p. 40, Eq. (2.58); also pp. 123-124, Egs.
(6.37) and (6.39).
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duce changes in k large compared to A% and are hence to
be interpreted as scattering events. The quasi-continu-
ous transitions, k — k==q;, correspond, in fact, to the
classical displacement of the electron in k space, in
response to the action of the impressed deformation
field, the latter being considered as a given function
Vik(r,?) of position and wave vector.!® This correspond-
ence must necessarily obtain for sufficiently long im-
pressed wavelength and, in fact, is the basis of classical
treatments, such as that of Pippard.!

With respect to the subject matter of this paper, the
question of interest is: what is the effect of this quasi-
classical motion on the collisions of electrons with
thermal phonons? Without going into quantitative
details, one may answer this question as follows. In the
limit of sufficiently large impressed wavelength and
vibration period—i.e., large compared to the space-time
domain of a typical collision—the deformation potential
is, to a good approximation, a constant (equal to Ux(r,)
evaluated at space-time locus of the collision). In this
approximation, it is clear that the sole effect of the im-
pressed deformation field is to shift the energy of the
electrons by an amount Uk (r,f) ; the immediate conse-
quence of such a shift is that the argument of the delta
function in (2.33) becomes'® (ex+ Vi — VxF/wy). This
modification, being essentially unrelated to collision
drag, will be ignored in subsequent sections.

The above qualitative argument has been confirmed
by detailed, though at present preliminary, calculations,
which it is hoped to incorporate in a subsequent
report.!’

3. TRANSPORT THEORY

The basic expressions (2.35) and (2.36) for the transi-
tion probability of electron-phonon collision—expres-
sions which contain the first-order effects of the
impressed wave—will now be introduced into the colli-
sion term of the Boltzmann transport equation.!® The

15 In the standard text-book case in which (k’|V;|k) depends
only on (k—k’)=oq;, Vx(r,t) is independent of k, and may then
be regarded as an ordinary potential energy; generally, however,
the k, k’ dependence of the matrix element will be more complex,
requiring a dependence of ‘Vk(r,t) on k. Physically, such a situa-
tion means that the additional potential energy experienced by the
electron, in response to a given lattice deformation, depends on its
location in k space, as well as on the local strain.

16 It may here be remarked that in the standard treatments in
which Dy is taken independent of k, the effect disappears.

17Tt is perhaps of interest to quote an expression for Uy (r,?)
which was obtained in the course of these preliminary calculations.
It reads )

Vk(r,t)= (k+3q:| Vil k—3q:)e?d T @it 4cc.

18 The validity of this procedure will here be assumed, in com-
mon with other treatments based on the Boltzmann transport
equation. In the case at hand there is present the added feature of
localization (the distribution function, f(k), having also to be
considered a function of position, specifiable to within a distance
small compared to the ultrasonic wavelength). A discussion of the
significance of this localization, in relation to the requirements of
energy definition in transport theory, is given in Appendix III.
The more general question of the validity of introducing any
spatial variation into the Boltzmann equation for a degenerate
Fermi gas lies outside the scope of the present paper.
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general form of this term is

(af/at)coll
= g_}:, (VAW O = k)+(NV+ D)W, V(& — k)]

X f)[1—f(k)]
=[NP (k—=K)+ W+ 1DW o, @ (k—k) ]
Xf(B—f&)T}. (3.1)

It will be noted from (2.36) and the Hermitian
property of the matrix element contained therein, that
W™ (k— K’) satisfies the basic reversibility relation

WPk —K)=WHME — k), (3.2)

so that (3.1) may be written as

af
().,
= X%,{D\Hf(k') (11— f&)— (Nx+1) f(k) (1— f(k'))]
XW®(k— k)
FLV+ D f(K) A= f(k))— N f(k) (1= f(#))]
XWp®Pk—k)}). (3.3)

Corresponding to (3.1), one may write down an
equation for (dN)/dt)co11, which reads

MY~ s w0
)=

XENH+DW P (k— k)

—N\Wp®k—-k)]. (3.4

With the use of (3.2), this equation takes the form
(ON/98) con= E{ {/®&)[1— fK)I(Vr+1)— f(k)

X[A—=fR)IN W Nk —K). (3.5)

The substitution of (2.36) into (3.1), (3.3), (3.4), and
(3.5), in place of the conventional expressions for
W™ (k— k') (in which k; and e reduce to k and Ey,
respectively), automatically incorporates the effects of
the bilinear interaction into transport theory.!®

In what follows, the phonon population, Ny, will be
assumed, as a result of other unspecified interactions, to
be in thermal equilibrium with a temperature reservoir,

19 Tt should here be remarked that, since (2.36) has been estab-
lished only to first order in the impressed amplitude, the above
expressions for (8//8¢)con and (8N1/d¢)c0on are to be employed
only for calculations involving first-order quantities, such as
current density. By way of contrast, as will be seen in Sec. 4, the
computation of energy transfer (a quantity quadratic in the im-
pressed amplitude) requires a special supplementary investigation
of second-order effects.
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so that the Planck distribution
1
—
exp (fuor/kT)—1

holds. With the insertion of (3.6) into (3.1) or (3.3),
Eqgs. (3.4) or (3.5) for (dN»/8%)co11 become superfluous
and will not be considered further.

The point has now been reached where the validity of
the collision-drag hypothesis may be examined. The
problem is to determine the distribution for which
(8f/8%)co111s zero; this is, by definition, the distribution
towards which the system relaxes.

The solution of the problem may readily be inferred
from the solution of the corresponding problem for the
conventional collision integral, in which k and ¢, are
replaced by k and Ex, respectively. In that case, it is
simply the Fermi distribution

(3.6)

fo(Ex)= (3.7

14expl (Bx—¢)/xT]

The occurrence of Ex in (3.7) is connected with the
circumstance that in the standard case, it is this
quantity which enters into the energy conservation law
of electron-phonon collisions. In the case at hand, how-
ever, it is not Ex, but rather ex= Ex—mv;- vk which is
involved in energy conservation. It then follows that the
“relaxed” distribution function is

Jolew) = (3.8)

1+expl (ex—¢)/xT]

Equation (3.8) constitutes the generalized version of
the collision-drag hypothesis—generalized in that it
applies to an arbitrary wave-vector dependence of E.
For the special case of free electrons, one has

E=WR/2m="3mv>
and
€x= %m(vkz— 2Vk . Vz'),

which, to the first order in the impressed amplitude,
may be written as

(3.9

When (3.9) is inserted into (3.8), the resulting distribu-
tion is seen to be a Fermi distribution uniformly dis-
placed in velocity space by an amount v;, in accordance
with Pippard’s’ assumption.

In the more general case of arbitrary k-dependence of
Ey,one has, to the first order in the impressed amplitude,

(3.10)
Substituting (3.10) into (3.8), one obtains a Fermi

ek=%m(vk—-vi)2.

€x= Ek—mvi/h.

2 Some interesting features arise when N is not assumed a
priori to be given by (3.6). Owing primarily to considerations of
space, the treatment of this case will be deferred to a later report.
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distribution, uniformly displaced in k space by an
amount mv/A. ‘
It is of interest to compute the average velocity

WaW=(1/0V) X« Vifo(ex) (3.11)

associated with (3.8). [Here, % is the electron density,
and V the volume of the sample; the meaning of the
superscript (1) on the left-hand side will become ap-
parent shortly.] Noting that to the required (first-
order) accuracy

fo(fk) = fo (Ew)— (mvi/h)- gradkfo'(Ek) s

and performing an integration by parts, one has
successively

<V>Av(1)= ——Zk(mvl/nVﬁ) . [gradka(Ek)]vk
=— (m/nVh) 2« vi divi[ fo(Ex)v.]

=Vi~<m/mk*>;w, (3-12)

where
m/m*= (m/h) gradyvi= (m/#?) (grady)2Ex

is the reciprocal mass tensor, expressed in units of the
free-electron mass, and where the average is taken with
the states weighted according to the unperturbed
distribution, fo(Ex).

Equation (3.12) would appear to signify that the
mean electron velocity associated with the locally re-
laxed distribution, fo(ex), is in general different from the
local displacement velocity, v;. This interpretation is,
however, incorrect, since it assumes tacitly that the
expectation velocity vy for a state of crystal momentum
k is unaffected by the impressed wave. Such an as-
sumption would be valid if an electron were in a given
“nk” state belonging to a single band. Actually, how-
ever, virtual transitions to other bands will take place
due to the presence of nonvanishing interband matrix
elements, (#/, k2=q;|V;|nk), of the first-order electron-
lattice interaction. Associated with these virtual transi-
tions is an additional “induced” component of velocity,
vi®, linearly proportional to the amplitude of the
impressed ultrasonic wave. This component, or rather
its average over the unperturbed distribution function,
fo(Ey), is computed in Appendix I. The result is [see
Eq. (131)]

(3.13)

M@ =v;— v, (/M (3.14)

which when added to (3.12) gives v,;. The average
velocity of an electron gas in local equilibrium with its
lattice “environment” is thus equal to the local displace-
ment velocity.

It should be remarked here that, from the standpoint
of ultrasonic absorption, the (v)a® component is of
principal significance, since it is associated with varia-
tions in the distribution function. These variations are a
necessary prerequisite for the occurrence of relaxation,
which, in turn, constitutes the ultimate mechanism for
the dissipative conversion of ultrasonic energy into
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heat.”* The (v)»® component, on the other hand, ex-
hibits an instantaneous® response to the impressed
wave, unaffected by collisions, and is, hence, relaxation-
less. It therefore cannot play any direct role in ultrasonic
absorption.

4. ENERGY TRANSFER IN COLLISIONS

The problem of ultrasonic absorption in metals is
essentially that of computing the energy transfer from
the ultrasonic wave to the combined system of electrons
and thermal phonons. A component of this transfer,
(8E/3%)con1, results from electron-phonon collisions, as
modified by the bilinear interaction; this component
will be computed in the present section. In the course of
the work, it will be shown that (2.36), though not a
priori valid to second order in the impressed amplitude,
is nevertheless applicable to this computation.

It is most convenient to start by writing down ex-
pressions for energy transfer in terms of the general
Boltzmann collision integral. The energy density of the
system of electrons and thermal phonons is

E=V"1 Zk Ekfk-{— V- Z)\ flw)\N)\, (4.1)
so that
0E d fx
(2).+5e(2)
ot / con k 0t / conl
AN\
Ly hwx(—) 4.2)
A 9t / con

Inserting (3.1) and (3.4) into (4.1), and interchanging k
and k’ in the double summation of the positive terms
coming from (3.1), one has

oE
(—) =1 Z { (Ek'—Ek— hw)\)
0t /7 con Nk, k!

XNAW (1, M(k— k') f(k)[1— f(k")]
+ (Ex— Ex+hw)) (N2+1)
XW ™ (k—k) fk)[1— f(k')]}.

An additional simplification is achieved by interchange
of k and Kk’ in the double summation of one of the terms,
say the second, followed by the use of (3.2) ; one thereby
obtains

(4.3)

oF
(_> =V ¥ (Ew—Exc—to)Win®k—K)
0t / conn Nk K

X{Nf(R)[1— f(&")]
=~ WD fK)1=fk) T} (44)

2 See A. Akhieser, J. Phys. U.S.S.R. 1, 289 (1939), wherein
dissipation is computed in terms of the rate of increase of entropy
due to collisions.

22 The actual time of response is of the order of #/(Epx—Enx),
i.e., the reciprocal of an interband frequency; such time intervals
are in effect zero.
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In proceeding further, it will first be assumed that
(2.36) is valid to all orders in the impressed amplitude.
It then follows that, by virtue of the energy delta
function occurring in (2.36),

ex — ex=Tw),
whereupon, with the use of (2.30), one has
Ew—Ex—hor=mv;- (Vir— vy). (4.5)
Substituting (4.5) into (4.4), one has
oE
(—gt—) (,011: |/ )\,%,:k' mvi (Vie— Vi) Wiy ® (k— k)
X{Nf(R)[1—f(k)]
— (D fE)1—-fR) T} (4.6)

An alternative, physically more suggestive form of
(4.6) is arrived at as follows. One notes that the
collision-induced time variation of the electron current

density
=V 2ok Vicfx

is representable by an expression similar to (4.4), in
which Ey is replaced by vk (and 7wy by zero, since the
phonon flux is not to be included in j). Thus

(ﬂk) =V1 ¥ (ve—v)WpPk—-K)
0t / conn Ak, K
X{Nf(R)[1— f(K)]

= (N+1) f(&)[1— f(k) T}

Comparison of (4.6) and (4.7) then yields the simple
relation

4.7)

(3E/3t)con=mv ;- (83/08) co1. (4.8)

From the standpoint of the impressed wave, (4.8)
represents an energy loss of the form F-v;, where F, the
effective force per unit volume exerted on the lattice
particles, is given by

F= —m(aj/at)cou. (49)

This expression will be recognized as the so-called
Stuart-Tolman reaction force, evoked whenever the
electron current changes by virtue of interaction with
the host lattice. It should be noted, however, that,
strictly speaking, the Stuart-Tolman effect has to do
only with the ponderomotive force exerted over the
whole body; (4.9) goes further in describing how this
force is distributed over individual volume elements.
The question of the applicability of (2.36) to the
computation of energy transfer will now be considered.
As pointed out in reference 20, the question arises be-
cause of the circumstance that the previous sections
have established (2.36) only to first order in the im-
pressed amplitude, whereas the energy transfer, as
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represented by (4.4), is essentially a quadratic effect. In
other words, if one expands W, ™ (k — k') as a power
series in the impressed amplitude, viz.,

WP k—>k)=2, W™ (k—k), (410)

and carries out the comparable expansion for the right-
hand side of (2.36), it is legitimate toidentify coefficients
only for n=0, 1, to wit?

W(i)()"o) = wkk'mé (Ek' — Ek:f:hw)\)(sk’,kd:q)\, (411)

W iy ™D =0 Omv i+ (vi— Vie)§' (Ew — ExFhwy)
Xﬁk, k':l:q)\—'-a(Ek'_ Ek:Fhwk)

Xm(vVi— Vi) - ;- gradidk, k'+an . (4.12)

These equations are not sufficient for the computation
of (8E/d1)con1; the quadratic term, W, *? (k— k), is
also needed.

However, it turns out, as will now be shown, that
W (™2 (k— K’) enters into (4.4) in such a way as to
permit establishing a correspondence between its contri-
bution and the energy-transfer calculation of Appendix
II. From this correspondence it becomes possible to
show that the use of (2.36) gives correct results, at least
for the space-time average of (0E/d%)cor1.

One proceeds by substituting (4.10) into (4.4) and
studying the nature of the individual contributions,
(0E/dt)con™. Firstly, it is clear that only the #=0, 1, 2
terms play a role (except in the case of large impressed
amplitude, which is not of interest here). Next, upon
considering (3E/d%).1® one notes that, by virtue of
(4.11), the integrand contains the factor (Ew—Ex
— fwon)8 (Exr— Ex—Fiwy) which is zero, so that

(0E/3t) con @ =0. (4.13)

For the same reason, the second term of W ¢, ®? (k— k),
as given by the right-hand side of (4.12), makes no
contribution to (0E/dt)e11V. The first term of (4.12),
when substituted into (4.4), gives the factor

(Ek/ - Ek—-hw)\)é' (Ek»—Ek—hw )\)

= —8(Ew— Ex—hewy).  (4.14)

Inserting (4.14) into the expression for (9E/d?)ewn?,
and comparing with (4.11), one obtains

IE\®
(_) ==V E mve (Ve Vi)W 0 (k= K)

ot coll Nk, k/
XN fR)[1— f(k)]
— (M1 f(R)[1— /() T}

It is at this point to be noted that (4.15) vanishes when
f(k) is equal to the Fermi distribution, fo(Ex)—that

(4.15)

2 Since the k, k' sums, into which (4.11) and (4.12) enter, are in
practice always replaced by integrals, the Kronecker delta,
8k’, k=qy, is to be regarded as a three-dimensional delta function,
and hence comparably differentiable.
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distribution being essentially definable by the require-
ment that

Nafo(Ex)[1— fo(Ex)]
= (N+1) fo(Ex)[1— fo(Ex)]

for all k, k/, and X for which W, (k — k)0 (i.e.,
fOI‘ Ekl = E}r}‘ﬁw)\).

Finally, in considering the integral for (0E/9%)c011?,
one notes that, since W,®? (k — k') is already quad-
ratic in the impressed amplitude, it is appropriate to
replace f(k) by its zeroth order approximation, fo(Ex).
Thus

(4.16)

OEN\ @
(_) =V ¥ (Ew—Ex—ho)W,®?(k—k)
at coll Nk, K

XANfo(E)[1— fo(Ex)]
—(N+1) fo(Ex)[1— fo(Ew) T}

The significant feature of (4.17) is that it is independent
of the actual electron distribution, since it contains this
distribution only in its zeroth order form. In fact,
by virtue of the vanishing of (9E/df)eoni® and of
(0E/dt)eon1® for f(k)= fo(Ex) (as pointed out above),
Eq. (4.17) represents the fotal (dE/dt)econ1 under the
condition that f(k)=fo(Ex), i.e., that the electron
distribution in k space be spatially uniform and constant
in time.

It may now be pointed out that the space-time
average of such a transfer (toa spatially and temporarily
uniform distribution of electrons) may independently be
computed from the first-order bilinear interaction,
(1.22), by conventional perturbation theory, as is done
in Appendix II. The limitation on the use of this theory
in the calculation of W,™ (k— k’), given in Sec. 2,
arises, as explained at the beginning of that section,
from the requirements of space-time localization. For
the special case represented by the space-time average
of (4.17), however, such localization is %ot required;
hence, the results of Appendix II are applicable. In
particular, the space-time average of (4.17) is correctly
given by the right-hand side of (I19), i.e.,

<(aE/aé)coll(2)>Av .
=V ¥ 8(Ew— Ex—hw)ok, kta[mv (Vi— Vi) ]2

Nk, k!

(4.17)

X (/)N fo(E)[1— fo(Ex)].

With this result, the question of the applicability of
(2.36) to the computation of ((dE/3%)co11®)a may now
be resolved by straightforward comparison of the right-
hand side of (4.18) with what would be obtained by
assuming the validity of (2.36) to the second order in the
impressed amplitude, thereby obtaining an explicit ex-
pression for W,®2 (k — k) analogous to (4.11) and
(4.12), and inserting it into (4.17). However, one may
alternatively obtain the expression for ((9E/0t)co11®)a

(4.18)
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which results from (2.36), simply by setting f(k) equal
to fo(Ex) in (4.6) [since, as noted above, (0E/8¢t)c0n®
=(0E/3)c0oni?=0 for f(k)=fo(Ex)]. Noting, then,
that (a) the curly bracket of (4.6) vanishes for f(k)
= fo(ex), (b) only terms thereof linear in the amplitude
of the impressed wave are required, and (c) to the first
order,

fo(Ex) = fo(ew)+mvs- vid fo/ 9Ex
= fo(Ex) —mv;- Vi fo(Ex)[1— fo(Ex) 1/kT,

one readily obtains, upon substitution of the last
equality into (4.6) and use of (4.16),

AE\®
(6—) =Vt ¥ [mvi (v —vi) PW P (k— k')
¢

coll ANk, k/

Nifo(EQ[1— fo(Ex)]
X p .

(4.19)

Then, taking account of the fact that, since the factor
[mvi- (vio—vi) ] is already quadratic in the impressed
amplitude, W,®(k— k) may be replaced by its
zeroth order approximation, Wy*9 (k — k'), as given
by the right-hand side of (4.11), one immediately ob-
serves that the space-time average of the resulting ex-
pression for (0E/df)cn® is identical with the right-
hand side of (4.18). The applicability of (2.36) for the
computation of average energy transfer, and hence of
ultrasonic absorption, is thus established.

The above discussion is by no means intended to ex-
clude the possibility that (2.36) may actually apply to
the computation of instantaneous, local energy transfer.
It appears in fact possible that the treatment of Secs. 1
and 2 may straightforwardly—albeit tediously—be ex-
tended to include second-order terms; the result of such
an extension would quite likely constitute a second-
order verification of (2.36). However, in view of the
circumstance that, in practice, only the average energy
transfer is required, such an extension will not be at-
tempted here.

APPENDIX I
As pointed out in Sec. 3 [in the paragraph preceding
Eq. (3.17)], the existence of nonvanishing interband
matrix elements, (#’, k==q:|V;|#zk), of the first-order
impressed electron-lattice interaction, gives rise to
virtual interband transitions of the type nk — #’, k+q..
These transitions constitute, in effect, a modification of
the basic Bloch states of the system, the modified states,
¥axP(1,0), being given by the standard expression
lﬁn’, k+qi(1’l,l, k+ qil V,' %k)
Epxt+fwi— En’, k+q;
l,bn’, k—q,‘(’ﬂ', k— qz| Vl* l ﬂk) }
Enk—hwi—'En’, k—qq
Xexp(—iE.xt/h),

Y (0,0) = (¥ (D)+ 2

n'FEn

+ 2

n'#n

(11)
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where, in accordance with the text Eq. (1.3),
Vi(r)=> exp{i[qi- §—wid }u;-grad,V(r). (12)
g

Associated with this modification is an additional “in-
duced” component of electron current density; the
computation of this induced component is the subject
matter of the present appendix.

Before any calculations are entered upon, it should be
stated that the actual current density at each point of
the crystal is not to be computed. Rather, one is
interested in a spatial average over dimensions large
compared to lattice distances but nevertheless small
compared to the impressed wavelength. Such an average
would constitute a “macrocurrent” which, at the same
time, would be sufficiently local for application to semi-
classical treatments of ultrasonic absorption.

A convenient way of computing the macrocurrent
density is to calculate the long-wavelength space-
Fourier components of the microcurrent density. For
example, the Fourier component of current density as-
sociated with a given “modified” Bloch state is

%
J'nk((I)‘—‘fe*iq'r —[ Wk O* grad i ®
2im ) .
—¢Yni? grad P ¥ AV,

where the volume integration goes over the whole
crystal. It will immediately be noticed from (I1) that
the only nonvanishing long-wavelength components are
those for which q==-q.. The macrocurrent density is
then

(13)

1
ink<r,t>=;Ejnk<qi>ef“~f+ink<—qz-)e—@'w-rj, (14)

[Jnx(2q;) being a function of time via the time de-
pendence of ¥ ,1® (r,f) ].
An alternative form of (I3) is

jos@ = [V @pmay, (19
where v(q) is defined by the operator equation
oo
v(qQ)=—-Te " grad,+grad,e" 7], (16)
2im

[Tt will be noted that v(q) is not Hermitian, but is
adjoint to v(—q).]

The insertion of (I1) into (I5) yields, without further
ado,

jnk(qi)
. (nk|v(q:) |, k+q.) (0, k+q:| V| nk)
Epx— En', ktq:+hw;
(0, k—q:| V*| nk)*(n', k—q;| v(q:) | k)
Enk‘—En’,k—qi—hwi ’

n'#En

+ 2

n'#n

I
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which, with the usual laws of matrix algebra (in par-
ticular that V;* and V; are mutually adjoint), becomes

ink(qi)
=3 (nk|v(q:) [#, k+q:) (', k+q:| V| nk)

n'#n E,x—En’, x+q:+Tw;
(nk| Vi|n', k—q;) (', k—q;| v(q.) |7k) )
n'#n Enk—En’,k—-qi“hwi '

The evaluation of (I8), while not intrinsically diffi-
cult, is quite tedious, and the results are not simple.
Fortunately, however, what is required is not j.«x(q.),
itself, but rather

J (@) =2« Jux(q:) fo(k), (19)

where fo(k) is the unperturbed Fermi distribution. [ The
replacement of fo(k) by the actual distribution function
would yield corrections to (I9) which are of second (or
higher) order in the impressed amplitude, and hence
negligible.] Now, since the states k and —k have the
same energy, so that fo(k) and fo(—k) are equal, (I9)
may be written as

J(@) =2« Jax(@s) fo(k),
Jox (@) =37 nc(@s)+ jn—x(a:)]. (I11)

The evaluation of J.«(q;) is relatively simple and will
now be carried out.

The procedure is to add to (I8) the corresponding
expression for j ., —x(q:). This expression, which is gotten
simply by replacing k by —k in all terms of the right-
hand side of (I8), will not be written down explicitly;
the important step is to transform it into a form which
is suitable for superposition with (I8). One is able to
achieve this transformation by use of the relationships

Enk:En,—k, (112)
¢nk=¢n,—k*, (113)

which hold by virtue of the so-called ‘“‘time-reversal”
symmetry of the system (in the absence of a magnetic
field). From (I13) and the adjoint properties of the
operators V; and v(q), it is easily shown that

(n, —k|v(@) |, —k+q.)
=—(n, k|v¥*(q)) |7, k—q.)
=—(n,k|v(—q)|#, k—q.)

(110)
where

=— (', k—q;|v(q,)[#k), (I14)
(ﬂ, _k| Vi|"’la _k_qz)z (n; k| Vi*lnly k+q7,)*
= (”,, k“Hlif V'il ﬂk), (115)
similarly,
@/, —k—q:|v(q:)|n, —k)
=—(n, k|v(q:)|n, k+q:), (116)
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Making use of these relations together with (I12), one
may transform the expression for j, —x(q:) to read

jn,—k(q'i)
__ 5 (nk|v(q:) |7, k+q:) (', k+qs| V| k)
n's#n E.x—En’, k+qq;—hwi

(’I’Lk Vz %’,k— i ’}’L’,k'— 0 i k
_5 |Vl ;) ( a:| v(q:) |7 )’(118)
n'#En E,.x—En’, k—qr}‘ﬁwi

in which, apart from the signs in front of the %w,’s in the
denominators, each term is seen to be equal and oppo-
site to a corresponding term of (I8). Hence, upon in-
serting (I18) and (I8) into (I11), one finds that J, x(q:)
and j._x(q:) almost cancel each other, the residual
expression being proportional to fw &K Epx— E pr.

In carrying out the evaluation of (I11), one may
legitimately use approximations of the type

1

Eox—En’, k+¢h'_hwi
1 few;

— 4

= T b
Enx—En' ®x+q; (Enk'_ E, k)2

(119)

and let q; approach zero in the matrix elements. One
then has

Jox(qs) =how: 2

n’#En

(nk|v|#'k) (', k| V ;| nk)
(Enk—'En’k)z
i(%k[ Vi|n'k) (k| v|nk)

, (120)
(Enk'_ En’k) 2
where
v=lim v(q,)
q:—0
is seen to be the ordinary velocity operator
v= (%/im) grad,, (121)
and where
(n'k| V| nk)=lim («', k+q;| V| nk)
q:—0
=—(i/B) (' |u;- pr|n)
X (Eng— Epx)e @it (122)

in accordance with the text, Eq. (1.18). Introducing
(122) and the relation

(w'k|v|nk)= (1/m)(n'| Py|n) (123)
into (I120), one has
 Gweieit (n| px| ') (%' |u;-px|n
Ton(a)= 5 [ P [wi- pic|n)
m n'#En Enk_En’k
| (n|wip| ) (' | pic| ) )

Enx—Ewx
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At this point, one may expediently use Egs. (2.81.2),
(2.81.3), and (2.81.8) of reference 12 (pp. 46 and 47) ; in
the notation of this paper, these equations are equiva-
lent to

1 < (] x| 0) (0| pry| )+ (1| prcy | 0") ('] prcz| m)

m n'Zn Enx—Enx
m 62E}m m 61}]62/
B ok.ok, | Oks
m (91))“;
=— —84y. (125)
4 ok,

Inserting (125) into (124), one has

m
Jnk(qi) ziwz[; gra«dk(ui' Vk)—ui]e*"iwit

9 ([m
=—{ [—— gradg (u;- vy) —ui]e_ i“’”}- (126)
s

Turning, now, to the quantity J.x(—4qs), one readily
establishes from (I6) that

Jnk(—(h')= Jnk*(Qi)
a

m
=—{ [——— grady(u* vk)——ui*]e“"’“l. 127
all %

Then, substituting (I126) and (I27) into the relation
1 4 .
Jox(r)t) =—V_[Jnk(qi)em'r+—]nk(“ qie ] (128)
(which is the analog of I4), one has

1m
Jnk= ———I;[; gradk(vi- Vk)—' Vi:,

1 m
=—[vi———vi-gradkvk],
/3

(129)
1%

where

vi=—[ et reid gy Femile o] (130)
az

is the impressed lattice-displacement velocity [given
equivalently by the text Eq. (2.18)7]. The corresponding
local expectation value of velocity is gotten by dividing
(129) by the electron density (which is V- per occupied
Bloch state), and is

Vo' =v,;— (m/h)v; gradyvy, (131)
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which, when substituted into the equation
(Min=2 Vax™ fo(k), (132)
nk

gives the induced component of average velocity,
utilized in the text Eq. (3.25).

APPENDIX II

In this Appendix, the transitions associated with the
bilinear interaction will be computed by conventional
perturbation theory. From (1.22) [and the generaliza-
tions obtained by changing the signs of either of the
pairs (q:,ws) or (qawx) ], the transitions in question are
of the type

k— k+q+q, (I11)

in which the - sign refers to the absorption or emission
of either kind of phonon—thermal or impressed. In the
light of the discussion at the beginning of Sec. 2, such
transitions are to be regarded as taking place anywhere
in the volume of the sample—in particular in a region
whose linear dimensions are large compared to an im-
pressed wavelength; their time duration (infinite, in
principle) is to be regarded as large compared, e.g., to
1/w;. It then follows that the transition probabilities for
(IT1) will contain the impressed amplitude as space-
time averages, rather than as local, instantaneous
quantities (such as characterize the collision-drag effect).
In particular, interference between the bilinear and
ordinary electron-lattice interactions can no longer
occur, since, starting from the same initial state, k, the
two interactions send electrons to different final states—
k+q and k4-q=+q;; the two types of transitions thus
constitute independent processes, and are to be com-
puted separately.

With these preliminaries out of the way, one may now
write down the first-order perturbation expressions for
the probabilities of transitions (I11). Using the notation
of Sec. 2 [see (2.27)7], one has from (1.22)

Payoy® (k— k)

2

N
=%] (k'|u)\-gradg=0V(r) ’k)! 2’mui, (Vi— Vi) | 2
XQ(Ek’—Ekq:h(U)\:Fhwi)ak" k:f:q)\:i:qi,

or, on going from Q(x) to the energy delta function via
(2.24),

Puyoy®k—k)

2w N?

h:i

| (' [y grade-oV (1) | ) 2| s (vie— Vi) |2

X6 (Ek/ — ExF o Fhw ,;)5k’, Kqr=q4. (IIZ)

In (112) the superscript (&) represents the absorption
or emission of an #mpressed phonon, the subscript (=)
the same for a thermal phonon (of the Ath mode).
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For the utilization of (II2) in transport theory—in
particular, in the computation of mean energy transfer
via an expression of the type of (4.4)—it is convenient to
express the V), dependence of (I12) explicitly (while at
the same time treating the impressed displacement
amplitude as a classical field). Thus [see (2.35) and

(2.36)]
N

Pam®E—k)= {N 1 } Wi (k—K), (113)
A

where
Wpn® (k— k)
= WiV |mu'£' (Vk—‘ Vk’) l 2

X6 (Ekr — Ek:Fth:ﬁwi)ak', kxqakq;, (114)

wiw™ being given by (2.37).

A further feature of significance in the application to
transport theory is that, in writing down the reversi-
bility relation—the analog of (3.2)—one must reverse
the impressed-phonon process, as well as that of the
thermal phonon; thus

Wepn® k—>K)=WaEn® & —k). (II5)
It is then readily shown [by appropriate generalization
of (4.3), use of (II5), and replacement of f(k) by
fo(Ex) ] that the analog of (4.4) is

().,

=V1 ¥ ¥ (Exv—Ex—ho)Wan® (k— k)

N (D
X{N:fo(Ex)[1— fo(Ex)]
— (1) fo(Ew)[1— fo(Ex) I}
=V ¥ ZhoWpo®k—Kk)

Nk k(D)
XAN fo(Ex)[1— fo(Ex) ]
— (=1 fo(Ex)[1— fo(Ew) T},

where N is given by Planck’s distribution, and where
the notation Y., indicates summation with respect to
the two processes of absorption and emission of an
impressed phonon. The last equality of (I116) is based on
conservation of energy, as expressed by the delta func-
tion in W(_;_)()\)(:t) (k — k,)

One may now take advantage of the smallness of #w;
and ¢; to develop (II6) as a power series in these
parameters. This is done most conveniently by expand-
ing §(Ew— Ex—hoyFhw;) and 6k’, k+ar+q; in powers of
#iws and q; [with the understanding that the Kronecker
delta is to be treated as a three-dimensional delta
function, in the same way as done previously in con-
nection with (4.11)7]. It is then seen that if this ex-
pansion is limited to terms linear in %w; or q;, only the

(116)
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term in%w;, containing the derivative, 8’ (Ex — Ex—%w),
of the energy delta function, contributes; since all other
terms contain 8(Ex— Ex—7#wy), and since the curly-
bracket factor of (I16) vanishes for Ey = E,+%w), the
energy dependence of such terms is of the form %8 (x) =0.
One is thus left with

().,

=—=2 3 " (Exy—Ex—w)dk, k+awiee ™
MK

X[ (vie— vie) /AN fo(E)[1— fo(Ex)]
= (1) fo(Ex)[1— fo(Ex) 1}

= Z P (Ek:—Ek—hwy\)6k', k+q\Wk, k’()‘)
Nk Kk

X{Lmv i (vie— vie) POV fo(E)[1— fo(Exr) ]
— fo(Ew)[1— fo(Ex) 1}, (II7)

where V) is the derivative of N, with respect to #wy. In
obtaining the last equality of (I17), use was made of
(4.14) and (2.18); from the latter relation one has
<via;2>Av= 2(})2%7;22 (IIS)
(the subscript x denoting an arbitrary Cartesian com-
ponent) which is used to replace u; by v;.
Utilizing the fact that

Ny =—1/kT)Nr(N\+1),
and that

Nafo(EQ[1— fo(Ew)]= (Na+1) fo(E)[1— fo(Ex)],

when the argument of the delta function vanishes (i.e.,
when Ey = Ex+4%w)), one may rewrite (I17)

(G,

= > ’ 8 (Exr — Ex—hw)\)dk’, ktqawy, xr™
X{[mvi- (Vie= Vi) P
X{A/kD)INNfo(Ex)[1— fo(Ew)]}.

Equation (II9) plays an important role in the dis-
cussion of energy transfer, given in Sec. 4 of this paper.
For this reason, it is desirable to extend its domain of
applicability beyond that indicated by the above deri-
vation. In particular, it is of interest to investigate its
validity in the region of /,/A;<1, for which the transi-
tion-probability expressions (II4) no longer hold.

The method to be used here is a simplified version of
the wave-packet approach employed in Sec. 2 of the
text. The simplification consists in that no?spatial
localization is required; hence, the basic electronic
states may be taken to be plane waves, as in the con-

(119)
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ventional treatment given above. However, in order to
avoid the multiple-scattering problem, the artifice of
limiting the interaction time to an interval, T, small
compared to the mean time between collisions, will be
employed (as in Sec. 2). The result of such a limitation
is that (IT4) will be modified by the replacement

é (Ek/ - Ek:{:hwﬂ:hw -,) —

(I110)

Q(Ekl - Ek:l:ﬁwﬁzhw i),
2nhT,

4 sin2(xT ./ 2%h)
Qr)=—
x2/h?

where

(1111)

[see (2.23) and (2.24)7.

Despite this modification, it is seen that (IIS) and,
hence, the first equality of (I16) are still valid. Further-
more, if (3E/ 1) 011 is defined as the net loss of ultrasonic
energy (rather than as the gain in electron-phonon
energy), so that the ultrasonic quantum energy, 47w,
occurs ab initio in place of (Ex— Exfwy), the second
equality of (II6) becomes superfluous.

At this point it is desirable to take advantage of the
invariance of W0y ® (k — k'), Ex, fiwy, and N, with
respect to changing the signs of the wave vectors k, k’,
q», and q;. [ This invariance is obvious for Ey, Ziw,, and
N>, and can be verified for the collision operator in toto
by inspection of (II4).] The first step is to reverse the
signs of k, k’; and q, in (II6); this reversal is not a
symmetry operation but a simple rearrangement of the
terms of the summation over k, k’, and . Next, one re-
verses the signs of all the wave vectors, invoking thereby
the above-stated invariance properties. The net result is
an expression of the same form as (II6), the only change
being the sign reversal of q; in the Kronecker-delta
factor of the collision operator. Upon adding this ex-
pression to the right-hand side of (1I6) and dividing by
2, one obtains

<(aE/at)coll>Av
=Y X (Fho)Wepon® v (k— k)

NI ()
XANfo(E[1— fo(Ex)]

— (D fo(Ex)[1=fo(Ex) ]}, (1112)

where
Wi, 0@ vk — k')
Q(Ey— ExFhonFhw;)
21k T,

=Wy ™ |mu;- (Vi— Vi) | 2

X3[0x’, ktarqit0k’, karras ] (1113)

From the form of (II13), in particular its symmetry
with respect to the sign of q; it is clear that the super-
script ““(=£),” which was originally introduced to denote
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simultaneous change of sign of q; and w;, may now be
taken to refer to the change of sign of w;, alone.

One now expands the energy-resonance function in
powers of fw;, viz.,

Q (Ekr - Ek——ﬁwﬁzhw 1)

=Q(Ey— Ex—twn) Fhol¥ (B — Ex—ewy).  (I[14)

Upon substituting (I114) into (II13), one notes that the
contribution of the first term of the right-hand side of
(I114) vanishes, leaving

().,

= Z Z (—.hw)2wkk’()\)!mqu' (Vk-—vk:) I
20hT K ()

XY (Eg— Ex—hwn)0x’, k+ax{ N fo(Ex)[1— fo(Ex) ]
— (M1 fo(Ex)[1— fo(Ex)]}, (IT15)

where q; has been set equal to zero in the Kronecker
deltas (since it is now obviously a small correction).

At this point, one takes cognizance of the fact that the
square bracket of (II15) is of the form (En —Ey
—7un)Foy (K’ k), where Fy(k'"k) is “slowly varying,”
i.e., its variation is small over energy intervals <7
Then, if the collision time interval, T, determining the
energy breadth, %/T., of 2(x) be chosen so that

#/T LT,

(1116)

Foy (k' k) may be considered constant, and hence equal
to the derivative, with respect to %wy, of the curly-
bracket factor of (II15) (evaluated at #uwy= Ei— Ey).
(As far as the other “nonresonant’ factors of (II15) are
concerned, namely wi™ and |mu;- (vi—vy) |2, these
may certainly be considered as constant over the energy
interval #/T,.) One is thus left with the factor

(Ekl - Ek—hw)\)ﬂ/ (Ekl - Ek—-ﬁw)\),

which, through an integration by parts, may be shown
to be equivalent to —Q(Ew—Ex—7%w)). One thus ob-
tains for ((0E/d¢)co11)a an expression of the same form
as (I17), except for the replacement indicated by (I110).
Then, in view of the slow variation of V)" and the curly
bracket of (II7) in comparison to 2(x), one may finally
dispense with (I110) altogether [i.e., consider Q(x)
equivalent to 8(x) ], so that (II7) and (I19) are valid for
l/A:K1, as was to be demonstrated.

APPENDIX III

In this appendix, the restrictions on the wave-vector
spread, Ak, of the electron wave packets, introduced in
Sec. 2, will be discussed. For the wave-vector conserva-
tion rule (2.1) to be valid, it is required that

ARy, (II11)
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¢ being of the order of T /%ic, (where ¢, is the velocity of
sound and « Boltzmann’s constant). Since A% has also to
be large compared to ¢, it is necessary that

gLy~ fHic. (I112)

This requirement is easily satisfied, even at tempera-
tures as low as 1°K.

A more severe requirement is imposed by the energy
conservation law (2.2). For this relation to be applicable,
it is necessary that

VARL oy~ T, (I113)

where v is the average velocity at the Fermi surface.
This inequality, together with AZ>>q;, leads to

Qi<<I(T/’h‘Un.

In discussing the significance of this limit, it will be
convenient to consider two cases:

Case I.—The electron mean free path, /., is small
compared to the impressed wavelength. In this case,
(I114) is less restrictive than the corresponding con-
dition

(II14)

1/7e=00/1:&LkT /%, (1115)

which is required for the applicability of the standard
first-order electron-lattice theory to transport phe-
nomena at low temperatures.? According to reference
24, this condition is generally fulfilled at low tempera-
tures (i.e., low compared to the Debye temperature), so
that (I1I4) also holds.

In the case of impurity scattering (which, although
not treated in this paper, is of interest to include in the
present discussion), the situation is different in that the
collisions are elastic; arguments based on that fact are
given in the cited material of reference 24 for replacing
(III5) by the much less restrictive condition

1/7:&8 /%, (1116)

where { is the Fermi energy. (I116) is equivalent to the
statement that the uncertainty of wave packets is to be
small compared to {, rather than to «7'; in that event,
a similar modification should hold for (II14), i.e.,
q+&{ /hvo, which is always satisfied.

2 See reference 14, p. 124, Eq. (6.41), and pp. 139-142.
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Case II.—The electron mean free path is large com-
pared to the ultrasonic wavelength (I>>1/¢,). In this
case, it is first of interest to estimate the limitation on
ultrasonic frequency, imposed by (III4). The latter is
equivalent to

i<V max, (1117)

where

Vmax= (¢s/v0)kT/2x. (I118)
In a typical case (¢;/v0~10"3%, T=4°K), one estimates
ymax~ 80 megacycles/sec.

This frequency, though numerically higher, is of the

- order of magnitude of those attained in the most recent

experimental work.?%:26

It should, however, be realized that, from the stand-
point of the general theoretical interpretation of ultra-
sonic absorption experiments, the above-indicated limi-
tation on the applicability of the present treatment is
actually not very serious. The reason is as follows. It has
been shown, e.g., by Pippard! and by Akhieser et al.,>
that, throughout the domain of mean free path large
compared to ultrasonic wavelength, absorption results
mainly from the interaction of electrons with the first-
order impressed deformation field (as given by its
intraband matrix elements, (#k’|V;|nk). In such a
situation one may, to a good approximation, compute
the absorption by ignoring collisions entirely?®; the
effects treated in the present paper would then consti-
tute a small higher-order correction to such a computa-
tion. The domain in which collisions become of para-
mount importance is that of mean free path small
compared to ultrasonic wavelength; for this case, as
shown above, the treatment of Sec. 2 does apply.

(1255\2\)7. P. Mason and H. E. Bémmel, J. Acoust. Soc. Am. 28, 930
956).

26 R. W. Morse and H. V. Bohm, Phys. Rev. 108, 1094 (1957).

27 Akhieser, Kaganov, and Liubarskii, J. Exptl: Theoret. Phys,
I(Issg)]]{ 32, 837 (1957) [translation: Soviet Phys. JETP 5, 685

19 .

28 See C. Kittel, Acta Met. 3, 295 (1955), who, for the case of
12>1/q:, computes the probabilities of transitions k — k=-q; re-
sulting from the action of the first-order deformation field, without
regard for collisions of electrons with thermal phonons or im-
purities.



