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It is shown that in lattices of tetrahedral symmetry with two ions to a unit cell, in the approximation of
nearest neighbor repulsive interactions, for a given wave vector q,
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where ru(q;) = angular frequency of the ith mode for a given wave vector q, M =m+m /(m++m ), m+ =mass
of positive ion, m =mass of negative ion, ro=interionic distance, and P is the coefBcient of compressibility.
This theorem serves as a useful check on numerical work as well as a relation for the downward curvature
of the optical modes at small q in terms of the speed of sound. In the limit of small q, this relation becomes
the first Szigeti relation. A similar theorem is true for low-density electron gases where the electrons localize
on a lattice. Here one can show that

Z ~"(q) =~pi',

where co» =4xnee/m, which is the classical plasma frequency. (This last relation was first derived by Kohn. )

'N computing the lattice vibration spectrum of ionic
~ - crystals, the model of nonpolarizable ions is often
used. For this model, a general theorem on the sums of
the squares of the angular frequencies co, (q) of all modes
for a given lattice wave vector q is readily formulated.
This theorem provides a powerful check on numerical
work such as Kellermann's calculations on NaCl. '

As calculations have only been made on alkali halides,
we shall restrict ourselves to the case of lattices of
tetrahedral symmetry with two ions to a unit cell. The
statement of the theorem is that in such lattices for
nonpolarizable ions,
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The proof of Eq. (1) follows immediately from the
secular equation that determines the frequencies for a
given q. If e is a six-vector, then the secular equation is

~'(q) s(q) = G(q) '(q), (3)

where the 6)&6 tensor 6 may be labeled by the three
orthogonal directions n, P= 1, 2, 3 and the index + or-
for the positive or negative ion. The components are
G p~, G p~, and G p . These have been worked out
in detail by Kellermann, but to prove our theorem we
only need the general form of the diagonal elements,
i.e., G ++, and G . We split G into two parts, the
part arising from the Coulomb forces being called cG
and the part from ionic overlap repulsion "G.Then
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which is the first Szigeti relation. ' The relation (1)
which we shall prove is thus a generalization of the
6rst Szigeti relation to all wavelengths in a non-
polarizable ionic lattice.

' E. W. Kellermann, Trans. Roy. Soc. (London) A238, 513
(1940).

M. Born and K. Huang, Dylamica/ Theory of Crystal LaQkes
(Oxford University Press, Oxford, 19S4).

where M= m+rrt /(rN++stt ), stt+ ——mass of positive ion;
m =mass of negative ion, ro ——interionic distance, and
p= coefficient of compressibility.

A special case of Eq. (1) is for very long wavelengths
where all acoustic modes have zero frequency. The two
transverse optical modes vibrate with the rest-strahl
frequency coo and the longitudinal mode vibrates with
(ep) v&op, where ep is the static dielectric constant. In the
usual notation we have e„=1 for our nonpolarizable
ionic model. In this case, Eq. (1) reads
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cQ ++= —P —— exp(iq. ai),
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where a&=lattice vector. By Laplace's theorem, it is
then seen that
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CG ++—Q CG ——P

Equation (5) is the essential content of this paper for it
says that the trace of G is determined by the repulsive
forces alone, which is the verbal statement of Eq. (1).

To calculate the repulsive interactions, we use the
work of Born and Huang (reference 2, Sec. 9), assuming
only nearest neighbor repulsive interactions. Here

~ua = (1/3™+)~&4'repuisive
~ r roy

where Z is the number of nearest neighbors, ro the
interionic distance. V'@ is easily expressed in terms of
the compressibility. In fact

~~4repuisive
~ r ro 1gro/P.
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»om (5), (6), and (7), we hand that the trace of the
6-tensor 6 is

trG (g)
18ro

P m+ m

Sy the invariance of the trace to orthogona1 transforma-
tion this proves our theorem.

An interesting corollary of our theorem is the relation
of the curvature downwards of the optical modes, as a
function of wave number, to the speed of sound. If c~

and c~ are, respectively the longitudinal and transverse
sound velocities, then for small q we have

' E. Wigner, Trans. Faraday Soc. 34, 6/8 (1938).' W. Kohn has independently derived relation (12). Reference
to this may be found in J. Bardeen and D. Pines, Phys. Rev. 99,
1140 (1955).I am grateful to Professor Kohn for informing me of
his results.' W. Kohn (private communication).

An interesting application of these same ideas is in
the calculation of the correlation energy of an electron
gas in a uniform positive charge background at low
density $i.e., (Bohr radius/interelectronic distance)
«1j."In this limit, the long-range Coulomb repulsion
is the dominant contribution and the electrons will
localize themselves on a lattice. The body-centered
cubic lattice is most favorable. ' In next approximation
to the energy one must include the zero-point energy
of the lattice. Here there ate three modes per lattice
wave vector q. The forces on a given electron are the
interelectronic Coulomb force and the interaction with
the uniform background. Again let G„p be the part

of the frequency tensor arising from interelectronic
repulsion. Further, let ~G

p be the part of the frequency
tensor arising from interaction with the background.
We thus have

—8s 8 f df
'G.s(tl) =

m c)~ r)xp " Ir—r'I
(10)

where +» is the classical plasma frequency. For the
present problem, (11) supplies the stability role played
by the ionic repulsive forces in the previous problem.
Again we clearly have QoG (tl)=0 by Laplace's
theorem, so that

Z G-(a)= 2 ~'(tl)=~. ~'

This result was found independently some time ago
by Kohn. 4 It is of importance for it gives an inequality
for Eo, the correction to the lattice energy due to zero-
point oscillations:

—,'Ao) p t ~& Ep/S &~ —',V3fup», (13)

where iV is the total number of electrons. Rough
estimates indicate that Eo/ill'=1. 5 Xqhcp».

where n is the mean number density of electrons.
Because of spherical symmetry in the integral, the
right-hand side of (10) vanishes for nAP, and by
Poisson's equation we thus have

1 kree'
G-s(tl) =- 3-s=~s~pt'4s
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