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Trajectory-Wise Analysis of Cylindrical and Plane Plasmas in a Magnetic Field
and Without Collisions*

LEWI TONKs't
Radiation Laboratory, University of California, Livermore, California

(Received September 19, 1958)

The anatomy of the transition region between vacuum and a fully developed magnetically immobilized
ionized-gas plasma has been examined by following particle trajectories in detail. The mathematical
formulation has required machine computation for its full interpretation. This approach recognizes the
structure imparted to the plasma by the radius of gyration and thus serves as a critique of the magneto-
hydrodynamic method. It furnishes the microscopic veri6cation of that macroscopic approach and supple-
ments it by showing that the sharpness of transitions in a plasma are limited, in effect, by the gyration radius
in the stronger, not the weaker, magnetic Geld. Especially, it brings out the greater importance of the tensor
character of the plasma pressure in the cylindrical case where the combined kinetic and magnetic energy
density in uniform interior regions of the plasma is not equal to the magnetic energy density in the vacuum.
The analysis also exhibits the intense mass motion at the surface of a strong plasma constituting a para-
magnetic electric current and probably having dynamical effects. The numerical work has been correlated
where possible with direct theoretical results.

reason the trajectories can be calculated to be consistent
with the field at each point. Position will be described
by a single coordinate, radial distance, only. Every
trajectory has an apogee, the turning point at which, as
one approaches the axis, it is first encountered, and a
perigee, the turning point at w'hich it is left behind.
Thus at a point in general there will be a multitude of
trajectories to be kept track of, namely all those whose
apogees but not perigees have been encountered.
Although the calculation indicated is sound in principle
it becomes unwieldy in practice. The simplification
adopted was to confine attention to particles of a single
charge e, single mass m, and, single speed v perpendicular
to the uniform vacuum magnetic field 80. The first
analysis was done for the case where the field lay in the
s direction, the plasma face in the y, s plane and the
only variations lay in the x direction. The numerical
calculations were made for this case. Here it appears
reasonable to analyze the cylindrical case with results
which reduce easily to the Cartesian case.

I. INTRODUCTION

~HE earlier work in the Sherwood Project on the
magnetohydrodynamics of an ionized plasma

used as a favorite device the concept that a magnetically
immobilized plasma, when bounded, had a sharp
boundary outside of which there lay only vacuum and
magnetic field. Certainly diffusion would obliterate the
step function in density, and the original attainment of
such a step function is probably impossible, but aside
from these considerations the question arises as to how
thin a transition between vacuum and full plasma
density can be in view of the considerable size of an
element of plasma structure, namely the diameter of the
charged-particle orbit. The analysis which follows was
undertaken to throw light on this problem. It keeps the
particles in view to a later stage in the analysis. Since
this work was done more insight has been gained than
then existed into the limitations of the hydrodynamic
approach and a new method has been proposed based
on distribution functions of the plasma particles which
are solutions of the Boltzmann equation without its
collision terms. This is, however, only a partial answer
because it only transfers the seat of difficulty to th
problem of expressing physically plausible distribution
in the terms acceptable to the method.

I'he approach here is more primitive. It is based o
the realization that if one imagines proceeding fro
left to right from a known vacuum magnetic field int
an immobilized plasma, one is always in a magnetic fiej

which can be calculated on the basis of trajectories an
parts of trajectories already encountered. For thi

II. FORMULATION OF BASIC RELATIONS

*V/ork was performed under auspices of the U. S. Atomic
Energy Commission. Preliminary reports on this same subject
have been issued as University of California Radiation Laboratory
reports: UCRL-4439 (Revised) (January, 1955); UCRL-4466,
Parts I (December, 1954), III and IV (March, 1955).

t Consultant to the University of California Radiation Labora-
tory, Livermore, California under contract with the Atomic
Power Equipment Department, General Electric Company and
Lewi Tonks.

Referring to Fig. 1, the vacuum magnetic field 80 is
uniform in the z direction (perpendicular to the paper).
The plasma density is assumed to be uniform in the
s direction and the plasma lies within a radius ro. We
now define a Class p particle. It is one which crosses the
element of area dzdp (lying at r =p, 8=0) in the negative
8 direction (i.e., clockwise) whose velocity vector lies
within a small angle 0. normal to 0=0, and which
traverses 8=0 within a short time interval Ch at 1=0.In
the figure, dp lies at the apogee, P', and for ease of
analysis o. extends to the right from the normal to OP.
Trajectories 1 and 2 bound the stream of class p
particles. To within second-order quantities they are
congruent to each other, and trajectory 2 may be
alternatively looked upon as being trajectory 1 rotated
through the angle 0. about P as center, or as being
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trajectory 1 rotated through the angle P about 0 as
center, again to second-order quantities. Since these
trajectories are circles in the neighborhood of I',

a = (p —a)P,

where a is the local radius of gyration (see Fig. 1).
Let the number of class p particles be

o.(p)adtdpdk,

the dependence of 0. upon p being the factor which
determines the plasma density as a function of r.

At some instant t the Class p particles will occupy the
volume (ABCD)dk, where

AB= ddt.

FIG. 1. Trajectory analysis for cylindrical plasma.

where p(r) is the apogee of the oldest trajectory passing
through r.

This volume is the same as (ABC'D')dk, where BC' and
AD' are arcs with the plasma axis 0 as center, and, as
remarked

III. PRESSURE AS A TENSOR

From Eq. (4),

and
QAOD'= P,

AD'=Pr.

d 2d &&"& (p —a)o r'

—(n(r)(r')A, )=- —Gp.
dr dr"„a r

This is the base of a parallelogram of which the corre-
sponding height is the radial component of ~dt' or

idh

to give a volume

Now the integrand vanishes at the lower limit either
because i=0 at an apogee or because o-=0, and it
vanishes at the upper limit because i =0 there;
accordingly,

pr(r'ldtdk. d t.&t"~ (p —a)o t18r'—(N(r)(r2)„) =2, ~

~

———ldp
dr a Er Br r')

r'= r'$p, r(p, t)],
r'= Mr' j8r,where the factor 2 recognizes that both outgoing and

incoming trajectory branches contribute to density.
Then, using Eq. (1), we have and using also the trajectory equation:

Putting rt, (r) for the particle density of Class p particles
and equating total number of particles, we get directly

Since
m, (r)pr l r'~ dtdk=2oadtdpdk,

p a(p) 1—
m, (r) =2o (p) —dp.

a(p) ri

r' r8'= co(r)r8—
(3)

(where co= eB/mc, as usual), we obtain

Here it is to be clear that u is the local trajectory radius
at p only, but that i will be a function of p as well as r.
Of course, 0. is a function of p only. The absolute-value
designation has been taken from i with the under-
standing that the evaluation of n,, and later of the
current, jp, shall be based on the portion of trajectory
occurring prior to the apogee, i.e., at negative times,
when i is intrinsically positive.

As previously, we then have for the total density of
all contributing classes

Now from Eq. (5), we have

B dB a(r) jp

4xnz dr

Addition then gives

t
&&"& (p —a)o a)8——2 —dp.

8 T

d t. &'& (p —a)o t'(u8 8'—(e(r)(r')A, ) =2
~

+ ~dp.
dr ~„a ( r r r')

2
I

""'~(p)(p a)—
e(r) =— dp,

CP

d (B' i
I

""' (p a)~ (r8)' —r'——
~

—+me(r)(r'), „~=m dp, (8)
(4) dr (8~ J & „arr' r

and the current density from all contributing classes is

t.""' (p a)o(p) 8—
—dp

8 T

a relation which will be seen to emphasize the special
importance of the tensor character of the pressure in
cylindrical geometry.

Equation (8) reduces to the Cartesian case if we let
r become infinite keeping r8 finite. The right member
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vanishes and we have, directly,

(B'/8~)+me(r'}A„——constant.

This is easily generalized to a range of particle masses
and speeds, and it is readily seen that between two
regions in each of which 8 is constant and the plasma
motions are isotropic, this becomes rigorously

V. EQUATIONS IN DIMENSIONLESS FORM

To put these equations in dimensionless form we
make the following substitutions of dimensionless
capitals for the lower case variables:

(o =DeBp/(mc) =Q(so,

8= T/cop, (x,x', rl, y) = (X,X',H, V)vo/coo. (18), (19)
822 812

+p~ —pi=0, (9) The new equations are

where p designates the scalar pressure.
Nothing like this is possible with the original Eq. (8),

so that transition regions leave their -imprint on
isotropic regions. The right member of Eq. (8) is directly
expressible in terms of tensor components. The first
and third factors in the integrand constitute a density
increment as can be seen by reference to Eq. (4).
Factoring in the second factor thus yields an increment
to (p« p„„)/r, so —that Eq. (8) can be alternatively
written

Q(X) =1—

d'Y dX d'X
+Q(X) =0,

dt2 dt dt2

dI'—n(X) =0,
dt

X=dX/dT, —etc.

Sze2V

8vre'v I.» (»' o (vH/coo)Q(H)F
dX' ~ dH,

mC ~p O a(Xr) x

(10)
$(H) = 0 (()H/coo) =

SSC cvp

(21)

OMj (g,x)
j„(x)= —2e dg".(*)

(12)

an equation which can be derived in other ways.

IV. EQUATIONS FOR THE PLANE PLASMA

The conversion of Eqs. (4) and (5) to the plane case
is accomplished directly by the substitutions

r=X„—x, g=X„—p,

where X„is allowed to approach infinity and q takes the
place of p in labeling the particular trajectory under
observation; we then have

I'* ~(~)~(n)
ri(x) =-

~ ",(*)

If now we apply the same conversion to Eq. (11)we find

e(x) =
Bo' (» S(H)Q(H)

dH. (23)
47l IV ~ II(X)

In the absence of collisions there is no natural
distribution of particles to govern the choice of the
build-up function S(H). For orientation purposes
S(H) =So is probably the most useful choice because it
leads into an asymptotically uniform plasma.

to make the field equation dimensionless also:

S(H)Q(H)Y
Q(X) = 1—

ii dX')' dH. (22)
0 JI(x )

for the particle density and current density, respec-
tively, with the coordinate x increasing from left to
right. Here also

B 2

Sum kT
C

B

Now by using
(0(g) = eB(g)/(mc).

dB,/dx= —4m j„/c,

(13)

(14)

and letting the plasma boundary lie at x=—0, we find
the equation for. the magnetic field to be

B(*)=B,—
87re ( t

" ~ (g)(o(g)V(q, x')
dx dg. (15)

/x(g, x')
/ VACUUM BOUNDARY

LAYER
UN l FORM

I PLASMA

g= MSp X=cog.

The equations of the particle trajectories are the
usual FIG. 2. Density and field distribution in weak Cartesian plasma.

x=—I/~p.
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and for fixed X

X=H+1 cosT,—
X=slnT,

d X/dP=cosT=F,

dH = —sin ldT.

(24)

The first integration in Eq. (22) for S(H)=S,
constant, is conveniently carried out in the two regions

(A) 0&X'&2:
'x' (X'—H —1)

dH= —SL1—(1—X')'j'*.
x

VI. SOLUTION FOR WEAK PLASMAS

The solution of the equations is a machine job and
has been done on the Univac. It is worthwhile, however,
to solve analytically that order of approximation in
which the particle density is so low that the depression
of 8 is so small that the deviation of the trajectories
from circular is negligible. Then the orbit radius is
unity, and for the trajectory

whence
d(B')—8mekTLI —sin2&/(2P) j=0. (30)

For X)2 the bracketed expression should be replaced
by its X=2 value, namely, unity, and thus the generally
accepted relation is confirmed. Here we have an example
of the effect of anisotropy of the plasma causing a
departure from the simple condition expressed by
Eq. (9). This departure is shown by Curve C of Fig. 2,
which is a plot of the negative of the bracket in Eq. (30).

VII. PRESSURE INTEGRAL OF EQ. (22) WITH A SPEED
DISTRIBUTION AND ANY PLASMA STRENGTH

Equation (22) can be generalized by including in it a
continuum of source terms S(H,v)dv for a range of
velocity classes. It is not difficult in this way to arrive
rigorously at the result

(BP+8 nze(xP)A) —0.
dx

For the Maxwellian case it becomes, as expected,

(8) 2&X'. —(B'+8~ekT) =0.
dx

(32)

Using

'x' (X' H 1)——
dB=0.

X4X —2

P=cos '(1—X), 0&/(m. (25)

the second integration leads to

Q(X)—1=
——,'$(P —pi sin2$), 0(X&2

Sx2,) 2&X
(26)

which represents the depression of the magnetic field
in dimensionless form. The quantity (2/m. )(Q—1)/S
= (2/m. ) (6 /BBp)Sis plotted against X as Curve A of
Fig. 2.

Turning to the particle concentration given by
Eq. (23):

VIII. ELECTRIC CURRENTS AND MASS MOTIONS
IN THE BOUNDARY LAYER

At a distance x„ from the plasma edge where the
plasma is essentially Maxwellian and uniform (except
for the dearth of those high-speed particles which would
penetrate the plasma edge) imagine a plane P as shown
in Fig. 3. To the right of P trajectories are circular so
that there is no mass drift. At any point in that region
all directions of motion are equally likely for all velocity
classes so that there is no net current density.

We shall be interested in the total current per unit
s depth of plasma, and we have just seen that all of it
lies to the left of P. There we analyze the electric
current not by volume element but by particles in their
trajectories. Some trajectories cross P, many do no t.

Bp'S P, 0&X(2
N(x) = X

horme' m, 2&X.
(27)

VACUUM BOUNDARY UN IFORM ISOTROPIC
PLASMA

In Fig. 2, e(x) is shown as Curve B, but plotted
against X.

Now we can compare the depression in the field to the
particle concentration and it will suffice to do this for
0&X(2 because for X&2 relations remain constant.

Q(X) —1 dB 2mmv' ( sin2$p

e(x) Bpm Bp' L 2P ) (28)

The best rough approximation for the introduction
of temperatures T is to put

mv'/2 kT, (29) FIG. 3. Analysis of boundary layer currents.
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Bo2S„
2rrhm =exp( —b'av')dv k =1/(2kT).

4n.me'

The current, in terms of field depression dn, arising. Eq. (23) becomes
from the former will be denoted by J1, from the latter
by J2, and precise meaning is given these quantities by
writing

n —1=Ji+Js. (33)
Therefore

The cut trajectories are responsible for a current
because, as with trajectory 7.1 of Fig. 3 the particle
makes its contribution to J1 by its transport from A via
8 to C; its transport from C to A is balanced, as we
have seen, among all the other particles to the right of
I'. Particles in circular orbits like v-2 which lie entirely
within the region contribute nothing to J2, but for
particles in trajectories like w3 their progress from
D to E in each cycle does contribute to J&.

Now J1 and J2 can be separated out of the double
integral in Eq. (22). The area of integration is shown as
OABCDEO in Fig. 4. Since X„lies in a uniform region
the orbit there is circular, constant in size, and actually
of radius (dimensionless) 1/n(X); and H=II(X) is
parallel to II=X. 2 little reaction will show that
reversing the order of integration is physically equiva-
lent (1) to selecting one trajectory (H= constant) and
summing its current contributions, and then (2)
summing over all the trajectories involved. It then
becomes evident that the cut trajectories are those
included in the area CDJC. For this, the double
integral for a single velocity class is

S= S„dv =SnkT/(Bp') = (Bp' —B')/(prBp').
~o

After summing Eq. (34) over all v, we then have

J,= —(1—n')/2n,

and from Eq. (33)
J,= (1—n)'/2n.

These equations lead to the following comments:

(35)

(36)

TAm, z I. Weak plasma relations.

an„= —$~$
Theor. Calc

7 =2r
Theor. Calc

Yp = (8/3)S
Theor. Cale

(1) Jp is a paramagnetic current which is more than
overbalanced by the diamagnetic J1.

(2) In weak enough plasmas where n is only slightly
less than unity (very slight depression of B) Js is
negligible compared to J1 which is a confirmation of the
earlier treatment of the weak plasma case.

Xc+2/0

Jl
"IIc

t
~ S(H,v)dvQ(H) YdH

dX
X

0.01
0.03

—0.0157i —0.i583—0.047 i —0.0485
6.28 6.28

0.08 0.128

since S(H,v)n(H) is constant in a uniform plasma[ and
the equations of motion are

X=H+n '(1—cosnT), Y=n 'd'X/dt'

Ke must now determine S, to be consistent with a
Maxwell distribution. Applied to particles of speed ~,

(3) As B is severely depressed, n approaching zero,
both currents grow without limit.

(4) The current Js is associated with a mass motion
of the charged particles which will transmit disturbances
in one region of the boundary layer to adjacent regions.

(5) These currents must be regarded only with
respect to the plasma region to the left of I' as a whole.
They can be quite misleading as regards the field
distribution within the boundary layer.

xp

+
/+
0

IX. NUMERICAL SOLUTION FOR STRONG
PLANE PLASMAS

A. Introduction

xc Fzc. 4. Integration
region.

f J&, and S, are the contributions to A and 8, respectively,
by particles lying the range dv.

In making the numerical solutions the plasma edge
lay at X=0.To the left, 0= 1, S=O, and to the right S
was chosen to be a constant because this allowed the
plasma to build up to uniformity independent of special
behavior of S.

The double space-integral of Eq. (22) makes it
necessary that the uniform diQ'erences of the integra-
tions shall be space-like and that the time intervals
required by the equations of motion be derived from the
fundamental space interval AX. The machine will

calculate the trajectories of those particles which are
erst encountered at X=O, X=AX, etc., that is, of
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those particles for which II=ehX, n integral. Such
trajectories will be called reference trajectories.

Near X=O all trajectories are arcs of circles of radius
unity, so that in a weak plasma there would be 2/hX
space intervals in a diameter. Therefore, this is the
minimum number of reference trajectories which were
"active" at any time once we have penetrated beyond
X=2. We chose b,X=0.1. The number of "active"
reference trajectories in a field 0 were, therefore, 20/Q.

The integrations were carried out simply on a trape-
zoidal-rule basis. As a consequence the particle energy
showed appreciable build-up with trajectory life, and
this was reduced to a fourth-order e6ect by using

X =X„L1——,'(OAT)'j+QATY,

Ymi =Y„L1——,
' (OAT)'3 —QATX~

I.O

0.8

0.6
4J
R
C9

0.4

I

0.03
0.05

O. I 0

O. I5

0.20

0.25

I.O

— 0.28

I i

5.0
DEPTH IN PLASMA , X

4.0

FIG. 5. Transition layer at the edge of a
single-speed-particle plasma.

5.0

TABLE II. Depression of 6eld and transition layer thickness, I.

0.02
0.03
0.05
0.10
0.15
0.20
0.25
0.28

1 —Q~
Com- Eq.
puted (37)

0.01571 0.01583
0.0485 0.0483
0.0817 0.0819
0.1708 0.1718
0.2709 0.2728
0.3838 0.3903
0.5227 0.5367
0.6264 0.6531

Error

0.00012—0.0002
0.0002
0.0010
0.0019
0.0065
0.0140
0.0267

Fractioaal
error

0.008—0.004
0.002
0.005
0.007
0.017
0.027
0.043

I
Com- Eq.
puted (38)

2.0 2.02
2.2 2.05
2.1 2.08
2.2 2.19
2.35 2.31
2.5 2.47
2.75 2.71
3.0 2.91

tory with the x axis was used later for the case where
lighter particles (electrons) were included in the plasma.

The problem was set up on the Univac.

B.Quantities Remembered and Univac Limitations

The quantities stored for Gnal typing were 0 at all
reference planes and I' and T for completed trajectories.

The fast storage of the Univac limited the number of
active trajectories to 60 and this is the number present
in a field 0=20/60=0. 333. The value of S which will

give this fieM is readily found from the relation

1—0„' 1—1/95= = =0.2829,

which follows fairly directly from Eqs. (23) and (31).
Undue caution in setting up the problem led to not

using all possible digit positions so that the results were
not as accurate as had been hoped for. Answers are good
to better than 5% as will be seen in the presentation
of results.

to calculate forward for the velocity components. To
obtain d T, the Taylor expansion

8X=d, TX„+-,'QY„(d T)'

was solved. An alternative method which avoided the
intervention of b,T by using the angle, @, of the trajec-

C. Weak P1asma

Table I shows the comparison between theory and
calculation for a weak plasma. The quantities compared
are (1) ultimate depression of the field, AQ„, where the
plasma becomes uniform, which is after one I,armor
diameter, (2) the time for a complete orbit, r, taken
for the first trajectory, i.e., H=O, and (3) the drift, Yo,
of the orbit in one cycle, also for the first orbit. It is
here that agreement seems to be least satisfactory, but
it must be noted that the total y excursion of the
trajectory is two radii, that is, 2, so that with respect to
this quantity the error is only 2.4%%uq, about the same as
the error in AQ„.

D. Depression of Fie1d

Equation (37) furnished a check on the ultimate
depression of the field as given by the Univac. Table II
shows the results. The error relative to the depression
of the field by the plasma is shown in the fifth column.

E. Thickness of Transition Layer

What was surprising was the rapidity and definiteness
with which the final field value was reached. This is
shown by the curves of Fig. 5 which give the course of
the magnetic Geld with depth into the plasma. Even
when the reduction of 6eld is to 0.374 where the number
of live trajectories at any position is not quite trebled,
there is still a definite termination to the transition
region.

Although it has not been possible to derive an expres-
sion for the transition layer thickness, L,, from the
theory, the results show a simple empirical relation
which is exact within the accuracy of the computations:

1+(1—mS)'*

This is the diameter of an orbit in a Geld which is the
average between that in the vacuum and in the fully
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developed plasma. The numerical comparison between
the computed layer thickness and the Eq. (38) thickness
appears in the last two columns of Table II.

F. Period in Uniform Plasma

1.0

0.9

0.8

031

=0.05

In all cases where the Univac ran long enough before
the automatic stop operated, so that the hrst reference
trajectory which lay entirely in the uniform plasma was
completed, it was possible to compare the computed
half-period 7/2 with m./0„. Since the computed field
showed some variability in this range, a mean value was
used. In the third and fourth column of Table III are
the computed half-period of the trajectory and its
diameter. The fifth column is the averaged field over
the orbit found by averaging the field at perigee, center,
and apogee. The last two columns contain, respectively,
the corresponding half-period and the comparison with
Column 3.

6. Paramagnetic Drift Current

Finally the results have been used to compute the
paramagnetic drift current, J2. This should result from
summing X/r for all trajectories. This was done for
5=0.25 and the computation gave 0.2842. The Univac
gave

D =0.4773,
whence by Eq. (36)

J2=-0.2862,

a check to within 0.5%. The formula 0„ for S=0.25 is

0.4633 from Table II and this leads to J2=0.3109, a
difference of some 8%.

It may be important that the transition layer can be
as thin as has been found possible here. If Eq. (38) can
be extrapolated —an admittedly dangerous business-
we find that the transition layer can be very thin
relative to the orbital diameter in a strong plasma. Even
within the range of the computation this ratio has fallen
to about one-half. Undoubtedly this is a consequence
of the fact that the trajectory curvature adapts im-

mediately to the local field.

X. NUMERICAL SOLUTIONS OF PLANE CASE
INCLUDING ELECTRONS

0.7

0.6 ~ 0.10

0,5

04—
= 0.15

0.5
1.0 2.0

I

40 5.0

FIG. 6. Transition layer at the edge of a composite plasma.

eR'ect of including electrons in the analysis. The simplest
assumption regarding their energy is that it is the same
as that of the ions. Their velocities will then be of the
order of 100 times that of the ions and their Larmor radii
will be less by that factor. Therefore the electrons can
smoothly accommodate to any distribution demanded
by the less accommodating ions. In particular the
anisotropy in electron velocity distribution will be two
orders of magnitude less than that of the ions so that no
purpose would be served in analyzing electron trajec-
tories in the same detail as the positive ions. It is
appropriate to use the slow-space-variation formula

j,=m, v,'e, '/(2B) (emu) (39)

for the electron-current density j, arising from an
electron-density gradient e,'. For electrical neutrality,
which we now invoke,

Sp2
N, (x) =n, (x) =

~novo 4@~x)

S(H) D,(H) dH
(40)I

with N„(x) now given by the right member of Eq. (23).
For the weak plasma case, Eq. (39) integrates

directly to give the depression of the field due to the
electrons:

A.B= —2~m, (n.')A„rs, (x)/Bo

If we identify the particles we have been dealing with In this case by Fq (27)
as positive ions, it is of interest to go on to examine the

TABLE III. Relation between period and Geld.

802S
N, (x) =N, (x)=

4mm„V„2

a

Half-
period

v/2

Space
intervals

1n
diameter

20Q

Average
field

Q~

Half-
period
~Q~ '

Relative
defect in

pel lod

where P= cos '(1—X) is the angle traversed by the ion.
Now, combining and noting the assumed equality of
energy, we have for the effect of the electrons

0.10 22
0.15 24
0.20 25
0.25 28

3.766
4.391
5.093
6.621

23
27
32
42

0.8289
0.7108
0.6142
0.4732

3.790
4.420
5.115
6.639

—0.006—0.007—0.004—0.003

a H& is the ordinal number of the first reference trajectory to lie entirely
in a uniform fi1eld.

&,B/Bo —D,D = ,'Sf, ———

whereas for the effect of ions, we have Eq. (26). The
electrons do, therefore, modify the shape of the held
transition, making it more linear with angle and less
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linear with x. In the present case, TABLE V. Relation between period and Geld.

0—1=60= —S(f—~ sin2$). (41)

Here S is the buildup function of the ions alone.
For the strong plasma case, B in Eq. (39) is not

constant so that

0.01
0.05
0.10
0.13

20.3
21.9
24.5
27.0

7/2

3.2493
3.8174
5.1226
7.21 P

Q~

0.96848
0.82954
0.61252
0.43983

a„~/2

3.147
3.167
3.138
3.17 P

6 B=—27cm (vz )Az dx).
~o B(xi)

Since m, , found by differentiating Eq. (40), involves
three terms, it is more convenient to integrate by parts
to obtain

e,(x)
A,B=—2m'. (v,2)A, +

B(x)

t
* N, (xg)B'(x))

F1
p B(x))'

TABx.E IV. Depression of Geld and transition layer thickness, L.

0.01
0.05
0.10
0.13

1 -O~
Com-
puted (1 —2~S)&

0.03183 0.03183
0.1698 0.1718
0.3806 0.3904
0.5436 0.5725

Error

0
0.0020
0.0098
0.029

Fractional
error

0
0.012
0.025
0.059

L
Com- Eq.
puted (38)

2.03 2.032
2.19 2.188
2.45 2.485
2.'?0 2.801

By substituting for e, (x) from Eq. (40) and noting the
equality of kinetic energy, we get

1
t
x S(H)0(H)dH

20(X) ~ ~(x) (X(

(
x 0'(Xg)dX) t

x SQdH
(42)

0(Xg)' & a(xg) Xg

8 „0 is given by Eq. (22) as before, but now

Q(X) =1+6,0(X)+6„0(X). (43)

Application of the Univac to this generalized problem
involved nothing essentially new.

The results of the Univac calculations parallel those
of the last section.

Since each ion is now accompanied by an electron, the
plasma arising from a value of 5 here is to be compared
to that from a value 25 in the ion-only case. Figure 6 is
a plot of the course of the magnetic field with depth into
the plasma. A notable feature is the sharp initial and
final drops in field which are presaged by the weak-field
equation, Eq. (41).

Tables IV and V exhibit the same kinds of result for
the ions-and-electron case as did Tables II and III for

the ions-only case. Here in Table IV, by treating the
magnetic field near the end of the transition layer as if
(0—0„)'*varied linearly with X (on a purely empirical
basis), an interpolation for a fractional 6nal interval
was found and used in the L (computed) column.

In Table V, the comparison to be made is between
the values in the last column and x.

XI. CONCLUSION

The specific result of the present analysis is that the
transition between vacuum and uniform plasma is not
limited in sharpness by the orbit diameter in the uni-
form region but is fixed more nearly by the vacuum
field. A strong plasma in which S~eKT approaches Bo'
need not therefore have an essentially thicker transition
than a weak plasma in the same vacuum field, thus
freeing the hydromagnetic approach from a possible
limitation.

Somewhat more generally, the paramagnetic con-
tribution of the particle drift in the boundary has been
separated out from the predominant diamagnetic e6'ect
which, by the present method of accounting, arises from
certain parts of circular orbits.

More generally, still, it has been possible to use the
trajectory approach in a self-consistent mathematical
description of a plasma in a magnetic field and to
derive, in this way, relations hitherto derived by
neglecting the structure imparted to the plasma by the
orbital motion. In particular, the more fundamental role
of the tensor nature of the pressure in the cylindrical as
distinguished from the Cartesian case becomes very
clear.

It will be necessary to solve many simple problems
involving trajectories in as many ways as possible to
gain the insight needed to solve some of the less simple
problems which now confront us.
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