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Method of Treating Zeeman Splittings of Paramagnetic Ions in Crystalline Fields~
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In this paper, we present an alternative method to the "spin Hamiltonian" for treating the behavior of a
paramagnetic ion under the combined in6uence of the host crystal and an applied magnetic 6eld. This
method has the advantage of being applicable to all strengths of couplings between the paramagnetic ion
and the surrounding crystal. It is applicable to free-ion S states in the same way that it applies to all other
states. It gives all of the constants one needs to describe the energy level structure as a function of field as
restricted by symmetry and the properties of the levels considered. The method is more general and is
expected to be also more accurate than the conventional spin Hamiltonian formalism. It is illustrated by the
application to the problem of the (d') 'S level in a cubic crystalline environment.

I. INTRODUCTION

''N this paper, we wish to consider the effect of a
i ~ magnetic 6eld on the energy levels of a paramagnetic
ion in an insulating crystal. This problem has received
much attention in recent years' and is generally handled
through the use of the "spin Hamiltonian. '"' This
method proceeds as follows. ' A paramagnetic ion with
spin degeneracy 25+1 and orbital angular momentum
I. is placed in a crystalline environment. The eGect of
this environment is to remove all or part of the orbital
degeneracy (2L+1) of the free atom state. The spin
Hamiltonian describing the behavior of the lowest
levels as a function of magnetic field can be derived in
a simple way by the use of first and second order
perturbation theory if a number of assumptions are
made. The perturbation due to the crystalline held is
considered larger than the fine structure of the free
atom ground state but smaller than the multiplet
structure of the ground. configuration. Also the orbital
ground state in the crystalline field has to be non-
degenerate. The interaction of the paramagnetic ion
with the crystal is regarded to take place through the
crystalline electric field and eGects due to bonding are
not included in the conventional spin Hamiltonian
formalism.

In the first order of perturbation theory we have the
familiar gpH S interaction with the external magnetic
6eld. S is the spin vector of the atom, H is the applied
magnetic field, g is the gyrolnagnetic ratio for an
electron, and P the Bohr magneton. The second order
of perturbation theory contributes additional terms in
the energy which can be treated by using an eGective

*The portion of the work performed by G. F. Koster was
supported in part by the 0%ce of Naval Research.

' For a review article with many references to the literature,
see B. Bleaney and K. %'. H. Stevens, Reports on Progress in
Physics (The Physical Society, London, 1953), Vol. 16, p. 108;
K. D. Bowers and J. Owen, Reports on Progress in Physics (The
Physical Society, London, 1955), Vol. 18, p. 304.

'M. H. L. Pryce, Proc. Phys. Soc. (London) A65, 25 (1950).
3 In this paper and in our review of the spin Hamiltonian, we

shall neglect all eGects due to electric and magnetic moments of
the nuclei as well as the interaction between paramagnetic ions.
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Hamiltonian4

H, =SD S+pH g S.

Matrix elements of this Hamiltonian have to be
computed between the various 25+1 magnetic sub-
levels of a spin 5. After subtracting E (the energy)
from the diagonal of the resulting matrix and solving
the resulting secular determinant, one obtains the
energy levels of the paramagnetic ion under the com-
bined inQuence of the external magnetic 6eld and the
spin orbit interaction in the crystalline environment.
In the above, D is a tensor which comes from the
second order eGects of the fine-structure interaction
and governs the splitting of the 25+1 spin degeneracy
for zero magnetic field. g in Eq. (1) is again a tensor, a
portion of which is again of the familiar form gpH S.
Additional terms occur from second order perturbation
theory involving matrix elements of the spin-orbit
interaction. Simplifications in the spin Hamiltonian (1)
occur because of the symmetry of the crystalline
environment.

The spin Hamiltonian is generally used by assuming
that D and g consist of disposable parameters which
are fitted to the observed energy separations. The
theory as sketched above does not apply to atoms
whose free-ion state is an orbital 5 state. In this case,
the spin Hamiltonian is constructed by the following
arguments. A polynomial in the components of S which
displays the symmetry of the crystalline environment
is constructed. The order of the polynomial is less than
or equal to 25. (Only even powers in the components
of S need be included because of time reversal sym-
metry. ) This polynomial has in it adjustable parameters
whose number is dependent on the symmetry of the
surroundings and the multiplicity of the atomic state
under consideration. To this is added a tensor inter-
action between the magnetic field H and the three
components of S with as many independent components
as the symmetry permits. Again, matrix elements of

4Vectors, tensors, matrices, and dyadics are denoted in this
paper by bold-faced type.
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this Hamiltonian are taken with respect to the various
Ms (—5&3Es&5) substates of a state with spin 5 and
the parameters are adjusted to agree with the experi-
mental results.

As an example of this we can consider an 5=5/2
state arising from an orbital 5 state in a crystalline
Geld of cubic symmetry. The appropriate spin Hamil-
tonian would be

cr(5,'+5„'+5,')+gpH S.

The 6rst term is the term displaying cubic symmetry
which governs the splitting in zero magnetic field and
the second term is the interaction with the applied
magnetic field. Only one constant is necessary to
describe the interaction with the external magnetic
field because of the cubic symmetry of the problem.

To derive, on the basis of perturbation theory, the
spin Hamiltonian for an orbital 5 state would require
high orders of perturbation theory. '

What we shall do here is to approach this problem
from a somewhat different point of view. Instead of
trying to explain both the zero-field splitting and the
behavior of the energy levels with magnetic field in
terms of perturbations of the free-ion levels, we shall
start from the exact eigenstates of the paramagnetic
ion in the crystalline 6eld and describe the behavior
of the ion in a magnetic field in terms of these states,
taking advantage of what symmetry there may be.
This method will have the advantage of making it
unnecessary to consider the strength of the crystalline

'

field relative to the spin-orbit interaction and relative
to the multiplet structure as a restriction on the deriva-
tion. It will also allow us to consider orbital 5 states as
well as all others on a par. In spirit, the treatment will

be similar to that of the eGect of a magnetic field on a
free ion.

In a free atom, for sufficiently small magnetic fields, '
the Hamiltonian for the interaction with the magnetic
field, PH (I+2S), can be replaced by gPH J. J is the
total angular momentum and g is the gyromagnetic
ratio. This replacement can be made because the
matrix elements are taken between states of a given
angular momentum and because the operator I+2S
transforms like a vector. For the purpose of computing
matrix elements, this operator can be replaced by an
appropriate constant times any operator with the same
transformation properties (i.e. , J). Once this replace-
ment is made, the Hamiltonian matrix can be written
down at once because of the ease with which matrix
elements of J can be found. In other words, the matrix
of the operator I,+2S in a manifold of states of a
given total angular momentum J (—J&3f~(J) is

e Hutchinson, Judd, and Pope, Proc. Phys. Soc. (London)
B70, 514 (1957).

'By "small" we mean that the splitting due to the magnetic
field is small compared with the distance between the ground
level and the next excited level.

just a constant times a known matrix. This is a special
case of the Wigner-Eckart theorem. ' This theorem
states that the matrix of an operator, which transforms
irreducibly under the full rotation group (i.e., like a
spherical harmonic) taken between states of a given J,
is a constant times a known matrix. One can show that
a somewhat similar situation exists for groups other
than the full rotation group. ' This fact is useful to
describe the behavior of the energy levels of a para-
magnetic ion in a crystalline 6eld when a magnetic
field is applied. To describe this behavior, more parame-
ters will be required than in a spin Hamiltonian. The
greater number of parameters is due to less restrictive
physical assumptions and should give a more accurate
description of the magnetic field splittings of the levels.
In the next section we shall carry out this procedure.

D. METHOD

Consider an atom at some lattice site in a crystal
and imagine that the symmetry of this lattice site is
described by a group G."Without a magnetic field the
energy levels of the paramagnetic ion will have de-
generacies as allowed by the symmetry of the crystal.
The degeneracies will, in general, be the dimensions of
the various irreducible representations of the group G.
The degenerate functions belonging to a given energy
level will then transform in some prescribed manner
and can be chosen to be the basis for the irreducible
representation of the point group in question. These
eigenstates are to be considered as the exact eigenstates
for the problem of the ion in the crystalline field includ-

ing all interactions (spin-orbit, bonding, etc.) except
for the external magnetic field. A general situation
encountered is that there are sets of degenerate levels
which lie close together (of the order of 1 cm ' apart).
These are far removed from the other levels of the ion
in the crystalline Geld. H this is the case, when the
magnetic field becomes large enough we shall have to
consider the interaction between the nearby-lying
levels. To illustrate the method of this section let us
consider that we have an energy level E with eigen-
states +; and nearby a level Ep with eigenstates 0',~.

(Here the index i runs from 1 n; the degeneracy of
the level E, and j runs from 1. mp, the degeneracy
of the level Eo.) We assume further that the functions
iI; form a basis for an irreducible representation I' (2t'.)
and 4;s a basis for I s(E). Thus, if R is an operator

7 For a discussion of this theorem, see M. E. Rose, Elementary
Theory of Angular momentum (John Wiley and Sons, Inc. , New
York, 1957), p. 85.

The matrix elements in the known matrix are the familiar
Clebsch-Gordan (vector coupling) coefficients.' G. F. Koster, Phys. Rev. 109, 227 (1958).

"This group must be one of the 32 crystallographic point
groups. The character tables for all of the group are given in
G. F. Koster, Solid State Physics edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1957), Vol. 5, p. 173.
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representing one of the symmetry operations of G, we
have

where
H~= H,~iH„.

m, -= P r.(R)„,e„-,

Ap

M, i'= P I's(R)„;%„s.
tN=1

We assume further, as mentioned above, that this pair
of levels lies sufficiently far from the other energy levels
of the ion in the crystalline environment; thus we need
not consider the other levels when we apply the
magnetic field. (That is, the magnetic splittings are
small compared to the energy separation to the nearest
remaining levels. )

What happens, then, when we apply a magnetic
field? If Hs is our unperturbed Hamiltonian (including
all crystalline effects), our new Hamiltonian is

Ho+PH ~ (L+2S). (4)

We have already chosen our states to be eigenstates of
Hp with energies E and Ep. We shall consider
PH (L+2S) as the perturbation. What we must do is
set up the matrix of our Hamiltonian (4), between all
of the states +; and 0';l'. This will be a square matrix
of dimension I,+ep. We can make use of the symmetry
of our problem to reduce the number of independent
matrix elements if we write our Hamiltonian as a sum
of operators, each one of which transforms properly
(irreducibly) under the group G. For the case of the
crystallographic point groups, this is quite simple. If
we have a single axis of more than twofold symmetry
(call it the s axis), then L,+25, forms a basis for one
irreducible representation and" L~+25+ and L +25
either form a basis for a two-dimensional representation
or are related by being bases for a pair of representations
which are the complex conjugates of one another. If
we have the case of one of the tetrahedral or cubic
point groups, then L +25 , L„+25„,and L,+25,. form
a basis for a three-dimensional irreducible representa-
tion of these groups. If we denote by (L+2S)s& that
portion of L+2S which transforms as the kth partner
in the y irreducible representation of the group G
(k=1. . e~), we can then write our Hamiltonian in
the form of

Hp+pH (L+2S)=Ho+I pq ps Hs'r(L+2S)s'r, (&)

where H& are appropriate combinations of H, H„, and
H, . For a group with only one axis which is more than
twofold, we have for example,

Hp+PH (L+2S)
=He+P[2H+(L —+25 )+2H (L++25—+)—

+H, (L,+25,)], (6)
"I.+, S+, I. , S are the familiar step-up and step-down angular

momentum operators. See, for example, E. Feenberg and G. E.
Pake, Notes orl, the Qucntuns Theory of A rig ulur Momentum
(Addison-Wesley Publishing Company, Cambridge, 1953), p. 19.

The terms multiplied by H+ and H would belong
either to one irreducible representation or to two
diferent ones. The term multiplied by H, would belong
to yet another one. The matrix of our Hamiltonian,
when written in the form of Eq. (5), can be written
down at once with the number of independent constants
that symmetry permits by considering each y separ™
ately. Consider the portion of the Hamiltonian matrix
which involves the interaction of the e states%'; with
the states 0',~. Now consider the contribution to this
portion of the ma, trix from ps Hs" (L+2S)k'r. The
number of independent constants' " that this operator
contributes is just the number of times the irreducible
representation I'~*(R) is contained in the direct
product of I' *(R) and Fs(R). The matrix elements
(4'; ~ps r"&Hs'r(L+2S)s&~@,&) can be written down
at once

=Pg~, i ~ 2 Hs'Us;~'+Pg, ,s s Q Hs'&s„+ . (7)

Here g~, ~ &, g~, 2 & etc. are the unknown constants.
There are as many of them as the number of times
I ~*(R) is contained in I' *(R)Xi'p(R). (In fact, this
number is never more than two for any of the crystallo-
graphic point groups. ) The Us, ;,' and Us, ;P are matrices
which can be found (for once and for all) from the
properties of the representations in question. '" The
indices i andy' run over the rows and columns of these
matrices. (We should really have indices n, P, and. y on
these matrices, as well, but for simplicity in writing we
have suppressed them. ) In a similar manner the y
contribution to the "orrr" and to the "PP" block can be
calculated. In the "no." block, E must be added to
the diagonal elements and in the "PP" block Es must
be added to the diagonal elements. This is the contribu-
tion of the Hamiltonian without a magnetic field (Hs).
Since we have already chosen eigenstates of the un-
perturbed problem, there is no contribution from Ho
in the "nP" block. If we now finally add up the contribu-
tions from each y which appear in Eq. (5), we will have
our complete Hamiltonian matrix with only the number
of constants that symmetry permits.

In practice this procedure is quite simple once the
matrices U are known. Since the U's are properties of
the group these only need be calculated and tabulated
once. In the next section, we carry out in detail a
specific example to illustrate the method and in a later
section compare it in detail with the spin Hamiltonian.

'2 Time reversal must be taken properly into account. This will
be discussed in Appendix B.

'3 These matrices are discussed in Appendix A.
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TABLE I. Character tables for the cubic double group (05). (¹tation as given by Koster. ')

E E 8C3 8C3 3C23C2 6C4 6t-4 6C2'6C2' I I 8SG 886 30-g3o p, 6S4 6 S4 60'g6crg

F1 1 1 1
F2 1 1 1
F12 2 2 1
F25' 3 3 0
F15' 3 3 0
FI' 1 1 1
F2' 1 1 1

2 2 —1
F25 3 3 0
F15 3 3 0
F6+ 2 —2
F,+ 2 —2 1
F8+ 4 —4
F6 2 2 1
F7 2 —2
F8 4 —4

1 1
1—1 2
0 —1
0 —1
1 1
1 1—1 2
0
0 —1—1 0—1 0
1 0—1 0—1 0
1 0

1 1—1
0 0—1 —1
1 1
1 1—1 —1
0 0—1
1 1
V2 —v2'

—V2 V2
0 0
v2 —V2—V2 V2
0 0

1—1
0
1—1
1—1
0
1

0
0
0
0
0
0

1 1 1 1
1 1 1
2 2 —1 —1
3 3 0 0
3 3 0 0—1 —1 —1—1 —1 —1 —1—2 —2 1 1—3 —3 0 0—3 —3 0 0
2 —2 1 —1
2 —2 1 —1
4 —4 —1 1—2 2 —1 1—2 2 —1 1—4 4 1 —1

1
1
2—1

—1—1—1—2

1
0
0
0
0
0
0

1 1—1 —1
0 0—1 —1

1—1 —1
1 I
0 0
1 1—1 —1
VT —v2—V2 V2
0 0—V2 v2
V2 —V2
0 0

1—1
0

0—1

0
0
0
0
0
0

a See referenCe 10.

IIL S=S/2 IN A CUBIC FIELD

All we need know to carry out the procedure outlined
in the last section are the transformation properties of
the interacting states and the symmetry of the crystal-
line envirionment. The latter is standard crystallo-
graphic data and the former can be inferred from the
transformation properties of the atomic state from
which the crystalline state arises. " Consider, for
example, a (d') 'S state of a free ion as perturbed by a
cubic crystalline field. This state has a spin of 5/2 and
no orbital angular momentum. It is easy to see from
the characters of the representation whose basis is the
six S=S/2 sublevels that the sixfold degeneracy will

split into a twofold and a fourfold degeneracy in a
cubic environment. The four degenerate states form a
basis" for the I'8+ representation of the cubic group.
The double degenerate states form a basis for the
representation I'7+. (The character table for the cubic
double group is given in Table I.) Let us call AE the
energy separation of these two levels.

What we must now do is to find the matrix of
interaction between these six states caused by the
perturbation H. (L+2S). The process of breaking up
L+2S into operators which transform irreducibly is
trivial. 1.,+2S., I.„+2S„,and L„+2S,form a basis for
the I'15' representation of the cubic group. In Eq. (5),
this means that the sum over y consists of only one
term. It is now a simple matter to write down our
matrix of interaction.

The first thing that we can And is the number of
independent parameters we will need in the matrix.
One parameter will be the energy separation DE be-
tween the doublet and the quartet at zero magnetic
field. The remainder of the matrix will consist of a
four-by-four block representing the interaction of the
I'8+ states with themselves, a four-by-two block

"H. Bethe, Ann. Physik 3, 133 (1929).
'~ Since there are an odd number of electrons we can classify

our state by the irreducible representations of the cubic double
group.

representing the interaction of the F8+ states and the
I'7+ states and finally a two-by-two block of matrix
elements connecting the F7+ states. The number of
parameters in any of these blocks is the number of
times I 15' is contained in I'8+*&(F8+, I'8+*&I'7+ and
I'y+*gI'y+. For this group all characters are real and
thus, from the character table, we see that

Is XI8 2I 15 +2I 25 +I 12+12+1 ly

Is XI 7 I 15 +I 25 +I 12|

I'7+Xi'7+= 1'15'+I'1.

Thus, I'15' is contained twice in I'8+&I'8+ and two
constants are necessary to describe all terms linear in
magnetic field in the four-by-four block. Similarly in
the four-by-two block one constant is necessary and in
the two-by-two block one constant is required. This
means that, in general, four constants are required to
describe the magnetic held behavior of the six levels
that come from our double and fourfold degeneracy.
If we include AE, then the number of constants is five
which is to be compared with two constants in the
spin Hamiltonian.

I et us now actually find the Hamiltonian matrix. In
order to do this, we need to know the matrices U
described in the last section. The appropriate ones are
given in Tables II, III, and IV. (The details of the way
these matrices were obtained are contained in Appendix
3.) Making use of Eq. (7) we can now write down our
complete Hamiltonian matrix. First consider the four-
by-four block. This mill be

DE1+pgr LH,U,'+H„U„'+H,U, '7

+pg2[H, U,2+H„U„2+H,U,27.

Here gr and g2 are constants (our g7 ~'s of the last
section), 1 is the four-by-four unit matrix, U,' and U,'
etc. are the matrices contained in Table II. For the
two-by-two block we have

Pgsr H,U.8+H„U„2+H.U.87.
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TABLE II. Coupling coefficients for combining I"8+*states with I"8+ states to give states of symmetry I »'. Matrix elements of operators
transforming as F&s' (i.e., L,+2S„, L.„+2S„,and L,+2S,) between states transforming like Fs+ and Fs+ are proportional to a linear
combination of the two types of matrices.

U,1=

0 0 0

0 0 0 0

v2 0 0 0 0 v2

0 0 0 0

0 1 0 0

0 —1

0 0 0 0 0 0 0

0 —V3i 0

V3i 0 —3i

0 —V3i 0 —3i

V3i 0
Uy' ——

4v2 3i 0 —V3i

V3i 0

U2—
442 0 —i

3j

0 -v3i

v3i 0

0 VS 0 1

V3 0 3 0

W34V2 0 3 0

1
U2-

4v2

0 v3 0 —3

0 —1

0 —1 0 v3

1 0 V3 0 0 v3 0

The U's are the matrices in Table III. Similarly fox
the four-by-two block. we have

pg4[H, U.'+H„U„'+H,U,'j

g)' 0 0 0
0 gg' 0 0
0 0 —gg' 0

H= E,+ap o o o —g,
'

0 I

0 0
0 0

g4' 0 . (12)

The U's in matrix (11) are the four-by-two matrices
from Table IU. As will be indicated further below, g4 is
a real number due to time inversion symmetry. Similarly

gi, g2, and g3 are real because the matrices must be
Hermitian. In the above, we have chosen our zero of
energy to be the doubly degenerate state. (AE is the
energy of the fourfold degenerate states at zero 6eld. )
In Eq. (12), we show the entire Hamiltonian matrix
for a magnetic field in the z direction (H, =H). For
simplicity we have called Eo the matrix of the zero-field

splitting. That is, i:t is zero everywhere except for the
first four main diagonal elements which are hK

0 0 0 g4' —g3' 0
g4' 0 0 0 0 g3'

Here gi' ——gt/v2; gs' ——g&/V2; gs'= gs/W2; and g4'= g4/V2.
This matrix as it stands gives the behavior of the six
levels as a function of magnetic field. This matrix is
valid under the assumption that the magnetic field is
suKciently small so that we can neglect the interaction
due to the external magnetic field with states coming
from free-atom states higher than the 'S of the d'
configuration. This is quite a valid assumption in most
paramagnetic salts. These higher levels generally lie of
the order of thousands of wave numbers higher than

TABLE III. Coupling coeKcients for combining I'7+* states with I'7+ states to give states of symmetry I » . Matrix elements of operators
transforming as Fqn' (i.e., L +2S„L„+2S„,and L,+2S,) between states transforming like F7+ and Fr+ are proportional to the matrices.

1
U,'=—

v2

—1 0

0

1
U„'=—

v2

0 i
—i 0

0 —1

TABLE IV. Coupling coeKcients for combining I 8+* states with F&+ states to give states of symmetry F»'. Matrix elements of operators
transforming as F~q' (i.e., L,+2S„L„+2S„,and L,+2S,) b, etween states transforming like Fs+ and Fr+ are proportional to the matrices.

0 1 1 0

0 0
U,4=—

42 0 0

1 0

0 —03i1
U„4=-

2V2 —v3i 0
U.4=

2v2 V3 0

0 —1
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TABLE V. Polynomials in the components of S transforming under rotations like substates M of a given angular momentum J.

.V= 2
M'= 1

3f=0

3f=3
%=2
%=1
M'= 0

M'= 4
3II=3
&V=2
M'= 1

3'. =0

3I=4
- &=3
%=2

(—I/W2)$,
5,

,S+'
—kS+(2$*+1)
[3/(6) l7(S.'—S')

—
s (1/v2) $+'

[(3/4) '*PS+'(1+S*)
(1/30)~$~[—3+-,'S' —(15/2)$, —(15/2)$ 27

(1/10)& (5S,' —3S,S'+S,)

45+
4 (1/v2) $+'(—6—4$*)
-', [1/(7)**)$ '(9—S'+7$ '+14S,)
[1/(56)'*jS~(—6+3S'+6S'S,—19$,—21$ ' —14S,')
[1/(280) &7(35S,4+25$,'—30$,'S'+3 S4—6S')

—l (1/~2)$+'
-,'[1/(5)'$$ '(10+5$.)
(5/4)[1/(90)-'*$$~'( —24+8' —27$,—9S ')
[(5/12)l jS '(6—S'—S'S.-+12$,+9S '+3$g')
[(5/336) &$$~ (—12—S'+8S'+ 14S'S,+14S'S s —42S,—63$,s—42$,' —21S,')
-,'[(1/56) ig (12S-—50S'S,+158'S,—70K'S,'+ 105S,'+63$,s)

the 'S. We see that the symmetry properties of the
Hamiltonian and of the states in question have greatly
restricted the number of independent constants in the
six-by-six matrix.

IV. COMPARISON WITH THE SPIN HAgCILTONIAN

The spin Hamiltonian for our specific example was
given by (2). The general problem of finding spin
Hamiltonians is somewhat facilitated if one has avail-
able polynomials in 5+, 5, and 5, which transform in
the same way under the full rotation group as the
spherical harmonics. In Table V, we give all poly-
nomials of order less than six which transform as the
various sublevels of angular momentum. These will be
useful later in this section and were obtained by the
process described by Rose." Using this table and
knowing the combination of spherical harmonics for
L=4 which are invariant under the cubic group, ' the
spin Hamiltonian (2) can be rewritten in the more
convenient form.

gpH S
+n((1/20) L35Sg' —30S'S '+25S '—6S'+3S'j

+s LS+'+S-'j) (13)

This Hamiltonian as it stands has only 2 parameters
as compared to the 5 parameters obtained in the last

~s See reference 7, p. 144: In order to obtain Rose's Ir,sr(S) we
must multiply the entries in the table by (4s-) '-*[L!(2L+1)!!j'*,
where (2L+1)!!—=1X3X5. X (2L+1). In order to obtain
negative M for a given L, take the entry in the table and (1)
change S+ to S; (2) for odd L, change the sign of odd powers of
the components of S for odd 3f and the sign of even powers of the
components of S for even f!f; (3) for even L, change the sign of
odd powers of the components of S for even M and the sign of
even powers of the components of S for odd 3/I.

section. Both methods give one parameter to describe
the zero-field splittings; but whereas the method of
this paper gives four constants describing terms linear
in the applied field, the method of the spin Hamiltonian
gives only one. The physical reason for this difference
lies mainly in the fact that the spin Hamiltonian uses
eigenfunctions which are linear combinations of the
magnetic sublevels of a spin 5/2. It does not allow for
the possibility that the fourfold degenerate states are
modified differently than the double degenerate ones.
If this were the case, as we shall see in detail later, the
splitting of the fourfold degeneracy in a magnetic field
would be unrelated to the splitting of the double
degeneracy. In the present method, only the symmetry
properties of the states enter into the calculation and
the wave functions, in general, will have admixtures
from the higher lying states of the free atom and from
states of neighboring atoms. This admixture gives the
present method the necessary Qexibility. After having
obtained the most general answer from group theory,
we shall show what terms have to be added to the spin
Hamiltonian to obtain formally the same answers as
in the last section.

It is clear that we can always reproduce any
Hermitian six-by-six Hamiltonian matrix by taking the
matrix elements in a space of substates of spin 5/2 of

polynomials in the components of 5, 5„, and 5, up to
and including order 5. Without destroying the over-all

symmetry, we can add to the Hamiltonian (13) addi-

tional terms which are linear in the magnetic field. If
we multiply H, by any polynomial which transforms
like x under the operations of the cubic group, and
add it to II„and H, multiplied by polynomials trans-
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forming like y and s, respectively, '~ we shall be able to
generalize the spin Hamiltonian in the desired way.
For simplicity, consider a magnetic fieM in the s
direction. If we multiply II, by any polynomial of the
third or fifth order which transforms like s under
the operations of the cubic group, we shall have terms
which we can add to the spin Hamiltonian. For the
cubic polynomial we can use a term of the type L=3,
M=O (see Table V)

g03pH, [$,' ,'S'S,+—-5-$,]. (14)

For the terms of the fifth order we can construct, in
two ways, combinations of the M levels of L=5 which
transform like s. One is L=5, 3f=0. This contributes
a term

go'p&, L63$.'+S.'(—70S'+ 105)
+S.(12—50S'+ 15S4)]. (15)

In addition a combination of (1.=5, &=4) and
(L=5, M= —4) contributes an additional term

g4'&&*2 (35) '(($+'+$-')$.+2($+'—$-') } (16)

The three terms (14), (15), and (16) should be added
to the spin Hamiltonian (13). The Hamiltonian will
then have the most general form that it can have for
the symmetry of the problem and the states under

consideration. This generalized spin Hamiltonian now
also has 5 constants and corresponds to the group-
theoretical matrices discussed in the last section.

It is instructive to 6nd the relation between the
constants of Sec. III and the constants of the extended
spin Hamiltonian of this section. This is easily done by
writing down the matrix of the Hamiltonian obtained
by adding (13), (14), (15), and (16) in a basis of the
sublevels of S=5/2. By doing this erst for II=0, we
can obtain the relation between n in the Hamiltonian
(13) and the separation AE of the fourfold and twofold
de gene racies. The matrix of Hamiltonian (13) for
II=0 is

3 0
0 —9
0 0
0 0

3v'5 0
0 3V'5

0 0 3V'5 0
0 0 0 3v'5
6 0 0 0
0 6 0 0
0 0 —9 0
0 0 0 3

(17)

By finding the roots of this matrix and equating their
difference to AE, we obtain

hE= i8n.

The matrix of the terms linear in the magnetic 6eld
from (13), (14), (15), and (16) between the various Ms
levels of S=5/2 yields

2g+3go
+30go'

(3ov'7) g4'

lg —(21/5) go'
—150gp'

—(30V'7)g4'

lg —(12/5)go'
+300go4

—lg+ (12/5) go'
—300gps

(30v'7) g4'

—lg+ (21/5) go'

+150gp4

—(30v'7) g4'

—
2g

—3gp'
—30gp~

(19)

In comparing the matrices (19) and (12), one has
to be careful. In matrix (19), just the 6 substates
of a spin of 5/2 have been used as basis functions,
whereas in matrix (12) two sets of functions have
been used which transform irreducibly under the
cubic group. To facilitate a comparison, we can take
linear combinations of the functions used in matrix (12)
so that they transform like the six sublevels of a spin
5/2. This linear combination can be found by the
method described in Appendix C. The corresponding
transform of the matrix (12) can then be compared,

'7 The polynomial, because of time reversal, must contain only
odd pow|;rs of tht; compont:nts of S,

element by element, with the matrix (19).The relations
between the two sets of constants are then found to be
as follows:

gg' ———(11/6)g
—(16/5) go' —50gp' —10(35)~g4',

g2'= kg
—(»/5) go'+3oogo',

g3' ——6g
—4go' —130go5+ 10(35) g4',

g
'= —(lv'5) g+ (v'l) go'+ (20v'5) go'+ (20v'7) g '.

(20)

Next, consider the eigenvalues of the Hamiltonian
matrix (12) and assume that the magnetic Geld is
weak enough so that the splittings are much smaller
tha, n hE. It is then clear from matrix (12) that we can
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neglect the off-diagonal terms in g4'PH (since these
connect states separated by DE). This means that out
of the fourfold degeneracy, four states emerge linear
with K Their slopes are &gr'P and &gs'P. Out of the
twofold degeneracy, two states with slopes %gs'P
emerge. Thus, from a measurement of the three low-
field slopes, the constants g~' through g3' can be found.
The ordinary spin Hamiltonian with go'=go'=-g4' ——0
would predict a relation between the three slopes.
They would be [see Eq. (20)]: +(11/6)gP, &-', gP,
and &-ssgP. Thus, the present method gives three
independent low-field slopes, whereas the conventional
spin Hamiltonian gives three interrelated slopes with
only one adjustable parameter, i.e., g.

Next consider high fields. By this we mean fields so
large that the splitting is greater than AE, the zero-
field splitting. We can now neglect the matrix Rs in
Eq. (12) and the slopes for high fields are easily found.
The two states which have slopes &g2' at low Gelds
continue all the way to high fields linear in the field
with the same slope. Solving the secular equation
obtained from Eq. (12) shows that the remaining four
states have slopes

(21)

As mentioned, from low-Geld measurements g~', g2',

and g3' could be found. By measuring one slope at high
fields, excluding the one described by g2', the last
parameter g4' can be obtained and thus the entire
energy spectrum as a function of magnetic field. The
ordinary spin Hamiltonian would predict Lsee Eq. (19)
and set gs', gs', and g4' equal to zero] that the high-field
slopes should be uniquely determined in terms of one g
and should have values &-sgP, &-,sgP, and &—', gP. We
can also see from Eq. (20) that as we successively
allow go', go', and g4' to take on values different from
zero, we gradually eliminate the relations that the spin
Hamiltonian puts between the independent constants
on the left-hand side.

In this way we see that the method of this paper,
while still limiting the number of parameters necessary
to determine the behavior of the energy levels as a
function of field, does give more freedom than the
ordinary spin Hamiltonian. It gives, however, only
that freedom which the symmetry and the nature of the
interacting states permit.

V. CONCLUSION

The method of this paper provides a means of
treating the behavior of paramagnetic ions in a crystal-
line environment which offers advantages over the
ordinary spin Hamiltonian. It is not restricted in its
applicabiliI;y to assumptions about the strength of the
crystalline field. Since the considerations used are
essentially symmetry arguments, no specific assump-
tions need be made about the detailed nature of the
wave functions of the paramagnetic ions. All effects

due to admixture of higher states of the atom as well
as contributions due to binding with neighboring
nonmagnetic ions are automatically included. It can
be applied to levels arising from orbital 5 states of the
free atom in the same way that it can be applied to all
other states. The U matrices necessary to carry out
this method are dependent only on the symmetry
group of the lattice site and the transformation pro-
perties of the corresponding free-ion wave functions.
Their elements have many features of the Clebsch-
Gordan coefficients. Therefore, they are quantities
which should find wide applicability in problems where
matrix elements of operators with definite transforma-
tion properties are required as well as in problems
concerning the coupling of states of various symmetry
types. In the near future, the authors hope to publish
more complete tables of these coefficients for all of the
point groups of interest. '

The disadvantage of the method lies in the di%culty
of Gtting experimental data to the larger number of
parameters. In the case considered in this paper, this
does not seem too formidable but in other cases of lower
symmetry this may be more difficult. That the spin
Hamiltonian approach has met with great success as
it stands is evidenced by the tables of parameters
published by Bowers and Owen. ' It should be kept in
mind, however, that much of the fitting of experimental
paramagnetic resonance data has been carried out in a
very narrow range of frequencies. As accurate and
more extensive experimental data become available, it
will very probably become necessary to use the present
approach to adequately describe the experimental
findings. A possible example for the inadequacy of the
conventional spin Hamiltonian of the form (2) is given
by Muller" who investigates the 'S state of Fe' ' ' in
SrTi03 crystals. He has already found discrepancies of
five to ten percent when measuring at only one wave-
length of 3.2 cm. There still remains, of course, the
more fundamental problem of interpreting the addi-
tional constants of this extended parametrization in
terms of the many-electron wave functions of the
paramagnetic ion in the crystalline Geld.

APPENDIX A

The matrices U which we use in the text have the
following meaning: Imagine two sets of functions q; *
and p, ~. The first set forms a basis for the irreducible
representation F * and the second set a basis for the
irreducible representation I'p of the group G. If we
were to take the e„ep products of these functions,
q; *q,.l', we would have a set of functions which form
a basis for the representation F *&(Fp. In general, this
representation will be reducible and we can ask what
linear combinations of the products transform ir-

~ For other coupling coe%cients for the cubic group, see Y.
Tanabe and S. Sngano, J. Phys. Soc. Japan 9, 753 (1954),"K.A. Miiller, Helv. Phys. Acta 31, 173 (1958),
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reducibly under the group G. Let us imagine that we

wanted those linear combinations that transform
according to the irreducible representation F~*. Call
these linear combinations Vq&(k=1 e~).

+=QijU, k, ij pi pj (A1)

In the linear combination the U~, ;;are those coe%cients
that give the new states of the proper symmetry.
(They are the elements of the unitary matrix which
reduces the direct product prepresentation F *XFp.)
It may happen that there is more than one way to
reduce the direct product. By this we mean that one
may be able to construct two or more sets of e~ func-
tions which form a basis for F~*.In such cases, we must
put an additional index on the U's to specify which
set we mean. Thus, we would have

(A2)

%e shall have as many sets of functions 0'p& as the
number of times I'~* is contained in F ~&Fp. This
number is obtained at once from the character table
of G. In a paper by one of the authors, ' it was shown
that the erst c~m~ rows of the matrix reducing the
direct product (can=number of times F~* is contain. ed
in F *XFp, n~= dimension of representation F~*) are
simply related to the matrix elements of operators
which form a basis for F~.

The coeKcients U~, ,; are, of course, exactly analogous
to the Clebsch-Gordan (or vector coupling, or Wigner
3j) coeKcients for the full rotation group. In this case,
the fact that the product of two representations is
being reduced can be expressed by saying that two
angular momenta are coupled to give a third. This is a
somewhat simpler case than the corresponding problem
in finite groups since there is, for any two angular
momenta, only one way of coupling them to give a
third angular momentum. In our case, there may be
more than one independent way of coupling the two
sets of states.

In reference 9 a method is given by which the U's
can be calculated. By taking the sum over all group
elements of the product of matrix elements for the
three representations considered, we obtain

For any choice of m, m, and p one obtains a possible
matrix element (outside of a multiplicative constant)
of U&, ;;. (For some choices of m, e, and p one may get
zero for all i, j, and k. This cannot be true for all
choices if F * is contained in F *XFp.) If I' * is con-
tained more than once, a new m, I, and p is chosen
until a new set of numbers linearly independent with
the first set is obtained. Consider these two sets of
numbers as vectors. Orthonormalizing them by linear
combinations results in Ui, , @' and Ui...P of Eq. (A2).

0 —1 0
1 0 0 ',
0 0 1

(81)

and the matrix representing a rotation clockwise
through 90' about the positive y axis:

0 0
0 1 0

—1 0 0
(82)

By carrying out the process of reference 9 (see Eq.
(A2) j, we obtained, the matrices given in Tables II,
III, and IV. (The choices of m, e, and p were 113 and
223 in Table II; 113 in Table III; and 113 in Table IV.)

A word should be said here about time reversal. The
representations I'8+ and I'7+ have the property that
they are equivalent to their complex conjugates but
cannot be made real."For these, the basis is chosen'
so that for 18+

E@ =(—1)*' '@ ' (83)

In Eq. (83), i runs over the values 3/2, 1/2, —1/2, and
—3/2 instead of over the values 1, 2, 3, and 4, respec-
tively. E is the signer time-reversal operator. For the
representation I'7+,

E@,s= (—1)"+i@,i'. (84)

In Eq. (84),j takes on the values 1/2 and —1/2 rather
than the values 1 and 2. The operator L+2S goes into

E. Wigner, Nachr. Akad. Wiss. Gottingen, Math. -physik.
Kl. p. 546 (1932).

APPENDIX B

The matrices UI,„; for reducing the products of
representations of a group depend, of course, on the
exact form of the representation chosen. In the case of
the Clebsch-Gordan coeKcients, we have the full
rotation group. It is standard to specify the representa-
tions by choosing as a basis eigenstates of the s corn-

ponent of the angular momentum operator. For the
point groups it is not obvious what kinds of bases
should be chosen. In the remainder of this appendix,
we shall discuss the choices made for the example in
the text.

The I'8+ representation can be considered to have as
a basis the four Ms levels of a spin 3/2. This is what we
did. Ke chose the form of the matrices in this repre-
sentation to be as in Rose. ' The F7+ representation can
be considered as the direct product of the one-dimensional
representation F~ and the two-dimensional representa-
tion Ff;+ which has as a basis the two Mq levels of
5=1/2 (F7+=F2XF6+). We chose again F6+ to be the
Dj.~~ of Rose. ' For the representation Fi~' we chose, as
a basis, functions which transform like the coordinates
x, y, and s (except that we took them even under
inversion). So that there can be no misunderstanding
we give the matrix representing a rotation about the
+s axis clockwise by 90':
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its negative under time inversion. Consider then, for
example, the matrix element

(e,-lL,+2s, le,-)
=(I~+t lK(L,+2s,)E—'lK+t )*
= —(—1)~l(—1)~i(e4 lL,+2s, i@4 )
=-&~.-IL.+2s.l~ -)

We see that the matrices U' and U' in Table II have
this property so that time reversal does not inhuence
the fact that we have two constants gr and gs. (If, on
the other hand, L,+2S, were a Hermitian operator,
even under time inversion all matrix elements of all
components of this operator between these states
would vanish, i.e. , gt ——g&

——0.) In a similar way, we
can see that time reversal does not inhuence the
number of constants in the two-by-four block or in the
two-by-two block. It does, however, cause g4 to be

real. (gr, gs, and gs are obviously real since we are
dealing with a Hermitian operator. )

In general, time reversal can inQuence the number of
independent constants necessary to determine matrix
elements of symmetric operators. Arguments of the
type given in Eq. (85) will determine how the number
of constants is infiuenced.

APPENDIX C

The basis for the sublevels of spin 5/2 was chosen to
be that given by Rose. ' The unitary matrix which
transforms this basis to two sets of functions trans-
forming like F8+ and I'&+ can be found by the method
given in reference 9. Performing the corresponding
similarity transformation of the Hamiltonian matrix
(12) allows one to identify terms in the transformed
matrix (12) with those of (19) and thus to get the
relations between the constants.
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Conductivity of Grain Boundaries in Grown Germanium Bicrystals
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The conduction of current in the grain boundary of a grown germanium bicrystal has been studied as a
function of doping. For all samples, the behavior shows only a small temperature dependence from 2—300'K.
The conduction in the grain boundary is ohmic if no secondary effects are introduced by conduction in the
bulk material. Samples with no doping and with e-type, p-type, or copper doping are all characterized by
having a resistivity of about 3000 to 11 000 ohms per square. The lack of a strong dependence on doping
indicates that the grain boundary behavior is not due to the segregation of impurities at the boundary.

I

'HE nonohmic character for current Qow perpen-
dicular to grain boundaries in m-type germanium

was found in early work on polycrystalline material. ' '
This means that the grain boundary is a p-type layer,
forming an ts—p—m structure. In p-type germanium, this
nonohmic behavior disappears but photoelectric meas-
urements show that the grain boundary now acts as a
p+-type layer. ' The p-type nature of the grain boundary
was confirmed by Tweet4 using measurements of the
Hall eGect for current Qow in the grain boundary sheet
of gold-doped germanium bicrystals. A partial explana-
tion of this behavior was given by Taylor, Odell, and
Fan' in terms of the formation of a double Schottky
barrier about the grain boundary due to charges in
surface states which may arise either from lattice misfit
or segregation of acceptor type impurities at the bound-

'K. Lark-Horovitz, National Defense Research Committee
Report NDRC-14-585, 1945 (unpublished).

s G. L. Pearson, Phys. Rev. 76, 459 (1949).
Wein reich, Matare, and Reed, Electrochemical Society

Meeting, Washington, D. C., May 12—16, 1957 (enlarged
abstracts).

4 A. G. Tweet, Phys. Rev. 99, 1182 (1955).' Taylor, Odell, and Fan, Phys. Rev. 88, 867 (1952).

ary. The misfit at the grain boundary, according to the
model proposed by Read' for dislocations and extended
to grain boundaries by Matare~ causes "dangling
bonds. " These dangling bonds are able to pick up
electrons in a lower energy state until the energy lost
by adding an electron is compensated by the energy
increase due to electron repulsion. On the other hand,
the possibility that the behavior may be due to im-

purities is present in Tweet's experiment where gold
is an acceptor that may not completely deionize at the
lowest temperatures used. In other cases the p-type
layer has been attributed to the segregation at the
boundary of copper which is an acceptor.

In a study of the effect of impurities on grain bound-
ary behavior, measurements of the current in the grain
boundary were made for a variety of crystal dopings.
The work was performed on carefully oriented bicrys-
tals' grown by the vertical pulling technique with l 100j
seeds symmetrically tilted about the L010j axis at

' W. T. Read, Jr. , Phil. Mag. 45, 775 (1954).
r H. F.Matare, Z. Naturforsch. 10a, 640 (1955).

H. F. Matar6 and H. A. R. Wegener, Z. Physik 148, 631
(1957).


