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Plane Sources of Radiation*

MARTlN J. BERGER AND LEWIS V. SPENCER
gatioeal Bureau of Staldards, Washington, D. C.

(Received June 23, 1958)

The radiation density {Aux integrated over all directions) from a collimated point source is shown to be
representable as a Fourier-Hankel transform of the density from a collimated plane oblique source. The
spatial moments of a point-source density are similarly expressible as linear combinations of a finite number
of moments of plane-source densities corresponding to different source obliquities. These results are valid for
any type of radiation, provided that the medium is unbounded, homogeneous, and isotropic, and provided
that a linear transport equation applies. The plane-geometry representation of densities and density-
moments is equivalent to a "separation of variables. " It allows one to solve a sequence of problems in one
space variable (distance from a source plane) for diferent values of the source obliquity, and to use the
information thus obtained for constructing the solution of a problem involving two space variables (e.g. , the
longitudinal and radial distances from a point source).

I. INTRODUCTION

I 'HIS note is concerned with a separation of vari-
ables which facilitates the solution of the trans-

port equation under the following conditions: (1) The
interaction of the diGusing particles with each other is
negligible compared to their interaction with the atoms
of the medium, so that the transport equation is linear.
(2) The medium is unbounded, homogeneous, and
isotropic. The results of this note pertain to the spatial
density distribution of particles, i.e., the Aux integrated
over all directions. The more complicated case of the
joint spatial and directional Aux distribution, for which
an analogous separation of variables holds, is treated
elsewhere ' '

A basic solution of the transport equation can be
obtained by calculating the (cylindrically symmetric)
density distribution F(s,p) at a radial distance p and
longitudinal distance. s from a point source which emits
particles in the s direction. The density distribution
resulting from an arbitrary source can be represented as
the sum of distributions from different point-collimated
sources with diBerent locations and directions of emis-
sion. The point-source density F(s,p) is diKcult to
obtain because a two-variable transport problem in s
and p must be solved. So far, almost all of the exact
solutions of the linear transport equation have been
achieved for the case of one space variable only.

An alternative basic solution of the transport equa-
tion is obtained by calculating the density distribution
G(»; Os) at a distance s from a plane source which emits
particles with obliquity 80. It will be shown that the
point-source distribution F(s,p), and therefore the den-

sity distribution corresponding to an arbitrary source,
can be represented as a superposition of density distri-
butions from plane sources with diferent locations and
obliquities of emission. This result may be regarded as

* Work supported by the Once of Naval Research.
' Fano, Spencer, and Berger, Encyclopedia of Physics (Springer-

Verlag, Berlin, 1959), Vol. 38, Part 2.' The time- and energy-dependence of the Qux are disregarded
because they are irrelevant to the discussion.

an analog and generalization of the well-known plane-
to-point transformation for isotropic sources. '

2. PLANE-TO-POINT SUPERPOSITION OF DENSITIES

Let us consider the density G(s; tao) at a point F
located at a distance s from a plane source that emits
radiation in direction cas. (See Fig. 1.) The source is
assumed to lie in the plane s=0. The unit vector ~0 is
represented by spherical coordinates tIIO and q 0, with the
s axis as polar axis.

One can regard the plane source as consisting of many
point sources, all of which emit in direction uo, and
which are distributed uniformly over the source plane.
We now focus our attention on one of these point
sources, say S, and denote the cylindrical coordinates of
the point I' relative to S as p, s and 0.. The contribution
of 5 to the density G(s; tao) at F is equal to the density
F(p', s') from a point-collimated source emitting in
direction ~0, where p' and s' are the radial and longi-
tudinal distances, respectively, of I' relative to S with
respect to an axis passing through S in direction aao. The
contribution of the source point S depends only on the
relative distances p' and s', but not on the absolute posi-
tions of S and I' or their relative orientation, because of
the assumed homogeneity and isotropy of the medium.

Assuming one point source per unit area of the source
plane, there are pdpdn point sources such that the rela-
tive coordinates of I' with respect to them lie between

p and p+dp and between n and n+dn. By summing over
the entire source plane, the following relation is obtained
between plane-source and point-source densities:

~oo (
2n.

G(s; cap) =
)I pdp) dn FLp'(p, s,n), s'(p, s,n) j. (1)

We want to invert this integral equation to obtain
F(p', s'). The first step of the solution consists of applying
a Fourier transform in s. We multiply (1) by e '&* and

' See, e.g. , R. Marshak, Revs. Modern Phys. 19, 185 (1947}.
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integrate with respect to s:

ds e
—' 'G(s; coo)

~00
p

OO

p
2 Tl

pdp «d e "*F[p'(p,sp), s'(pep)1 (2)
Jo Jo

The right-hand side of this equation does not depend on
Ioo. Therefore G(s; eIll) is also independent of po, and we
shall write G(s; Hll) from now on.

The integral with respect to o.
' yields a Bessel function:

27r

dn' exp( —iqp' sinH, cosa') = 2srJo(qp' sinHo). (5)

g p
=

g sln~py gz= g cosopp

Note that in Fig. 1 the distance SC=s' cosHo, Q& After the replacement of q and Hll by new variables,
=p' singp and AB=CD= p' slnHp coso.', so that one can
make the substitution (6)

s= p' sinHll coscr'+s' cosHll

on the right-hand side of (2). Furthermore, we may
replace the volume element of integration pdpdsdn by
p'dp'«'dn' inasmuch as the Jacobian of the transforma-
tion from the unprimed to the primed coordinates is
unity. The resulting expression is

one can rewrite (4) as

(1/2sr) «exp/ is(q, '+q —)&)G(z; Hll)

p'dp' ~o(q,p')P(p' s') (7)

—00

«e-'e'G(s; coo)

00 F00

p'dp' ds' e—"*'-"oF(p' s')

To this equation we apply inverse Fourier and Hankel'
transforms, i.e., we multiply (7) by (1/2sr) e'&"q,Je (q,p')
and integrate with respect to q, and q, . This leads to the

4For a description of Hankel transforms, see, e.g., I. N.
(4) Sneddon, Esscyclopedha of Physics (Springer-Verlag, Berlin, 1955),

Vol. 2, p. 298.
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desired solution of the integral equation (1):

F(p', s')=(1/2s)'Jt dq, e'"*'Jt q,dq, Jp(q, p')
—00 p

,5(p')
F(p', s') =ke ~" if s') 0

271 p (13)

Combining (11) and (12), we find the density from a
point-collimated source in a purely absorbing medium
to be

ds exp[ i—s(q, '+q, ')'5G(s; Hp) (8) =0 if s'(0.

G(s; Hp) = e '~~""0 if s cos8p& 0
J
cosHp/

=0 if s cosop(0,

where k is a normalization constant and u is an attenua-
tion coeKcient. The I'"ourier transform of G(s; Hp) is in
this case

ik

Note that the argument Hp in G(s;Hp) is equal to
tan '(q, /q, ).As q, and q, assume different values, Hp runs
through all angles between 0 and x. Thus the evaluation
of F(p', s') requires knowledge of plane-source densities
for all obliquities.

Many methods of solving the transport equation in

plane geometry yield as a direct result th Fourier
transform of the density rather than the density itself."
In connection with the evaluation of F(p,s) this is

actually an advantage because only the integrals with
respect to q, and q, in (8) need then be carried out.

As a simple example of the application of (8), we
consider the case of a purely absorbing medium, for
which

This result is of course obvious from first principles, be-
cause in a purely absorbing medium, i.e., in the absence
of scattering, the radiation remains concentrated on a
line corresponding to the direction of emission, and is
attenuated exponentially along that line.

3. PLANE-TO-POINT SUPERPOSITION OF
DENSITY MOMENTS

One of the most effective techniques for solving the
transport equation is the moment-method, according to
which one first determines the spatial moments of the
flux, and then constructs flux (or density) distributions

by moment-fitting. The moment method has been
applied to the calculation of the diGusion of x-rays, '
electrons, ' ' neutrons' and cosmic rays. "The Aux mo-
ments are computed with the use of recursion relations
derived from the transport equation. These recursion
relations are much simpler for plane-source densities
than for point-source densities. It is therefore of prac-
tical importance that there exists a relation which is the
analog of (8), according to which any finite moment of a
point-source density can be obtained as a finite linear
combination of plane-source density moments.

Plane-source density moments may be defined as

e—'p'G(s; Hp)ds=
a+t'q cosHp ai q, —

The inverse Fourier transformation yields

(10)
G„(Hp) =— ds s"G(s; Hp),

Sa QQ
tJ

P
e7ez~'

2~~ „
jk

dq, =ke " if s') 0
az —q,

1 t" r.

2spdp p&'s F(p,s). (15)

and point-source density moments as

=0 if s'(0.

The inverse Bessel transform yields a delta function:

1
ql qn p(qnp)

2' p

f 27r

kr' &
de q dq e 'happ cosA

P P

p

oo oo

dn ~ dn er(px&'+psp')
qm'J qp

im'
8( ')

=H(x')8(y') = . (12)2'
' L. V. Spencer, Phys. Rev. 88, 793 (1952).

Kilkins, Hellens, and Zweifel, Proceed&zgs of the International
Conference on the Peaceful Uses of Atomic Energy, Geneva, 1055
(United Nations, New York, 1956), Vol. 15,

We want to express the Ii; 's as functions of the 6„'s.
Upon multiplying (1) by s "/ts! and integrating with

respect to s, one obtains an expression for G„(8p) which,
with the use of (3), can be brought into the form

CO ~00
p

2T

G„(Hp) =—
~~ p'dp' ds' dn'

X(p' sinHp cosn'+s' cosHp) "F(p',s'). (16)

The right-hand side of (16) can be further transformed

by expanding the binomial, carrying out the integration

7 L V. Spencer and U. Fano, J. Research Natl. Bur. Standards
46, 446 (1951).' H. W. Lewis, Phys. Rev. 78, 526 (1950).

' L. V. Spencer, Phys. Rev. 98, 1597 (1955).
'P B. A. Chartres and H. Messel, Phys. Rev. 96, 1651 (1954);

Q. A. Chartres, Phys. Rev. 105, 707 (1957).
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over n', and making use of the moment definition (15). framework of the moment-method. Equation (18) can
The resulting equation is be rearranged as a Legendre series

f22
G (8p)= P sin't'8p cos" 2j8p! !2 2jF2j, —2j, (17)

j'=p ~ji
[-,' n]

G (8p) = P b jP 2 j(cos8p) (23)

jl

b„;= (2t 2j—+2) sin8pd8p P —2, (cos8p)G (8p), (24)
Jp

where the notation ! —2a) indicates the largest integer with the expansion coe%cients
fa& .
&b)

(2a and ! ! is the binomial coeKcient a!/(a —b)!b!.

Only even powers of sin8p occur in (17), so that G„(8p) is
expressible as a polynomial in cosep'.

[-,' n]

G„(8p)= P a„;cos"—'t'8p,

where I'& is the lth Legendre polynomial. Legendre

(1g) polynomials can be written as"

with
v i j'k~ p2k~

~.j= 2 (—1)'+'I . II !2-"P»,.-2k. (19)(j) (k J with

[kH

Pt(cos8) = P ct, cos' "8
j=p

(23)

lt will now be shown that the inversion of (19) yields

P2J, =
2 i i+pm] )ttl't!

~2j+m, a-

!

(2j) k t j)
ij)

(20)

The last sum in (21) can be evaluated with the use of a
generating function:

!I . I

Eu& ! j)
(—1)' .

lim —(1—t)'=! ! lirn(1 —t)' '
j! t-+1 djj (j) t-+t

if i= j
(22)

0 if i& j.
Thus (21) is an identity, which proves (20).

In order to evaluate the point-source density moments
according to (20), one must have the expansion coeK-
cients a„j of G„(8p). The evaluation of Fpj, requires
knowledge of the! -'22tt]+1 coeKcients npjt. , k for k= j,
j+1, j+L22222]. These coeKcients can be determined
from (14) after one has obtained G„(8p) for j+t 22222/+1

different values of the obliquity ep.

There is another method of evaluating (20), which
depends on a Legendre polynomial expansion of G„(8p)
and has the advantage of Pitting very naturally into the

This result can be proved by inserting (20) into (19),
whereby one obtains the equation

I:k~1 P. ttl (i ) fk)
(—1)""!

I=j' i=I (u) I,j)
(i ) (k)

(»)
i=j' I =j

(—1)i(l q (2l—2j~
2'

(26)

On the basis of this representation, the coe%cients a„,
in (18) can be expressed as linear combinations of the
coefficients b„; in (23). The insertion of these combina-
tions into (20) yields the following equation:

2 ' j+hml j+Hml (k)
b2j+m, t 2 ! !~2j+m 2j„k—tt (27)—

(2j) '=p
'

k-kt ( j)
ij)

"E. T. Whit taker and G. N. Watson, 3IIodern Analysis
(Macmillan Company, New York, 1946), American edition, p. 302,

where k*=i or j, whichever is larger.
The coeKcients b2,+;in (27) , can be interpreted in

two different ways. One may consider them as the
integrals over G„(8p) computed according to (24). This
computation can be done exactly if one knows G„(8p) for
j+!-2'222)+1 different values of the obliquity 8p. From
another point of view, one may regard the coe%.cients
b»+, ,- as the moments of the density from a plane
source which emits particles according to an angular
distribution P»+ 2„(cos8). Such Legendre-polynomial
source distributions have no direct physical meaning
(except for the polynomial of order zero) because they
can assume negative values. But they constitute a
useful system of functions in terms of which one can
represent physical sources by superposition. Their use-
fulness derives from the circumstance that the chain of
recursion relations by which the moments are calculated
assumes its simplest form for Legendre-polynomial
sources. ' It can therefore be assumed that the coeK-
cients b»+ „are directly available from a moment
calculation, without further integration. Altogether

j+!222221+1 different Legendre-polynomial sources, of
order 2j+222, 2j+222—2, , 1 (or 0), must be con-
sidered in a calculation of F2,, m.
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Note that (20) or (27) yields only ence moments in p
(with index 2j).The reason for this lies in the structure
of (16). In this equation, the binomial in p' and z' is of
such a form that after expansion the odd powers of p'

are accompanied by odd powers of cosa'. These odd
powers of cosa' vanish when one integrates with respect
to n', so that only even moments with index 2j are left.
If one calculates moments directly from the recursion
relation appropriate to a point source' one also fails to

obtain odd moments in p. In order to obtain the missing
moments, one would have to proceed indirectly, first
evaluating the density distribution from the even mo-
ments, and then taking appropriate averages of the
density distributions.

ACKNOWLEDGMENTS

The authors are indebted to U. Fano and W. T. Scott
for valuable discussions.

FHYSICAL REVIEW VOLUME 118, NUMBER 2 JANUARY 15, 1959

Theriraodynamics of Inhomogeneous Systems

EDWARD W. HART
General Electric Research Laboratory, Schenectady, Em Fork

(Received August 11, 1958)

A self-consistent thermodynamic formalism is developed for the treatment of the equilibrium of systems,
some of whose parameters vary continuously from place to place. The method is specially designed for the
description of transition interfaces separating two phases. The energy per unit volume is assumed to depend
explicitly on the space derivatives of the molecule densities. Equilibrium conditions are obtained for the
appropriate internal variables of the system, and all externally measurable intensive variables are uniquely
defined by a variational procedure.

INTRODUCTION

'HE detailed description of the transition layer
between two phases of a substance requires the

treatment of a system in which some parameters of the
system such as matter density and entropy density vary
continuously from place to place in the system. The
purpose of this paper is to provide a systematic formal-
ism for the treatment of such systems within the frame-
work of thermodynamics. The method developed here
provides unique definitions of all externally controllable
thermodynamic variables and consistently describes all
physical operations that can be made on the system.

The power of a phenomenological description of
inhomogeneous systems has been recently demonstrated
by Cahn and Billiard. ' They represent the effect of
inhomogeneity on the free energy of the system as a
dependence of the free energy on the density gradients
at each point as well as the density. The free energy is
considered to be represented by an expansion in the
various derivatives of the density close to the homo-
geneous state. The history of such types of treatments
is well described by Bakker, ~ and I shall not present any
further discussion of that method.

The basis for the present treatment is similarly an
assumed pointwise dependence of the local energy
density on the space derivatives of the densities at the
point. This mode of description is introduced into the
framework of a Gibbsian thermodynamic treatment.

' J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).' G. Bakker, in IIandbuch der Experimentalphysik, edited by W.
Wien and F. Harms (Akademische Verlagsgesellschaft, Leipzig,
1928), Vol. 6.

For simplicity a one-component system is treated, and
the explicit dependence on only two derivative terms is
included.

The method should also be useful in the treatment of
critical-point Quctuations.

DEVELOPMENT OF THE THEORY

We shall take under consideration a one-component
system in some infinitesimal state of strain relative to an
assumed reference state. Each point x; of the reference
state is presumed to be continuously displaced to the
corresponding point x,' in the strained state such that x,'
is a differentiable function of the unprimed x's. For Quid
or fully isotropic systems, the choice of the reference
state is relatively unimportant; for crystalline solids,
however, the reference state must be selected in general
with sufficient care so that the system is both con-
veniently and adequately specified. Since we shall re-
strict our present discussion to the fully equilibrated
isotropic solid or Quid, we shall not be concerned with
the latter problem. The energy of the system will be
presumed to depend explicitly on the strains e;,, defined
by the relationship

e;,= elm /clx, .

Another important parameter in the description of the
state of strain is the dilatation e, the ratio of the volume
of a small volume element e' in the strained state to the
volume of the element v in the reference state from
which it was deformed. The dilatation is given by the
Jacobian of the transformation represented by the


