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A new variational approach is developed for studying the properties of systems of particles interacting
through singular short-range repulsions that give rise to strong two-particle correlations. The correlated
trial function%'& =e C» (state y) results, with proper choice of S, in a simple form for the energy expectation
value (H)—as well as for other matrix elements of interest —which is devoid of all reference to the strong
repulsions except through e'8 factors and hence is particularly suited to calculation. In many cases an inde-
pendent-particle type C ~ seems appropriate. The cluster evaluation of this form for (H) is discussed, both
in the few-particle and many-particle cases. Using the techniques of Iwamoto and Yamada, simplified
convergent cluster expansions for the energy expectation value are derived for many-fermion and many-
boson systems. A program for application of this method to nuclear problems is being initiated.

1. INTRODUCTION

'HE goal of this paper is the development of a
simple variational procedure for determining the

wave function and energy of an S-particle system in
which short-range repulsions produce marked two-
particle correlations. The essence of the method is the
choice of a trial wave function of the form 0'= e8C, with
the correlation function e8 so chosen that, when 0 is
inserted in the energy expectation value (H), terms are
generated which cancel out the short range repulsive
potentials. For the physical systems considered here,
the resulting expression for (H) may be brought into a
particularly simple form. The subsequent prescription
for evaluating (H) always involves a cluster expansion.

A similar approach of less specific nature has been
developed, and applied to systems with short-range
hard-core interactions, by several authors, notably
Dingle, ' Jastrow s Iwamoto and Yamada, ' ' Iwamoto, '
Dabrowski, '' and Emery': in place of the factor e8

a product of two-particle correlation functions is
assumed; its parameters are determined by a varia-
tional procedure. Emery, ' in particular, has discussed
the general restrictions on the choice of such a trial
function. The cluster expansion technique for the
evaluation of the resultant expression for (H) was first
introduced by Jastrow, s a more systematic treatment
of the cluster method being given later by Iwamoto
and Yamada. '

In Sec. 2 an equation for S is derived. The vital
criterion to be satisfied is the following: the transforma-
tion C~=e8C~ should produce a form for the matrix
element of the Hamiltonian between stationary states
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represented by 0'p, %' in which the short-range repul-
sion term in the interaction no longer appears. S is
further chosen so that this expression for (@s,H+ ) has
an appealingly simple structure. Next (Sec. 3) the
correlation factor e is specialized permanently to a
product of two-particle correlation functions e8'&,

(i,j =1, , 7). Suggestions are overed for dealing
with certain three-particle terms which then arise in
the relation previously derived for S. A rough estimate
of their size is given in Appendix A. The gross char-
acter of the S;; is found to be such that the wave func-
tion % ~ vanishes very rapidly when two particles in the
system come close together —as it should. In Sec. 4
we set a=P and look into the physical meaning ot the
resulting energy expectation value; the forms assumed

by other matrix elements of physical interest, when we
insert 0'~=eBC~, are also investigated. In Sec. 5 the
choice of the "model function" C ~ is discussed. An inde-
pendent-particle type C~ should be quite satisfactory
for many problems. Section 6 presents a cluster method
for evaluating (H) (hence N) for systems in which X is
small. If S is small enough, say four or less, it is possible
to include, without excessive labor, the contributions of
all the clusters. Here our interest focuses on the very
light nuclei H', He', and He4. Explicit formulas are
given for S=3. In Sec. 7 we follow the lead of Iwamoto
and ramada' to set up a convergent cluster develop-
ment of (H) for both many-fermion and many-boson
systems, with our special choice of two-particle correla-
tion function. The expansions obtained are considerably
more manageable than those of Iwamoto and Yamada,
and should be especially useful in nuclear problems.

In Appendix 8 an alternative approach is pursued,
starting from the many-particle Schrodinger equation
with esC substituted for the wave function O'. The
result is a Schrodinger-type wave equation for C with
a non-Hermitian correction term. Some preliminary
calculations indicate that this approach has only
limited usefulness.

Utilizing just the results of Sec. 1, we exhibit in

Appendix C the beginnings of a perturbation method
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STRONG SHORT —RANGE REPULSIONS 389

(to general order) valid for interactions including
strong short-range repulsions. The matrix elements
that appear di6'er from those of ordinary perturbation
theory only in the presence of e'~ factors.

Our discussion has developed from a study of nuclear
problems, but actually the variational treatment
sketched above has a much wider field of application.
Thus the terminology is kept as general as practicable.

where the
pN

J

implies an integration over the position variables r
and summations over spin and isospin variables m„, t„,
for each particle of the system (m=1, , N). Inte-
grating by parts and then inserting (4), we see

2. FORMAL DEVELOP3VCENT OF THE METHOD

Consider a system of E identical nonrelativistic
particles of mass 3f, the coordinates (space, spin, and
isospin) of the kth particle being denoted collectively
by xl, . We write the Hamiltonian for the system in the
general form

with E the sum of the free-particle Hamiltonians,

~ V&+p V&%

e s[(VtS)'4p*C +VsC p* VsC

+V S V (4'p*C'-)).

Another integration by parts converts the last term to

E=
2M ~

(2)
~e' VQ Vt, (Cp*C„)=— e' [(AtS)+2(V„S)')Cp*C..

Now we assume V& may be chosen such that
and V the interaction term (taot necessarily a sum of
two-body interactions alone. ) Then V is decomposed
into

V= V~+ Vtt, (3)

such that Vg contains all the strong' short-range inter-
particle repulsions that may be present, but is otherwise
unspeci6ed for the moment.

For our work we take the wave function of the sys-
tem, in any stationary state y, to have the structure

%~=esl (4)

where S is a real function of the particle space co-
ordinates rt„(k=1, , N), chosen, when possible, to
eliminate Vtt from all matrix elements (Vp, HV ). In
the calculations, the "model wave function" C~ will be
treated as a trial function, and will, most often, be.
taken to resemble the wave function for the system in
the absence of Vg.

The next step is to derive an appropriate differential
equation for S. From (1), (2), and (3), we have

(+p,II+.) = +p* — 2 As+ l"~+&tt +, (~)
2M I

~The interparticle repulsive potential is called strong if the
probability of ending two particles close together is greatly re-
duced by the presence of the repulsive potential. If the repulsive
potential is not strong in this sense, the energy shift generated by
it can be evaluated by techniques which are adequate for the
attractive long-range component, in particular the 6rst and second
order Hasse, Brillouin-Wigner, or Schrodinger procedures or
suitable re6nements on these procedures (inciuding calculation
of third-order contributions and uniform displacement of the
zeroth-order spectrum). In this connection see, for example,
A. M. Feingoid, Phys. Rev. 101, 258 (1956);P. Goidhammer and
E. Feenberg, Phys. Rev. 101, 1233 (1956); M. Bolsterli and
E. Feenberg, Phys. Rev. 101, 1349 (1956); and W. J, Swiatecki,
Phys. Rev. 103, 265 (1956).

k2

Z [(V~S)'+(A~S))= l's2' ~

is soluble for S," in which case our matrix element
reduces to

(+p,H@.)

, s P V„Cp Vt4.+esC,p*V~esC, , (7)
2M s

So if V~ commutes with S," the transition matrix ele-
ment (state n to state P) assumes a particularly simple
form,

(&)p== (+p,&+«)I(+p,+p):(+-8-):

Q Vip* VsC' +4 p*VxC'
2M I

(g)

ere, ps@p
I ~

i essC, sC
I) & )

' This assumption is tenable for a wide range of problems. See
Sec. 3.

Note added ts proof Amore tiexible pr.—ocedure results from
replacing VR in Eq. (6) by pVtt, the parameter p then entering
into the calculation of the energy as a variational parameter.
Since eBVR vanishes when two particles come together the presence
of a term (1—p) Va in the transformed matrix element oi H is not
objectionable. This change can be incorporated in the formalism
simply by substituting V~'= Vg+ (1—gc) Va for V~ and p Va for Va
in all equations after Eq. (6). Calculations in progress on the
ground-state properties of liquid He4 conlrm the usefulness of
the more Qexible procedure. . Especially simple relations are found
using the Lennard-Jones 10—6 potential.

» In Sec. 4 we shall study the matrix elements of some operators
that do not commute with S.
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For later reference, observe at this point that

a form well suited for calculations, as we shall see. Note reduce (6) to
V& has been completely removed —the short-range
repulsions manifest themselves only in the "weight
factor" e's multiplying each volume element g„dr .
In fact we may obtain this result from the matrix ele-
ment in terms of 0', written as

h2

(H)e.——&I' P V e,* V e.+reeve.
Q~ I

P P(Vss;s Vsss;)
(i, j.) k

= P [(Vrs;s V(s);)+(V;5;; V;5;&)

+ (v,s„"v;s;;)7. (13)

merely by replacing 4 or C, V by Vz, and II„dr by
e'sg„dr„, or, equivalently, from the form assumed by
(9) when the short-range repulsions are absent (4—=C,
V=—V&) by g„dr ~ e' g dr ~lo~~.

We emphasize that this development, as it stands,
does not apply to strong short-range repulsions that
are state-dependent, because S is assumed to depend
only on the rs, and hence, by (6), so must V~. If we do
permit state dependence in 5, a simple form for (H)e
like (8) (except with the e's factors applied to one of
the C's) may be realized, for 5 a solution of (6), but
only if

[es,v;57= [es,D;57=0, (i = 1, , 1V). (10)

and consequently only if Vz, as well as V&, commutes
with S.However, for the most useful state-dependent S,
namely

S=P [5;;&'&(r,;)+5;,~'&(r,;)s; cr,7, r,;=
~
r;—r, ~,

the requirement (10) is not met, so instead a very
complicated expression for (H)e involving the nonzero
commutators [es,v;57 and [es,h,s7 results. In any
case the greater Rexibility in Vg allowed by a state-
dependent S does not seem to justify the added com-
plications —and we shall rely on a simple state-inde-

pendent S in all subsequent discussions.

3. REMOVAL OF STRONG SHORT-RANGE
TWO-PARTICLE REPULSIONS

In the presence of strong short-range two particle re--
pulsions —this is the case of vital physical importance-
we choose

S= $5,;, (i, j=1, , $),
(', j)

with S;, a function only of the separation r;; of particles
i and j.5,, is deftned to vanish. (Here, and in the future,
we adopt the summation notation of Iwamoto and
Yamada: Q(~t, -,'„) means sum over all combinations,

,r, sum over all arrangements, of the E possi-
bilities 1, , X for the e indices i~, ~ ~, i„.An analo-
gous notation is to be used for products. ) Then, by
virtue of the symmetry of S;; in i and j, it is easy to

Vg= Q Vg~,
(s j)

A2—[(v;5;)'+(~;5;,)+Z(v.s v.s')7= v", (15)

The presence of the three-particle terms (V~s;I, .v~ss, )
should in many cases cause no discomfort; this is borne
out by the estimate of their importance given in
Appendix A. In some problems, however —in particular,
in those problems in which the contribution to (H)e
of these three-body terms outweighs the effect of any
such interactions known to be present —it would be
advisable to redefine S,, and V;;~ so that no three-body
terms appear in the diGerential equation relating them:

A2—[(v,s,,)'+(s;5;;)7=v;, .
3f

(16)

Then, of course, such terms (now not associated with
the interactions of the system particles) would turn up
instead in the transition matrix element. Unless other-
wise indicated, though, we shall adhere to de6nition
(15). We expect it to be quite satisfactory in nuclear
problems (see Appendix A). For E=2 both choices
give the same result:

h2—[(V,S,,)'+ (A;5;,)7=.;P.
M

[When the pair i,j is isolated, we denote V;;~ by n,,".
The assumption that many-body forces are absent from
Vg is equivalent to setting V,j =v;j for all X. Obvi-
ously, then, V,;~=n,;~ in (16).7

In performing calculations, we are faced with two
alternatives, the choice between them depending on
the extent and detail of our phenomenological knowl-
edge of the system at hand:

(1) If the form of the core" is considered known, as

'2 By "core" we mean that portion of the overall two-particle
potential e;; (isolated i, j) which becomes positively infinite very
rapidly as r;; ~ 0. (We shall not be interested in cases for which

where V;,~ is the corresponding interaction potential
of particles i and j inside the system, we make the
identification
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Sg= —8~ Bg&0, r—=rg. ,

leads to

)1 2 1
vga= —&z'( —+ +

M &r4 r'n~ r'na')

Bg
e
—r/ag

rnid

which, for B~ large and ng of the order of the core
radius, has the required properties.

In the problems that concern us the gross nature of
S,; will clearly be characterized by

S"—& —oo'v )r~o

S;, 0,
r&C

which forces the wave function 4„of (4) to vanish very
rapidly as two particles in the system come close to-
gether, and approach C~ as all particles in the system
recede from each other. The approach to C ~ is also very
rapid if S;; has very short range, as will often be the
case. This is just the sort of behavior expected on
physical grounds. The short-range two-particle repul-
sions quite evidently assist in the realization of
saturation.

In our treatment we do rot deal with hard cores, of
the form

v;p =+~, r &~ t.",

0, r&C,

but this does not seem, at present, a disadvantage, since
&e can choose e;;~ to be extremely strong, and ex-
tremely singular, for small r.

4. SIMPLIFIED EXPRESSIONS FOR SOME MATRIX
ELEMENTS OF PHYSICAL INTEREST

First of all, if we set Cp=C =C in (8), (H)p be-
comes just the expectation value of the energy of the
system (in state n)

(H)-= (H)

t A'
e' ' Q &8'* ~P+C'*V%'

lm ~ J
e2s@+@

(19)

V;;~ is taken Rnite at r;,=0.}The radius C of the core is dered
as that value of r;; at which e;; vanishes. Obviously, this quantity
is somewhat state-dependent in the nuclear problem.

in the case of a collection of He' or He' atoms, (17)
must actually be solved for S;;. It is here that we use
whatever Qexibility remains in Vz, to render (17) as
easily soluble as possible.

(2) If the shape of the core is ambiguous, as in the
nuclear problem, a satisfactory recourse is to choose
5;, so that v;P, as given by (17), is very singular, and
positive, for r, = r, , but goes to zero rather quickly as i
and j separate. This is easily done: for example

e—rjng

a formula upon which the major part of our work will
be based. Specifically, what has happened is this: be-
cause of our choice for 5 (and hence, to some extent, for
V~), the contribution to the expectation value of the V~
term in the interaction part has been completely can-
celled out by correlation contributions (both negative
and positive) to the kinetic energy part, leaving the
above form for (H), in which the only residual influence
of the short-range repulsions is embodied in the corre-
lation factor e' . Now the factor e' greatly diminishes
the contribution to (H) of that portion of configuration
space in which any two particles are very close together.
In other words, the important contributions to (H)
come from the region of configuration space in which
the over-all interaction V is well approximated by V&
and 0 well approximated by C. This interpretation
supplies a strong physical argument for the usefulness
of the form (19). For if the effect of correlations other
than those generated by Vii (these other correlations
being predominantly of longer range) is small, we see
why it should be quite satisfactory to construct C from
appropriate single-particle wave functions.

Before going on to outline in detail the evaluation of
(H) for actual physical systems, we are led to study
some other matrix elements which, when expressed in
terms of the C's, might allow a similar analysis.

Some of the operators that interest us do not com-
mute with S. To study examples of this type, let each
particle of our system carry a charge e. Then in the
presence of an external electromagnetic Geld with
vector potetial Ar we must include in H a term

e
H, '= ——Q A(ri,).vi„

c I
(20)

where A(ri, ) is the vector potential of the perturbing
radiation field, evaluated at the position of the kth
particle, and the velocity operator v~ of the kth particle
is given in terms of its momentum operator p& by

e
vi, =—pj,—Ao(ri), Ao ——Ar —A.

M c
(21)

esC'p+A(r&) VI, (esC )=J C p*A(rI) e's(V'&S)C

eeC p*A(r.) V.C.,

In spite of the fact that H, ' does not commute with S,
its matrix element

(+p,H'+-)II (+p,+p)'(+-,+-)'j= (H') p-, —(22)

(which for spinless particles is just the usual first order
nonrelativistic electromagnetic transition matrix ele-
ment if the +'s are the true many-particle wave func-
tions for the field absent) can still be reduced to a
simple form in terms of C, C p. For we have
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1 a~
Cp*A(rs) (Vse )C =—— e' Vs $Cp*A(rs)C j,

2& 2J

the first term of which may be transformed as follows: orbital angular momentum operator of the kth particle.
Again, due to the presence of the p-operators p~ does not
commute with S. But following exactly the same pro-
cedure as before we are able to cast (pr, ) into

so if the gauge is chosen such that V& A(r&)=0, i ~ I sp~~tfCsi C+(1C)@C,}(k=1, ~, 1V), the two terms collapse to 4Mc~
"e'eC~C, (2'1)

"ePC,p*A(rs) Vy, (eeC )

1=- ~ 2'A(r, ) $Cp*V,C —(V.Cp*)C j
2

Thus we obtain

e
(H, ')p.

~

e'sp A(r&) (Cp*»C.+(v,Cp)*C.}
2c~

which is, of course, to be compared with

P ) "~(+*1++(l +)*+}
J

'P*'P (2
4Mc~

Other operators of concern to us commute with S:
the spin interaction and spin magnetic moment opera-
tors, the nuclear p-decay interaction, the Coulomb
potential, and the quadrupole moment operator. Their
matrix elements,

( )J
e p p) J

n a) (+p, &+-)!(+p,+p)'(+-4-) ',

all revert to the form

(29)

Note that this may be generated from the matrix ele-
ment in terms of 0, 0'p, written in the form

e
(H, ')p„———— g A(rg, ) (+p~vs%' +(vg,@p)W.}

2eJ

(t 0'(
t

)& ).+-~- I, (24)

merely by replacing 0 by C and multiplying each vol-
ume element g„dr„by e's. Further,

(r)=s P Q e'

X{Cp*evsC +(evsCp)*C }pe„~rs=r, (25a)

plays the role of

ip-(r)=lZ 2 "
I mjtg J

X(&p*evgk +(evgPp)*% }g dx„~ rs=r, (25b)

the usual Pn matrix element of the electric current den-
sity of the unperturbed system. "

A quite similar situation to that for (H, ')p exists
for the expectation value

(s ~&=
2' c

(+, 2 &.+)l(+P), (26)

of the orbital magnetic moment operator of our system
of charged particles. Here ls= (1/It) (rsXys) is the

"H. A. Kramers, Qnantnnt Mechanics (North-Holland Pub-
lishing Company, Amsterdam, 1957), 6rst edition, p. 397.

(t I'( t
' eseC'p*C'p

I (
esPC, *C,

iJ ) gJ )
The type of qualitative discussion we gave for the

energy expectation value (19) may be repeated for
each of these quantities. It is noteworthy that in some
of the matrix elements, not only are independent
particle C functions a reasonable choice, but also the
e' factor may perhaps be omitted altogether without
serious error. In this connection the expectation value
of the ordinary nuclear magnetic moment operator and
possibly the nuclear electromagnetic and p-decay transi-
tion matrix elements are likely candidates. Thus our
method may throw some light on the success of the
shell model in predicting these (and other) detailed
nuclear properties. However, actual quantitative in-
vestigation of these points is required.

We should remark, of course, that since e~ is invariant
under reflections and rotations of the coordinate axes
and under rotations in isospin space, the parity, angular
momentum, and isospin quantum numbers of our total
trial function 0 ~ must be the same as those of the model
function 4 ~.

5. CHOICE OF MODEL FUNCTIONS

In the rest of this paper we shall concentrate on the
energies of 37-particle fermion and boson systems for
which V~ is expressible as a sum of particle-particle
interaction potentials,

P' . .A
(r', j)

with V;,~ well-behaved and predominantly attractive.
It is further supposed that V;,~ is the same for all E;
hence we write it as v;,~—its value for i, j isolated—
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and set
Vg ——Q n;, ~

(~ i)
(32)

(This assumption that Vz contains two bod-y forces only
is certainly not essential, but it is one which is con-
venient, and often made in regard to V, the total
particle-particle interaction sum. )

Unless otherwise noted, the 4 functions we assume
are the following:

(1) Fermion systems (total wave function antisym-
metric with respect to interchange of any two particles):

suitable independent-particle model on more or less
intuitive grounds (say some species of shell model in
the case of nuclei) and then deduce the y's and their
corresponding energy order. The resultant 4 will always
contain at least one natural variational parameter. A
more systematic prescription —and one whose realiza-
tion would involve considerable labor, more labor than
we would care to expend —is the following: Given a
system of fermions, take for the q's the complete
orthogonal set of solutions of the Hartree-Pock type
wave equation

(33)

where there are E distinct single-particle states
y.;(v;=1, , A'; i=1, , S), with one particle in
each state, and we sum over all permutations

where

(P,Vg"l) =Q'(Pk vg2~lk)„

The quantity 8„ is +1 or —1 according as v is an even
or an odd permutation of 1, . , E, respectively. For
the ground state the q 's are chosen as those correspond-
ing to the E lowest single-particle energies.

(2) Boson systems (total wave function symmetric
with respect to interchange of any two particles):

(34)

where there are E', 1 &Ã' &E, distinct single-particle
states q., (v, = 1, , 1P; i= 1, , 1V), with g; particles
in the ith state, and we sum all distinct permutations
of v~v2 . v~. For the ground state, all particles are as-
signed to the same single-particle state, namely that
corresponding to the lowest single-particle energy; we
write

X v12 &pl(») &pk(+2)~»tEX2p (37)

the sum extending over all occupied states k, and e, is
the single-particle energy corresponding to the state j.
Here we visualize particle i moving in state j through
the system under the inQuence of a nonlocal average
potential due to all the other particles. This is just a
step in the procedure that might be followed to And the
total energy of the system —to be computed from

(38)

—if it were valid to neglect the last term on the left in
the transformed Schrodinger equation (derived in
Appendix B):

A2 A2

Q AaC'+ Q vy("C ——Q VAS. VgC =PC. (39)
2M & (I,&) 3f I

How are the necessary p's determined?
For E extremely large, the answer is simple: we take

for the complete (orthogonal) set of y's the set of all
plane waves satisfying periodic boundary conditions in
a large box of volume 0, the relevant single-particle
energies (for choosing the correct p's to use in a given
C) being just the free-particle energies. Thus we con-
sider as models perfect (noninteracting) Fermi and
Bose gases. One free parameter is left when the corre-
sponding C is inserted into (II)—the particle density
p= E/0, or equivalently, the particle spacing parameter
r, (radius of the sphere containing one particle); this is
to be determined by variation of (II).

For E 6nite, but not small, the problem is much more
difFicult. The most convenient solution is to adopt a

But, as we go on to point out in Appendix 8, this term
should not be left out, so (38) is likely to provide a bad
approximation to the total energy. This does not mean,
though, that the C function constructed from (36), (37)
is not perfectly adequate for use in (II): in fact, since
the region of configuration space in which the solution
of (39) differs from that of (39) with the V~S terms
missing is quite unimportant in our special form of the
energy expectation value, we expect such a model func-
tion to serve rather well. An analogous scheme may be
set up for a system of bosons; in this case symmetrized
two-particle matrix elements are involved in the defini-
tion of (i', U&"i), rather than antisymmetrized ones.

For Ã small it is desirable to use a C depending on
internal coordinates only —a 4 independent of center-
of-mass coordinates. This is especially important for
&~=2, 3, 4. As is well known, a simple exact factoriza-
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tion of the center-of-mass motion is possible if harmonic
oscillator single-particle wave functions are used,
(. Note that if the y's we pick are orthogonal and nor-
malized to unity, so are the C functions (33)—(35). We
shall henceforth assume all model functions have been
normalized to one.

For X very small, we are likely to know something
more definite about the structure of the (internal) wave
function in the absence of repulsive cores, say from
previous calculations (this, for example, being true of
the triton). If so, we may by-pass the above discussions
and proceed instead as follows: Write down a suitable
functional form for C containing one or more varia-
tional parameters and minimize (H) (by numerical
calculation) with respect to these parameters. Then
since we presumably know e~, this determines a fairly
good wave function for the system.

How good is our total wave function (4) if an inde-
pendent-particle type model function is used? We may
easily obtain a qualitative idea from the following
considerations.

There are, roughly speaking, three important types
of correlation in the systems of interest to us, all of
two-particle nature:

(1) the short-range correlations due to the repulsive
cores (very effective in nuclei for, say,

~
r,—r;

~

=r &0.5 f;
i,, j any two nucleons, f=fermi=10 "cm),

(2) intermediate-range correlations due to the at-
tractive forces (effective in nuclei for, say, 0.5 f &r &3 f),
and

(3) longer-range correlations, also due to the at-
tractive forces (not effective in nuclei).

where F' properly introduces the remainder of (2), and
(3) if necessary.

The supposition that the effect of correlations (2)
and (3) in the true wave function is slight does no'.
seem to be too bad for nuclei, as indicated by the
correlation structure results of Brueckner and Gammel, "
and discussed by Amado. "Furthermore, Iwamoto and
Yamada4 achieve saturation in their study of the
nuclear matter problem using simply a state-inde-
pendent core correlation function. So in the nuclear
case (4)—with C~ given by (33)—is expected to be a,

rather good wave function. On the other hand, these
longer range correlations are of vital importance in the
liquid He' problem, because of the Bose statistics and
the higher particle density. So in this case (4)—with
C~ given by (34)—is expected to be rather crude.

For a finite system the qualitative situation should
not change greatly, but some two-particle correlations
arising from the v,,~ will then be approximately in-
cluded in the trial C„(which can no longer be con-
structed from plane waves).

Finally, even if a simple model function is not com-
pletely adequate, calculations with such functions can
serve as the first step in a systematic perturbation pro-
cedure (as outlined in Appendix C).

(H) = (X+'U)/X, (42)

6. ENERGY EXPECTATION VALUE FOR
FEW-PARTICLE SYSTEMS

We now indicate a technique for the evaluation of
(H) as given by (19) and (32) which is practical for X
small. First write

For fermion systems the correlations of class (3) are
defined as those corresponding to momentum transfers
considerably less than the Fermi momentum. Hence
they are forbidden by the exclusion principle except
for the most energetic particles. For boson systems
there is no such distinction between the second and
third categories.

Let us write the exact wave function for our system as

(40)

A'
X= I e2s g V„Ce.V„C

2M~

X= e'~C*4.

(43)

(44)

(45)

(41)Ii—e~F',

~'Or {16),if appropriate.

Consider first the case E —+ ~. Then since C~ is corn-
pletely uncorrelated, the "model operator" F must
properly introduce each of the above types of correla-
tion into the total wave function N~~. Ignoring state
dependence of the short-range correlations (as always),
our wave function (4), coupled with the connection
(15)," approximately includes all of (1), plus part of
(2). [As seen in (15)," in general V;P is taken to con-
tain, besides the core, a relatively weak attractive
component of slightly longer range. ] However, the
majority of the intermediate and all the longer range
correlations are omitted. To visualize these relations,
we may set

Then note that

(46)

where

and insert the expanded form of the product,

+ e 2 Z Q rf'i~i in-+ (48)
(i, j)&(k, l)&(m, n)g(i, j)

'5 K. A. Brueckner and J. L. Gammel, Phys. Rev. I09, 1023
(&9s8)."R.D. Amado {tobe published}.
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into X, 'U, and X. If the system contains a finite
number N of particles, the expansion (48) breaks off
after 2 ( ')" distinct terms, some pairs of which
generate identical contributions to one (or more) of the
integrals (43)—(45). For a small number of particles, it
appears feasible to evaluate all of these (different)
contributions.

Observe, incidentally, that in any case, E large or
small, q;; may be 6tted to a simple analytic form for
convenience in integrations.

If we consider %=3, there are only eight distinct
terms in (48) (see Fig. 1).For a system of three fermions
in its ground state, take a model wave function

Co=~0(r», r», rss) 2 |I.II x, (~',I'), (4~)
1 2 3 i=1

with &0 symmetric, normalized, and real." Then the
results for X, 'U, and X are rather simple:

{(I714 0(r12 r18 r28))'
ass

2M

+sI12[2(7140(r12 r13 r23)) +(~84'0(r12 r13 r28)) j
+81128I18[(+1/0(r12,r13 r28) ) +2(+2/0(r12 r13 r23) ) j
+2I12r1182128(V1$0(r12 r18 r23)) )drldr2drs, (5o)

{v12 +8112vls +22112vls +22I122IlsvlsA A — A AJJg
+2118/13V28 +6122)lglssv1'2

X@DP(rls,rls, rss)dridrsdrs, (51)

&=1+ {32112+3'glssI18+2I12'9132I23)J~J
Xgo (rls)rls)rss)drldrsdrs (52)

In (51),

V'I"= 2 2 2
(k, l) m;t; m;t;

X [Xs*(m,,&,)XI*(218,,I )—XI*(288',I') Xs*(288 II)1

(Specializing to the triton, with central, charge-inde-
pendent forces, v;,"= 2[v,,"(singlet)+ v,;"(triplet) ).)
The integrals involved in the relations (50)—(52) may
be further reduced, of course, by a proper choice of
coordinate system. If for a system of three bosons in
its ground state we take v;;" as independent of spin and
iSOSpin, and henCe juSt C'o ——po(rls, ris, rss), again With 40
symmetric, normalized, and real, then the above answers
for X, 'U, and X may be used to calculate (H) for the
system, provided v,;~ is replaced by v;," in (51).

'7 Such a wave function appears satisfactory for the trition in
the absence of core and tensor force. For example, see H. Feshbach
and S. I. Rubinow, Phys. Rev. 98, 188 (1955).

QI2 $13 l23 ll2 lI3 l12 l23 lls \23 ll2 (f3 l23

113 1 t3

I i3

II 2 il3
l- 2

FIG. 1.Terms contributing to the cluster expansion of the
correlation function e'~ for a system of three particles.

This complete cluster expansion approach should be
most useful in studies of very light nuclei. Calculations
which include the effect of the tensor force are now in
progress for H', He', and He4. Numerical results will
be reported in a forthcoming paper. Extensions to the
p shell may be possible if certain approximations are
found to hold in these s-shell problems. In regard to
few-boson systems, it is of interest to see whether or
not a configuration of a small number of He' atoms
form a bound system; this question is also under
investigation.

(54)

and 0 is the normalization volume of the system. For
nuclear matter,

(using r0=1.07 fermis, determined from the Stanford
electron scattering experiments, and C—0.5 fermi),
so if the coefficients of all powers of $s were of
about the same magnitude, a calculation to first order
would sufFice.

Such an expansion, in powers of $=NDI/O, with
01=f[f*(r,;)f(r,,) 1]dr,;, has bee—n derived for gerseral
short range two-particle correla, tions f(r,,) in a thorough
investigation of the cluster method for many-particle
fermion and boson systems by Iwamoto and Yamada'
(I-Y). It is worthwhile to see what form the results of
I-Y take for our special choice f(r,;)=es'i. Consider
erst the quantities H;, H;;, II,,I, involved in their gen-
eralized normalization integral (i, j, , q= 1, , N)

1(P)=re. II p'*(*') IIf'( 'r)If( ri)s"""' '*"
v 4 i

X II ee~' "'*'*"*"III 0 „(x„)ee~ &* ' II dx„(55)
(l,m, n)

V. ENERGY EXPECTATION VALUE FOR
MANY-PARTICLE SYSTEMS

When S is large, we cannot hope to treat individually
more than a few of the vast number of cluster con-
tributions to X, 'U, and X; thus we are forced to seek a
convergent cluster development of (H) the first few
terms of which provide the major part of the answer.
The natural expansion parameter is ps= Nole/0, where
erg is the volume associated with the cores, or, more
precisely,
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which are so de6ned that

)
P=O

in a notation obvious from (37). For the ground state
the y's corresponding to the X lowest single-particle

(H)=— =—lnI
(%H+ 8 energies are to be used (as pointed out earher).

(op) Bp Similar results may be derived for the analogous
boson problem. But let us consider only the ground

Q —
tJJ . f(r )$@.. @ being given by (33) [See state of the boson system and adoPt, for the moment,

I-Y Eq. (4).g For these quantities we have the trial C-function 0 ~~2 of I-Y, for which

a;(xi) =—

i22 [Vio2;(xi) Visi j
H;;(xi,x„; )=——

M 2;(xi)

D „o;(x„).V„s„ij—Z(V2S12. V2S2 )
q;(x )

+&ina (xt)xm) p

(57)

H;(xi) =0,
FI;,(x;,x„)=»„~(xi,x„).

Then, corresponding to their [A4), we find

A f

(H) = 8 12512 igxldx2
202" 4

1P
+ e g18928»2 ifxl~xo~xo+ ' ' '

20'~

(62)

(63)

A2

a;;2(x„x„,x„)= ——[(v',s, v,s,„)
3f

+ (v„s„„v„s„,)+(v„s,„v.s,)j.

8;(xi)=a;(xi),
i2' [v,q;(xi) v,si„]

8g(xi,x„)= ——
M o;(xi)

[v.&,(x„) v„s„,)-
+21„'(xi,x ),

22;(x„)

8;;2(xi,x„,x„)=0.

(5g)

Since there are terms in the above H;; involving the
coordinates of three particles, let us instead define

Is(p) = e'sC*t,&~'Ci. (64)

Then clearly

and

so that

Is(0) = ~e2sC*C =K,

aIs(p)
~eos4*H'4,

~p

with the q's defined as in (54).
Actually, we would like a cluster development of the

simplified form (19) of the energy expectation value.
Following a program quite similar to that of I-Y, who
start instead from the form (9), this can be realized
without much troubl- at least for the ground state
boson system. Consider the generalized normalization
integral

Recalling Eq. (13) from Sec. 3, we see that (56) still
holds with H; replaced by H;, H;; by II;,, and H;;& by
H;;I,. Now if we carry through the derivation of a
cluster expansion by exactly the same procedure as
developed in I-Y, the result is the same as their (30)—
(33) except that no Af and also no Vf V'f terms appear.
Writing explicitly only the zeroth-order terms in Ps
(for brevity), our modified expansion reads

(H) being given by (19) and (32), if we choose

h2 +2V24* V24
+ g ~. ,A.

2M C*C (',~)

(65)

(66)

(H)=(Q H;(x;))+( g B;;(x;,x,)), For a boson system in its ground state we take the trial
4 function (35), which is somewhat more general than
that of I-Y. Then

(Z H'(x~)) =—

( Q Bg(x;,x;))

P(2,A,2)+
2M '

(60)

with

a'=Q H (x;)+ Q H; (x;,x;),

Z(2j,e' "[V1S12'V1+V2S12' V2)2j)2' ~, ~

+2 Z(V e'"'»2"V).+ ", (61)

i22 viyo*(«) viyo(xi).
H (xi)=

2M O2o*(xi) 22o(*i)

a; (xi,x„)=»„"(xi,x );
(68)

consequently the generalized normalization integral
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takes the separated form

is(p)= g «(h;) g e' "ee""*"'g 4po(h)ee~"" g dh .
(~,~) l fn

(69)

If we now apply the cluster expansion techniques of I-Y, this Ie(P) generates the following formula for the
energy expectation value:

h 1P I

(H)=A'
~
Vio 0(xl) ~'dxl+ — e' "«*(xl)3 0*(xo)V» (po(xl) q 0(x3)dxlch3

2~ J

( r~ t

+&'
~ »~ I Vl«(») I'I «(») Iod»d» —&3]»3I3 o(») I3I «(») Iodxl~»

(

2M~ ~ EJ )
/~t

X (

' e' "yo (hl) 300*(x2)~12 &po(xl) V'0(xo)dhld»+, '912) Vl&p0(xl) [ [ po(x2) [ dhl4fx2
M~

+%3 e's»(1+-,'q 13)F330 0*(xl) 0 0*(x3)31,3"000(xl) q 0(xo)
~

000(x3) ~odxlchodx3+ . (70)

I'his expression has the great advantage that S;; only appears in the form e ~'&—there are no Laplacians or
gradients of S;; in the expansion.

The procedure just outlined does not go through in a straightforward way for fermion systems because of the
antisymmetry of C. However, an expansion of the energy expectation value having the desired form —devoid of
S,; except in e *'3salnd g,;factors —can be derived from the modified I-Y result Lof which the zeroth-order terms are
given in (60), (61)j by a series of integration by parts relations

(ij&e'eel»ij)a= —2(i j, eos»V1S» Vlij )a (Vlij, e ".Vlij—)„
(3/k, e lt23~1~jk) a 2 (3/k)e g33V 1S12 V1~Jk) a (Vl~p)e 933 ' V1~/k) ap

(ijk,e»rI3363ijk)a= 2(ijk—,e' »q33V3S» Voijk) 2(ijk, e' '3"—' 33V3S» Voijk), (V'oij—k,e' '&I» Voijk)„

(ji,k' e+' ~oijk).= —2(ijk e' ' (V~»+V3S») Voiq k). (V'oijk—,e
' Voijk). ,

(ijk, e '&13goohlijk), = —2(ijk,e' "glog33ViS13 Vlijk) 2(ijk,—e' '0 ' »g33V1S13 Vlijk),.

—(Vlij k, e' »ln33133 Vlij k)„
(ijk e 13+os»p»&lijk), = —2(ijk eo '3+' »q»(V1S»+V1S») Vlijk), —(V,ijk,e'e»4's»3t»Vlijk)„

(ij kl, e' »q346&ij kl); = 2(ij kl,—e '&34V1S» Viljlk) —(Vlijkl, e' '&34. Vlijkl), ,

/

which allow us to transform away all terms linear in V,S;;. LHere we adopt the shorthand notation

t'
(Vlij, e' » Vlij), = (V1L00;*(xl)1p;*(x3)—&p;*(hl) &p4*(xo)7)e'e» V11p4(xl) 00, (xo)dxldxo,

(Vk,~ ~-~ Vk).= Z n '.*(*.)~"~..~.;(*,);(")"(..)d.,d..d .,
4 Y1 Y2 YGJ

(72)

etc. , a generalization of that of (37).j The prime of the last relation in (71) has the same meaning as in (32) of
I-Y. The connections given above are sufhcient, in particular, for the revision of all the zeroth- and 6rst-order
terms in our expansion (59). [This may be seen for the 6rst-order terms by referring to I-Y, Eq. (32) .j In each case
the first term on the right side is the one we are setting out to eliminate; the leftover terms on the right side linear

in V;S;;, if any, are either dealt with by a trivial extension of some prior relation or treated explicitly in a following

one. The free sums Lsee I-Y, (31), (32)j over the state indices are an essential ingredient in the removal of some of
the terms —for example, note the fourth and sixth relations. The transformed expansion has much to oGer from the
calculational standpoint. It would be interesting to work out the nuclear matter problem again, on the basis of this
expansion, for more realistic forces than those used by Iwamoto and Yamada.
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APPENDIX A. ESTIMATE OF THE THREE-BODY
INTERACTION TERM OF EQUATION (15)

Write

X12=Q (V&513 ' V3532) =2 (V151'V2522), (A1)

and replace the summation over the instantaneous
positions of the k particles by a weighted average over
their positions:

which is certainly negligible when the nucleons are
close (r»(C) and small when they are not (r12)C).

It looks plausible that the correlations and energy
shift generated by K»—X» may be ignored.

APPENDIX B. USEFULNESS OF THE TRANSFORMED
SCHRODINGER EQUATION

Suppose we write the Schrodinger equation for our
Ã-particle system as

E p
X12 —+ —~' e"s"+ '»(V1513 V'2S23)dr3 =—X12. (A2)

n~

Then we have (rj,,=e' '& 1, i, j=1—, -, S)
1V t

X12——— (V,e' » V2e' »)dr,
4Q&

with

and set

h2

Q 634+(V~+V12)%=M,
2M ~

V12= ZL(V35)'+(~15)7,2' ~

(81)

(6)

S
(Vl'013 ' V2'f23) dr3

4m~

Vl' V2
l

'913'923d13
4n~

E f
~ gy3g23dr3

40&

Q—ps@ (82)

Specializing to the deuteron, we have V~= v~2 and

5 a function only of the r&(k= 1, , E). Then since

(A3)
A„e= $(V35)2C'+ (A35)c'+2 (V25 V2e)+ (A3e) 7es,

the differential equation to be satis6ed by C is

A2 A2

Q A3C'+Vga ——Q V35 V3C =EC. (83)
2M ~ M ~

for the effective two-particle interaction generated by
the three-body forces.

But go back a step and note

212 Vl '
I (Vlg13) 2123dr3

4m~

(+1++2)+(+1)+2)+v12 c'(+1)2 2)
2M

k2

(V15 Vl+V25' V2)c (+ly+2) +C (+1)+2)~

M

where

E
(V'1513)e' 131123dr3

2Q

E~s
e' 13L(v15»)'+2 (61513)72123d13 Me

Q

f

s= 9',dr

(A4)

(A5)

Let S(=512)=S(r),r=
~
rl —12~, and choose a central

v12"——v"(r). Then, separating out the motion of the
center of mass, and appealing to the fact that the cen-
tral deuteron is in a 'S state, we are left with the wave
equation

i3 fd 2dl A2 dS dy(r)——
I

—+-—ly(r)+v3" (r)4 (r) —2—— = ep(r)
M &dr2 r dr) M dr dr

for the relative motion, where @3~ is the '5 component
of ~", and —e is to be identi6ed with the binding energyNow if we replace 2123/J 21»dr, in the second factor by a

Dirac delta function, there results
ing differential equation ior I is

Xs
e' »t. (V15») +2 (&1512)7. (A6)

k2 d'I 252 dS (d23 I)
+V3 I— =el

3II dr2 iV dr &dr r)
This replacement is rather crude if r»(C, but fairly

odfo )C L (18)7. At y t w th t
(X12~ is smaller than the two-particle interaction
(V1S12)' by a factor of order (Eche/Q)e2s12. For the
nuclear matter problem, Xcoe/Q 1'0, so

~X» t/(V15»)

dS 1 (dN 23)
(V15 . V 1+V25' V 2)C (xl,x2) ~ 2——

~

dr r (dr r)
Now it has been found for some simple forms of S
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and vg~ that the criterion

2A' dS (dgp Ip)
ep —

i
——(dr«Np'vp~dr, (B5)

Q c.(SC „—EX„„]=0. (C5)

so that the extremum conditions BE/Bc =0 (m= 1, 2,
~ ) require

APPENDIX C. A PERTURBATION METHOD FOR
SYSTEMS WITH STRONG SHORT-

RANGE REPULSIONS

First we select an orthonormal set of functions
Cl, C2, . , 4, . and define the Hermitian matrix
elements

E ~1C' * ~P +C' *~A', (C1)2' ~

(C2)

Then the model function

C=g c„c, (C3)

introduced into (8) with Cs=c =C, yields ((H) ~ E)

E=P cm cnxmn/P cy cqXyq, (C4)

where up (taken real) is the solution of (B4) with the
last term on the left absent, is not met, the two inte-
grals being in fact about the same size for the empirical
core radius ( 0.5 fermi), and "correct" range and
strength of vp" (adjusted to fit the low energy scattering
data and the deuteron binding energy). This indicates
that we cannot ignore the non-Hermitian terms in

(83), that they are instead quite appreciable. Thus-
for nuclear problems, at least—it would appear there
is little recourse but to follow a variational approach.

These equations provide the possibility of computing
the energy eigenvalue E, and the expansion coe%cients
c, to an arbitrary degree of accuracy. For example, if

ll mm
mQI,

11 ~m

+1m +11 ~m
Kl,—Xll (& —,mW 1,

+11 11 +mm

(C6)

we find easily

+1m
E= +Q Kg —Kgg

11 m=2 +11

(C7)
(%11

The complete formal series for the energy and expansion
coeKcients will be presented in a later paper, together
with a discussion and evaluation of the correction term
of (C7). (For this evaluation a cluster development
must again be employed. In the many-particle case
some slight generalizations of the I-Y technique will
be necessary. )

The extensive calculations of configuration inter-
action corrections to the shell-model energy spectrum
and other shell-model properties involve matrix ele-
ments like X and X except for the presence of the
correlation factor e~. It is not likely that this factor can
aheuys be replaced by unity without occasionally in-
curring serious error.


