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FIG. 4. Mass absorption coeKcient of gaseous and solid krypton
in the region of the X-absorption edge at 0.86 A.

to 40 ev from the absorption edge. Figure 4 shows the
corresponding result for krypton. The Kossel lines in
the gas absorption spectrum are unresolved, as observed
previously. ' However, as before, the zero of the energy
scale has been assigned by analyzing the edge into
component lines approaching a series limit. Two prin-
cipal maxima are seen in the solid krypton spectrum.
The mass absorption coefhcients were computed as for

' C. H. Shaw, Phys. Rev. 57, 877 (1940).

argon by fitting the observed data to the known ab-
sorption coeKcients at energies far from the absorption
discontinuity. The uncertainty in the plotted points is
approximately &2 cm'/g.

Richtmyer' has shown that x-ray transitions involv-
ing a continuum or band of energy levels having a
sharply defined edge will result in an emission or ab-
sorption edge structure of arc tangent shape. Figure 2
shows such calculated arc tangent points fitted to the
observed solid argon spectrum. The sharp initial rise at
the absorption edge is clearly too high to be accounted
for wholly by such transitions. It appears that x-ray-
induced transitions into the p-symmetry states in the
conduction band of solid argon exhibit strong resonances
for energies 1 or 2 ev less than the ionization energy of
the isolated argon atom. This result is in good agree-
ment with present ideas concerning the formation of
excitation states near the lower edge of the conduction
band in x-ray excited solids.

The initial rise at the absorption edge of solid
krypton, although displaced 4 ev to greater energies
than the ionization potential of the isolated atom, also
shows the steep slope to be expected on the basis of
exciton theory.

"Richtmyer, Barnes, and Ramherg, Phys. Rev. 46, 843 (1934).
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An expression is derived for the effective charge in the Born-Szigeti equation for the dielectric constant
of ionic crystals with the NaCl structure. The derivation is based on a coupled oscillator model in which
the lattice vibrations are coupled to the electronic motions within the ions. The deviation of the ionic
charge from its nominal value is found to be proportional to the difference in electronic polarizability between
the positive and negative ions. Agreement between theory and experiment is satisfactory. Secondary effects
on the index of refraction and the reststrahl frequency are calculated. The model is in semiquantitatIve
agreement with the observed dipole moments of alkali halide molecules.

INTRODUCTION

~ 'HE dielectric constant of an ionic crystal at low
frequencies exceeds its value at optical fre-

quencies owing to the lattice distortion produced by the
application of an electric held. The contribution of a
lattice of rigid ions was first estimated by Born, ' who
derived for an NaCl type crystal the relation

e rt2 —3Ie2/ttQ 2v

where e is the static dielectric constant, e the index of
refraction, e is the volume of a unit cell, e the ionic
charge, I the Lorentz factor, p is the reduced mass of a

' M. Born, Physik. Z. 19, 539 (1918).

rt' 1= (no/v) —(Lrts —I.+4sr), (2)

where e is the index of refraction and no is the polariz-
ability of a unit cell in the lattice. It is customary
to assume that polarizabilities are additive so that for
a diatomic crystal such as NaC1

~o=~o++~o,

neutral ion pair, and 0& is the infrared, angular resonance
frequency for transverse electric waves of inhnite
wavelength.

At optical frequencies, where the ionic displacement
is negligibly small compared to the electronic displace-
ment, we may write
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where o.o+ and no are, respectively, the polarizabilities
of the positive and negative ion in the lattice. Although
this assumption cannot be rigorous, it is known empir-
ically to be a good approximation.

Szigeti' has modified Eq. (1) to take account of the
fact that the long-range interaction of the transverse
waves contributes an additional electronic polarizatiori.
In the limit of zero short-range forces, the Lorentz
theorem holds and 1.=4rr/3; but in fact short-range
forces in ionic crystals are considerable and Szigeti
takes this into account by replacing the electronic
charge e by an effective charge e*.The resulting formula
is in this case

l.00'

e

0.90

o.so

0.70

When there is no optical polarization and the short-
range forces vanish, this formula reduces to Eq. (1).

An equation essential to Szigeti's derivation of
Eq. (4) is

In Eq. (5), Qq is the angular resonance frequency for
mechanical vibration in a sphere of radius small
compared with the wavelength of the vibration. For
this case Lorentz has shown that the long-range
interaction vanishes for a cubic lattice, i.e. the Lorentz
field vanishes. Equation (5) was first given by Lyddane,
Sachs, and Teller. '

For crystals with the NaCl type structure, with which
we shall be exclusively concerned in this discussion, it
may be shown4 that

pDB =68(c44—cis+P), (6)

where P is the bulk modulus, and c44 and cis are the
usual elastic constants. Equation (6) is approximate,
since it is derived on the basis of a nearest neighbor
model. When the forces are central, Cauchy's relation
c44——cis must hold and Eq. (6) is correspondingly
simpli6ed, reducing to the equation given by Szigeti.

In the case of the alkali halides, which are good ionic
crystals, i.e., homopolar bonding may be neglected,
it might be expected that e*=1 in Eq. (4). However, it
is found necessary to take 0.7&e*&1in order to obtain
agreement with experiment. In the case of NaCl, for
instance, if e* is set equal to the electronic charge, the
lattice contribution to the dielectric constant is over-
estimated by a factor of two. The purpose of this paper
is to present a semiclassical model which essentiajly
removes this discrepancy.

It is known from the work of Szigeti, ' and also that

s B.Ssigeti, Trans. Faraday Soc. 45, 155 (1949);Proc. Roy. Soc.
(London) A204, 51 (1950).

s Lyddane, Sachs, and Teller, Phys. Rev. 59, 673 (1941).' S, O. Lundquist, Arkiv Fysik 9, 435 (1955),

I l

4
aO- aO

FIG. 1. The correlation between effective charge and di6'erence in
polarizabilities of the negative and positive ions.

of Born and Huang, ' that factors affecting the value of
e* are (1) overlap, (2) distortion of the ions, and (3) the
noncentrality of the forces. Only the short-range forces
affect e~ since the long-range interaction between the
electric field and the lattice is properly taken into
account by Eq. (5).

Yamashita' has published a quantum-mechanical
theory of the effect of overlap on e*. The results of this
theory are very sensitive to the choice of wave functions
and, according to Lundquist, ' certain terms in the
energy have been omitted. The latter has also derived an
expression for e* which depends on the amount of
overlap and the noncentrality of the forces. His result
is expressed in terms of the lattice spacing and the
elastic constants ci2 and c44. We do not feel that it is
clear from his work that the e* which he discusses is
the same as that used by Szigeti. It is pointed out in
reference 3 that e~ depends on the geometry considered.
In any case, the numerical success of his equation is
only fair.

The point of view developed below is based on an
empirical observation that the values of e* satisfying
Eq. (4) correlate very well with the difference between
the polarizabilities of the positive and negative ions.
This correlation is exhibited in Fig. 1. It suggests that
the value of e* is predominantly determined by the
distortion of the ions (in excess of that produced by
the electric field) arising from their displacement in the
lattice due to an electric held. For example, consider a
NaCl molecule in an external electric 6eld. Each ion
will be polarized by the field in its direction. However,
the positive and negative ions will also move relatively
closer. Their electron shells will mechanically repel one
another, resulting in a relative shift of each electron

' M. Born and K. Huang, Dyeamical Theory of Crysta/ Lattices
{Oxford University Press, London, 1954).

s J. Yamashita, Progr. Theoret. Phys. Japan 8, 280 (1952).
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cloud with respect to its nucleus. This shift corresponds
to an additional polarization. In the positive ion this
mechanical polarization enhances the electrical polariza-
tion, but in the negative ion it detracts. Similar eRects
occur in a lattice. According to our model, such mechan-
ical polarization, which is proportional to the nuclear
displacement, contributes to e*. In the ensuing sections
we shall proceed to formulate this point of view
quantitatively.

where hvol, is the difference in energy between the ground
state and the kth excited state. g, ,„indicates that we
must sum over all the s and p electrons. The correspond-
ing expression for o,z, the polarizability, may be written
in analogy with the classical expression,

g2

~c

g2

where k, is an effective spring constant of the ~th

electron which is equal to the electronic mass nz times
the square of an optical absorption frequency or, .

For our closed shell configuration, we may write
approximately

28 2g2

uz= +
PEG0p fPSc08

2 2
(9)

corresponding to the fact that we may expect the
major contribution to come from the two s electrons
and from two of the six p electrons. The basis for this
approximation may be seen by choosing the orientation
of our spherically symmetrical ion so that two of the
loops of the p wave functions lie along the direction of
the field. The contributions from the p functions along
the y and s directions will be much less than that from
the two in the direction of the field. The contributions
from these electrons and the two s electrons will be
comparable because the major portions of their radial
distribution functions are almost congruent. If cv,'=M„',
Eq. (9) would correspond to an effective number of
electrons Z=4. Actually ~,'=2~~' and Z=3.5 for the
Cl ion according to an analysis by Mayer~ of the
ultraviolet absorption spectrum of the alkali halides,

r J. E. Mayer, J. Chem. Phys. 1, 270 (1933).

MECHANICAL VERSUS ELECTRICAL POLARIZABILITY

We shall assume that only the outer electrons of the
ions contribute to the polarization. In the alkali halides,
all the ions, except lithium, have outer shells with the
same electronic configuration, i.e., two s electrons and
six p electrons. This configuration is nearly spherically
symmetric. Now consider an electric field E applied to
such an ion along the x axis. Then, the induced polariza-
tion p, will be given by

(O~ex~k)(k~ex~O)
P.=2E, Q P (v,.,((v„), (7)

s, p k

s, y Jc

The matrix element (0~ V~k) will in general be
larger than (0

~

ex
~
k) because our potential for a

repulsive force between ions will vary as a high power of
a (or exponentially). Accordingly, the mechanical
polarization for a given force F=eE applied to an
electron will in general be larger than the corresponding
electrical polarization. This fact may also be seen
crudely as follows. A uniform spring of weight lV
hanging in a vertical position extends an amount
equivalent to W/2 applied in a concentrated form at
its lower end.

For the mechanical polarizability, i.e., the polarization
per unit mechanical force applied to the ious, we have,
corresponding to Eq. (8),

1 2m&v, s 2m~v' 2ef+
usr 4ef, 4ef„m(o, s+m ai'v

where the f, may be taken as equal for the s and p
electrons in an outer shell because their radial distribu-
tion functions are almost congruent. Equation (11)
differs from Eq. (8) because it seems more reasonable
to expect the s and p electrons to be displaced by the
same distance in a potential varying as strongly with
distance as does the repulsive force rather than assume
that the force acts equally on all electrons.

If in Eq (9) an. d Eq. (11) we take a&,'=a&v', then
we obtain

usr(ue f(Ze= f(4e, —— (12)

Z is the eRective number of electrons contributing to
the polarizability and is approximately 4. Equation
(12) is not seriously affected by choosing ~ s=2cv„'.
In this case the eRective value of Z is 4.5 instead of 4.
Because the form of Eq. (10) is determined by the
fact that the parallel springs supporting the external
force F all deflect the same amount in order to minimize
the strain energy, a simplified model is suggestedfor
the ion. We think of the ion as consisting of a spherical
shell of effective charge —Z surrounding an incompres-
sible core of charge +Z. Their centers are connected
by a spring of stiRness E&=Zmco2.

Then, the pertinent useful equations for this model
are

ue =Zses jEe, (13)

Ze fZe fue

Egg Eg Zg
(14)

Consider now the ion entering a repulsive field of
force of which the potential is V. Then this potential
will perturb the wave functions of the ion and a
mechanical polarization will be produced which is
given by

(0] Vfk)(k/e~[0)
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—M +d'or„+ = —Ksr+ (r„+ r,+), —
—m+&p'r, +=Ksr+(r„+—r,+)—2k„(r,+—r, )—0,

mrs'r—, =Ksr (r„r, )+—2k„(r,+ r, )=—0,

M—oi'r = Ksr (r—„r, ), —

(15)

(16)

(17)

(18)

MECHANICAL EQUATIONS OF MOTION

Ke shall neglect electronic masses in comparison with
nuclear masses. Consider a diatomic ionic lattice
composed of ions of mass M+ and M . Let r„+ denote
the displacements of the nuclei and associated inner
electronic shells. Let r,+ denote the displacements of
the centers of the outer shells whose effective charges
are Z+ and Z, respectively.

In the nearest neighbor approximation for the NaCl
structure, the equations of motion are

we have
(«e*=e 1—

I

0 Z— Z+) e'
(25)

If we assume Z =Z+—4, the correlation between e*/e
and (n —rr+) presented in Fig. 1 is thus explained.
A more detailed discussion of Eq. (25) is given below.

Z+eE= Ka+r,—++2k„f(r, r,+), — (26)

OPTICAL POLARIZABILITY

To obtain simply a formula for eo from our equations
of motion, we apply a static field 8 and set r„—=r +=0.
Using f to take into account the difference between the
effect of mechanical and electrical forces, i.e., the
effective nondistributed force per charge of an electric
field E is E/f, we have

where
2~„=pQs, (19) Z eE= Ke r, —+2k„f(r,+ r, ) — (2.7)

and the condition

1 1 1 1
+

IJ,Qg' pQ8' E~+ E~
(21)

where pQq', the spring constant in a lattice of rigid
ions, is given by Eq. (6).

It is immediately apparent from Eqs. (15)—(21) that
we suggest that the prominent contribution to the
deviation of e* from e is the displacement of the shell
centers from the nuclei. The resulting lattice may in a
first approximation still be considered composed of
dipoles but with modified moments. The argument is
carried through for the case of zero Lorentz field,
so the Q& obtained for the frequency must be compared
with Szigeti's Qg. The long-range terms are assumed to
be already taken into account by using Szigeti's
formulation.

EFFECTIVE IONIC CHARGE

We note that e* in Eq. (4) is defined by Szigeti by
the equation

p = e*(r„+—r —)/s. (22)

M+r„++m+r,++M r„+m r, =0.

The solution of the foregoing equations for the resonant
frequency Q& is

where

2k„f Z
np =rr@ 1+

E~ Zg

2k„f Z+
np ——ne 1+

EQ Zg

2k„f
1+

Eg

2k„f
1+

(29)

aiid
1/Ka ——1/KE++1/Ke (30)

1/Za ——1/Z++1/Z-. (31)

If, in Eq. (29), we assume Z=Z+=Z, then to a
first approximation we have

ere+= crp+$1 pQas f(ne n—E+)/Z'e' j, —
~e =~ P+~n~sf(~e ~ +)/Zsesj,

(32)

where no+ and no have been estimated by Tessman
et al.' by a least-squares 6t to the observed indices of
refraction.

We note that Eq. (32) may be rewritten as

1 C e*)-
«+=~p+ 1——

I
1—I,

ZE e) '

Utilizing the fact that the induced moment p per unit
cell is given by

p=p++p = (np++np )E=Z+er,++Z er, , (28)

we find

In the shell model, we have

p=ef (r„+ r„) Z+(r,+ r„+—)—Z —(r, —r„—))/v. (23)

1 ) e*~-
1+—

I
1——

I
.

z& e)

(33)

Using the equations of motion to eliminate r,+ and r,—,
we find

Knowing o,o and e* for a crystal, we may now deter-
mine ez+ by an iterative procedure. Starting with
LiF, where the polarizability of the Li+ ion may be
taken as equal to its free ion value' of 0.03&10 "cm',

(Z+ Z
p=e 1+I — IpQas (r„+ r„)/s (24—)— .

&Ksr+ Ksr ~

Comparing Eq. (24) with Eq. (22), and using Eq. (14),
P Tessman, Kahn, and Shockley, Phys. Rev. 92, 890 (1953).' L. Pauling, Proc. Roy. Soc. (London) A114, 181 (1927).
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TABLE I. Polarizabilities in units of 10 ' cm .

eg+
LZ =4. Eqs. (2) and (33) iterated. j +ok

Tessman et al.a

Li+
Na+
K+
Rb+
F-
Cl
Br
I

(0.03)
0.27
1.09
1.62
0.90
3.15
4.42
6.55

(0.03)
0.28
1.16
1.69
0.88
3.00
4.11
6.09

0.03
0.26
1.20
1.80
0.76
2.97
4.13
6.20

a See reference 8.

we estimate o.E for the F ion. This value is now used
in conjunction with the observations on NaF to
determine ng+ for Na+ ion and so on. In this manner,
the values of o,z+ for all the ions may be calculated.
In certain cases, the calculation is redundant and
several values are obtained independently for certain
ions, e.g. , 4.41 and 4.43 for Br, 6.40 and 6.70 for I,
and 1.62 twice for Rb+, all in units of 10 '4 cm'. Average
values of o.~+ and o,o+ are given in Table I where the
values for o,o+ estimated by Tessman et al. are also
given for comparison. The agreement is good although
we should emphasize that from the point of view
presented here a.z+ should be approximately constant
in going from compound to compound and not no+

as assumed by Tessman, Kahn, and Shockley. Strictly
o.~+ must vary somewhat from compound to compound
because the environment of the ion is varied. '

ESTIMATE OF e*

Using the values of n~+ given in Table I and the
experimental values of pQ~', we may now proceed to
calculate e* from Eq. (24). Such a procedure is open to
objection, however, since nz+ has been calculated using
the experimental values of e* to avoid the necessity of
estimating f

We note that Eq. (33) may be recast as follows:

1 ( e*'l
(nB

——nB+)=(np —np+) 1+—
i

1——
~

. (34)
ZE e)

Inserting Eq. (34) in Eq. (25), we obtain after rearrang-
ing

fpnB'[np
——np+]/Ze'e*p

e & 1 f—@furr'[np
—n—p+]/Z'e'

(35)

If f and Z are known e* may be calculated from this
equation using the independent values of no and no+

estimated in reference 8. As before, we take Z=4.
The value of f is then determined by forcing Eq. (35)
to give the correct value of e* for one salt, say NaCl.
The calculated value of e* for the other salts should then
agree with the observed values. The agreement is
shown in Fig. 2 and must be considered very good in
view of all the approximations introduced. The agree-
ment is better for KCl and RbCl if the interated
values of o.~+ are used but worse for the Quorides. The

I I I /
NQBr

KI

AdjUsted To Fit Z=0.5&f
PNQ "I

KBrQ /
/

KCI

o~
RbCI
9 /

y LIF

y QNQF

-030

ED -0.20

O

-O.IO

NQI

I I

O.IO 0.20

ry. QR(ao-a )/ze

{ 0 0+)/Ze

I

0.30

FIG. 2. The calculated and observed values of e8ective charge.
For the calculation, Eq. (35) is used with Z=4, op+ is taken from
reference 8, and f is determined by 6tting one salt, NaCl, to
the theoretical slope.

TABLE II. Calculated and observed values of 1—e*/e.

10 23 no++no
&((pQz2/e2) (10 24 cm3) (1 —e+/e)«iea (1 —e*/e)«ieb (1 —e+/e)obs'

LiF
NaF
NaCl
NaBr
NaI
KCl
KBr
KI
RbCl
RbBr

3.50
3.44
1.71
1.35
1.14
1.54
1.36
1.09
1.45
1.34

0.91
1.16
3.26
4.39
6.26
4.17
5.29
7.39
4.71
5.92

0.13
0.09

(0.26)
0.30
0.39
0.15
0.23
0.31
0.09
0.17

0.15
0.11

(0.26)
0.29
0.37
0.17
0.24
0.31
0.12
0.20

0.13
0.07
0.26
0.31
0.29
0.20
0.24
0.31
0.16
0.18

a Z =4, f/Z =0.53, ep.
b Z =4, f/Z =0.53, or@.' From data quoted by B. Szigeti, Trans. Faraday Soc. 45, 155 (1949).

values of 1—e* obtained by both methods are given in
Table II. The relatively large errors in 1—e* do not
lead to such large errors in the dielectric constant e

which is tabulated in Table III. Repeated reiteration
of e* would lead to a better distribution of the error but
has not been carried out because the errors in the basic
data are not uniformly distributed. It will be noted that
the two sources of experimental data on the dielectric
constant dier more from each other on the average
than either differs from the calculated values, excepting
NaI. The better agreement of the calculated values with
the set "obs I" is due to the fact that f was fixed by
the value of e for NaCl given in that set.
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RESTSRAHL FREQUENCY AND THE
ELASTIC CONSTANTS

TABLE III. Calculated and observed values of
static dielectric constant.

Because of the coupling between the electronic
frequencies and the lattice frequency, 0& does not
depend solely on the properties of the lattice as does
Qz but also on the polarizabilities in a way determined
by Eq. (21). In this model we must replace Qs in Eq.
(5) by Qtt, substituting for (4 in Eq. (21) its value from
Eq. (6). In this way we obtain to a first approximation
an equation for 0&, in a NaC1 structure, namely

LiF
NaF
NaCl
NaBr
NaI
KCl
KBr
KI
RbCl
RbBr

Obs. Ia

9.27
6.0
5.62
5 99
6.60
4.68
4.78
4.94
5
5

Obs. IIb

8.90
5.10
5.87
6.38
7.26
4.85
4.89
5.09
4.92
4.87

Calc.

9.3
5.8

(5.6)
6.1
5.6
5.0
4.8
4.9
5.6
5.0

+2 6a (P+c44 —c12)
. (36)

e+2 . 1+6a(P+c4t cts) f(n—e++ne )/Z'e'
a Obs. I: quoted by B. Szigeti, Trans. Faraday Soc. 45, 155 (1949).
b Obs. II: S. Haussiihl, Z. Naturforsch. 12A, 445 (1957).

A convenient way to compare this formula with
experiment is to compute the compressibility x in
terms of pQ&', etc. and compare x with the observed
value. Following this procedure, we Gnd

generalized Cauchy relation given by Love."No proof
of Eq. (40) is given.

INFRARED SPECTRA

where

X= 6a L1+E S7//ttott', —

(c44 c12)X&

S= ftt Qtt'(ne++ne )/Z'e'. —

(37)

(38)

(39)

In an analysis of the infrared spectra of alkali
halides, Rice and Klemperer" have shown that the
dipole moments of the molecules cannot be explained
by using Pauling's free ion polarizabilities. 4 To get the
observed moments, they used Pauling's positive ion
polarizabilities and arbitrarily adjusted n to satisfy
the relation

The quantities 6a/ttQtt', R, S, and X,b, are given in
Table IV. The agreement is not altogether satisfactory.
We believe that the discrepancies arise from (1)
inaccuracies in the measurement of c44—crs, (2) the
fact that Lundquist's theory is only applicable at O'K,
and (3) the n.eglect of other than nearest neighbor
interactions in the derivation of Eq. (6). The term Jt.'

arises from the failure of Cauchy's relation in the
lattice, i.e., the noncentral interactions. Herpin" has
shown that dipole coupling terms in a simple cubic
lattice do not contribute to the elastic constants but
that the quantity c»—c44 determined by the quad-
rupole coupling is of the same order of magnitude as
terms involving 0,+ squared neglected above. For this
reason alone, Eq. (37) must be regarded as a very
crude approximation.

It is perhaps appropriate to remark here that one
should be able to compute both the temperature and
pressure coefficients of e from Eq. (4), Eq. (37), and
experimental data. If one assumes that de*/dI' =de*/dT
=0, the agreement is quite satisfactory. An attempt to
show that these conditions are approximately satisfied
proved futile because of the uncertainties in the
temperature and pressure variation of c44—c12. The
data suggest, however, that in Eq. (37) E should be
replaced by E.' where

d =ea—(tt++tt-), (41)

(n +n+)a'e+4n n+ea
tt++tt = (42)

The individual electronic moments of the ions are
determined by solving simultaneously the equations

tt+= n+e/a'+ 2n+tt
—/a',

tt =n e/a'+ 2n tt+/a'. — — —(43)

TABLE IV. Comparison of observed and calculated
compressibilities in 10 ' cm'/kg.

LlF
Nar
NaCl
NaBr
NaI
KCl
KBr
KI
RbCl
RbBI

6a/pQR2

1.5
1.72
4.14
5.56
7.28
5.12
6.22
8.27
5.80
6.47

0.26
0.18
0.04—0.01—0.03

+0.02
+0.01—0.01—0.02—0.01

+0.04
0.05
0.07
0.08
0.09
0.08
0.09
0.11
0.09
0.10

Calc. x

1.8
1.95
4.01
5.06
6.40
4.81
5.72
7.29
5.16
5.76

Obs. x

1.5
2.07
4.18
4.98
6.94
5.33
6.56
8.37
6.52
7.78

where d is the net dipole moment, a is the nuclear
spacing, and p+ and p are the electronic moments
whose sum is given by

R'= (c44—cts+ 2P)X, (40) a Adiabatic elastic constants from S. Haussiihl, Z. Krist. 110, 67 (1958).
These values have been converted to isothermal values to obtain R.

where I' is hydrostatic pressure, in accordance with the

so A. Herpin, J. phys. radium 14, 611 (1953).

"A. E. H. Love, ilfathematical Theory of Elasticity (Cambridge
University Press, Cambridge, 1934), p. 620."S. A. Rice and W. Klemperer, J. Chem. Phys. 27, 573 (1957).
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+ ion

Electronic
Branch

TAuLE V. Values of p for alkali halide molecules from Eqs. (44)
and (45). Experimental data from Rice and Klemperer. '

-ion

Free lons

Effect Of Lattice
Periodicity

Effect Of Lattice-
Electronic Coupling

CsFb
NaCl
KCl
CsCl
LiBr
KBl
LlI

a(A)

2.43
2.361
2.667
2.906
2.17
2.821
2.39

ap+(A3)

2.95
0.18
0.83
2.95
0,03
0.83
0.03

1.04
3.66
3.66
3.66
4.77
4.77
7.20

(Debye units)

(7.61)
8.5

10.48
10.40
6.19

10.41
6.64

0.25
0.15
0.42
0.35
0.08
0.20
().11

Cf
4l

Lt

Lattice
Branch

Reststrahl

Frequency

No Electronic
Coupling With Electronic

Coupling

a See reference 12.
b The value of y for CsF was computed from dII/dr =7.77 Debye units/A.

The value computed from p, is 0.46.

rewarding result of the calculation is the fact that CsF
has a value of y consistent with those for the other
molecules even though this molecule has a positive-ion
polarizability greater than the negative-ion polarizabil-
ity, which causes the sign of the correction term to
change.

FIG. 3. Schematic level diagram.

We suggest that both the positive and negative ions are
affected by the mechanically induced moments of the
repulsive force R acting between the two ions in the
molecule. Accordingly, we propose to replace Eq. (43)
by the set

p+= n+e/a'+2n„+p /as+yn„+R/e,
(44)

fi, =n„e/a'+2n„p+/a' yn„—R/e—

In the foregoing pair of equations, the subscript p on n
designates the use of the free-ion polarizabilities. The
repulsive force is given by

R=e'/rs'+2e(i++I )/~'+6f u+/&' (43)

The quantity y is equal to f'/Z', where primes have
been used to distinguish the quantities for the molecular
values from the unprimed quantities used in the
lattice case.

In zero-order approximation, we 6nd

f++~ = L(n.++n. )—V(n. —n.+)7&/&' (4o)

Physically, the repulsive force increases the effective
o.+ and decreases n .

By using Eq. (44) in conjunction with Eq. (45), we
may estimate the values of y which give agreement with
observed nuclear spacings and dipole moments. The
results are given in Table V. In general, the value of
y tends to be lower than that found for the lattice case.
The lower values of p can be caused by lower values of
f' and higher values of Z'. We believe that both
factors play a role. Since the electric field is nonuniform,
we believe f' tends to be less than f. The closer distance
of approach in molecular cases tends to make Z'
greater than Z. A good deal of the scatter, we believe,
arises from experimental error and the use of free-ion
polarizabilities for the ions in the molecule. The most

SUMMARY

In a crystal lattice, the electron cloud of an ion is
distorted by its neighbors. In a NaC1-type lattice, this
distortion produces no net electric moment when the
ion is in its equilibrium position. However, when an
ion is not on an equilibrium position, a polarization
proportional to the restoring force is produced. If the
displacement of the ions is produced by an electric
Geld, the distortion moment in the positive ion produced
by the neighbors adds to the moment induced by the
6eld; in the negative ion it subtracts. Because, in most
ionic crystals with a NaCl structure, the negative ion
is more easily distorted than the positive ion, the net
distortion moment per unit cell tends to decrease the
polarization in the crystal, leading to an "effective"
ionic charge less than unity. The qualitative energy
level scheme is given in Fig. 3. On condensing into a
lattice, the frequencies of the negative ion are pushed
up and those of the positive ion only slightly affected. '
The coupling between the lattice and electronic modes
due to the shell-shell repulsions considered here cause
the "frequency" of the positive ion to decrease, of the
negative ion to increase, and of the restrahl vibration
to decrease.

A similar effect appears to take place in ionic
molecules.
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*Note added ie proof.—Since this article was submitted for
publication, a paper on the same subject by B. J. Dick, Jr. , and
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