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Investigations of nonlinear electron oscillations in a cold plasma where the thermal motions may be
neglected indicate that except for the simplest one-dimensional situation such oscillations will destroy
themselves through the development of multistream flow. It is found possible to give an exact analysis of
oscillations with plane, cylindrical, and spherical symmetry. Plane oscillations in a uniform plasma are found
to be stable below a critical amplitude. For larger amplitudes it is found that multistream flow or fine-scale
mixing sets in on the first oscillation. Oscillations with spherical or cylindrical symmetry develop multistream
flow almost always, independent of the amplitude. The time required for mixing to start is inversely pro-
portional to the square of the amplitude. Plane oscillations in a nonuniform plasma are also found to exhibit
this type of behavior. Some considerations are also given to more general oscillations and a calculation is
presented which indicates that multistream flow will usually set in.

I. INTRODUCTION

IXEAR theories of electron plasma oscillations
~ have been extensively investigated. ' ' Such theo-

ries serve as a basis for understanding such oscillations,
but of course give no indication of the part played by
nonlinear effects. It might be expected that nonlinear
eGects would be important in the generation and decay
of these oscillations; therefore, it seems worthwhile to
investigate these eGects.

In this paper some nonlinear longitudinal electron
oscillations in a cold plasma are investigated. The
plasma is taken to be infinite in extent and free from
static fields. It is assumed that the positive charges can
be treated as a smoothed out background charge and
that the electric fields can be computed from average
charge densities.

It turns out that oscillations with plane, cylindrical,
and spherical symmetry are particularly simple. They
can be analyzed exactly, and are, therefore, quite useful
in indicating what types of nonlinear effects exist.
Oscillations of an arbitrary form are more complicated;
they must be treated by some approximate method.

' L. Tonks and I. Langmuir, Phys. Rev. BB, 195 (1929).' L. Landau, J. Phys. U.S.S.R. 10, 25 (1946).
3D. Sohm and E. P. Gross, Phys. Rev. 75, 1851 and 1864

(1949).' N. G. Van Kampen, Physica 21, 949 (1955).
5 L. Spitzer, Physics of Fully Ionia'ed Gases (Interscience

Publishers, Inc. , New York, 1956).

Only a very limited discussion of these will be given.
A general approach to nonlinear effects has been given
by Sturrock. ' The work presented here is quite diGerent
from his. Some particular cases which can be treated
exactly are presented rather than a general method.

II. PLANE OSCILLATIONS IN A UNIFORM PLASMA

First consider the case of plane oscillations. Let the
electrons vibrate back and forth in the x direction, with
all those particles in a given y, s plane having similar
motions. Since the y and s coordinates do not enter
into the equation of motion, they may be dropped from
the discussion. Let xp and X(xp) be the equilibrium
position and displacement from the equilibrium posi-
tion. The position of the electron is, therefore, given by

x= xp+X(xp).

In moving the distance X(xp), the electrons in the xp

plane passed over an amount of positive charge which
is equal to eeoX per unit area. The quantity mo is the
equilibrium number density of the electrons. If the
ordering of the electrons in the x direction is not
changed, then all electrons which were originally on
the positive side of a given electron (initial position)xp) remain on its positive side, and all those electrons
which were originally on its negative side remain on
its negative side. Thus, if I is taken positive for the

s P. Sturrock, Proc. Roy. Soc. (London) A242, 277—299 (1957).
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An interesting special solution to this problem is
given by

Xi=0, X2=A sinkxp.

Consider the situation at t=0; then one has the fol-
lowing re1ations:

sake of argument, there will be an excess positive charge,
enpX per unit area, on the negative side of the electrons,
and an excess negative charge, —eepX per unit area,
on its positive side. It is necessary that no charge be
added to or withdrawn from the system at plus and
minus infinity. Since this is a one-dimensional problem,
Gauss' theorem gives the electric 6eld at the electron
to be

E= 4m enoX.

The equation of motion for the electron is

md'X/dt'= —eE= 4ore—'noX,

O'X/dt'= —oop'X. (3)

This is the equation of motion for an harmonic oscil-
lator. Its general solution is given by

X(xp) Xi(xp) slnoo (+Xo(xp) cosooy1 (4)

where X& and X& are arbitrary functions of xp. Thus
each electron executes simple harmonic motion about
its equilibrium position independent of its amplitude
and independent of what the rest of the electrons are
doing, provided the ordering of electrons in the x
direction is maintained.

The ordering of the electrons is maintained provided
the change in X for a change exp of the equilibrium
position is greater than —Dxp. Thus if the inequality

o)X/Bxp& —1 (3)

is satisfied, the ordering of the electrons is not changed.
The quantity BX/Bxp satisfies the same equation as X,
as can be seen by differentiating Eq. (3) with respect
to xp. Therefore the expression

W=op„'(BX/Bxp)'+ (BX/Bxp)',

which corresponds to the total energy for the oscillator,
is independent of time. Hence, if S' is less than co~

initially, Eq. (5) is satisfied for all time.
Nonlinear traveling waves in a cold plasma have

been found by Akhiezer and I yubarskizs. ~ Their
solutions are special solutions to the nonlinear equa-
tions. Actually any solution to the nonlinear equations
can be built up from their solutions although they did
not recognize this due to the complex nature of their
method. They also apparently did not realize the
amplitude limitation which exists for their solutions.

~ A. I.Akhiezer and G. Va. Lyubarskizs, Doklady Akad. Nauk.
S.S.S.R. 80, 193—195 (1951).

X=A sinkxp,

E=4mempA sinkxp,

x= xo+X= xo+& si»xo.

(7)

(8)

(9)

One may find E as a function of x by eliminating xp

between Eqs. (7) and (8). When this is done and the
ratio of E to its maximum value is plotted against x,
curves like those shown in Fig. 1 are obtained. For
small A the curves are essentially sine waves. As A gets
bigger, the waves distort and the maximum and mini-
mum move toward x=or/k. When 2 is greater than
1/k, the curves are no longer single valued. Since A'

must be single valued function of x, this situation is
clearly impossible. For A greater than or equal to 1/k,
Eq. (5) is no longer valid. The ordering of the electrons
is not maintained and the derivation of the equations
of motion is no longer valid. For oscillations with such
large amplitudes as this, there will be 6ne-scale mixing
of the various parts of the oscillation and its seems very
probable that this mixing will destroy the oscillation.
Also, when this occurs there are regions of infinite
electron density and density gradients, and any viscous
eGects, which exist in a real plasma, will have large
eGects.

III. CYLINDRICAL AND SPHERICAL OSCILLATIONS IN
A UNIFORM PLASMA

An analysis similar to that which was applied to the
problem of plane oscillations may be applied to radial
cylindrical and spherical oscillations. Here the electrons
oscillate back and, forth along the radii of either a
cylinder or a sphere. The equations of motion for these
two cases are given by

d E 2' sp8
rn = L (rp+R)' —rp'j for a cylinder,

dP rp+R
(10)

~ep
m P(rp+R)' —rp'$ for a sphere. (11)

dP 3 (rp+R)'

ln Eqs. (10) and (11), rp is the equilibrium radial
position of an electron, and R(rp) is its displacement.
For the cylindrical case, prenp(rp+R)' is the amount of
positive charge within the cylinder on which the
electron lies: prenp(rp)' is the amount of negative charge
within this cylinder and (ro+R) is the electrons'
distance from the center of the cylinder. The terms
appearing in the equation for spherical oscillations have
similar meaning. In the derivation of these equations
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it is assumed that the ordering of the electrons along
the radii is maintained.

Equations (10) and (11) can be put in dimensionless
form by letting R/rp ——p. Making this substitution, one
obtains

1 v g' drp
t=—

4E, dv

Substituting in the expressions for v, one finds

(19)

dt' (t+1)
(12)

dpp (p+1)2—1
07

dP (p+1)2
(13)

2' fpmsx'~
1— + I &

cylinder
op& ( 12

&Pmxx
r =

~

1— + ~. sphere
co„( 48

(14)

The length of time required for the fine-scale mixing to
start is roughly the length of time it takes two cylinders
or two spheres separated by twice the amplitude of
oscillation to become half a period out of phase. That
is)

eq ——t/r e|2&2= (t/r2)~2, (16)

These are the equations of motion for anharmonic
oscillators. The period of these oscillations, therefore,
depend on their amplitude. Thus, unless all the particles
have the same amplitude of oscillation (same value of
Em,„/rp), particles with different equilibrium radii will
have diferent periods.

Now consider either two concentric cylinders or
spheres which have their equilibrium positions sepa-
rated by less than the amplitude of oscillation. Then
after a certain length of time the inner cylinder or
sphere will be going out while the outer one is coming
in, They will, therefore, cross and there will be fine-
scale mixing of the type considered for large-amplitude
plane oscillations, it seems likely that these oscillations
will destroy themselves by this means.

The period for the cylindrical and spherical oscil-
lations may be computed as a function of amplitude.
One finds that to second order in the amplitude, the
periods are given by

(32r/~o) ro'
cylinder

E .2(dR .„/drp)

6 (22r/&o„) rp'
sphere

7 R,„2(dR „„/drp)

(2o)

IV. PLANE OSCILLATIONS IN A
NONUNIFORM PLASMA

Another example of an oscillation which exhibits the
fine-scale mixing phenomenon is given by electron
oscillations in a plasma of nonuniform density. Con-
sider the case of a plasma with density variations in
the x direction, but with no variation in the y and s
directions. Let the electrons vibrate back and forth in
the x direction. An analysis similar to that given before
leads to an equation of motion of the form

where

d'X/dt'= F(X,xp), —

~XO+X 4 ~2

p= ep(x)dx.

(21)

In this expression xp and X have the same meaning
that they had in the section on plane oscillations in a
uniform plasma. The quantity ep(x) is the background
density of ions. Here, as in the case of spherical and
cylindrical oscillations, the frequency depends on the
amplitude. It also depends on the initial position of an
electron. Because of this, fine-scale mixing will almost
always occur. In addition, regions of the oscillations
which are separated by large distances will have very
diGerent frequencies. The results of this will be that
coherent oscillations cannot be maintained over large
regions of the plasma. Considerations similar to those
given for the case of spherical and cylindrical oscil-
lations show that, to lowest order in the amplitude, the
time it takes for mixing to start is given by

where e~ and 7-~ are the number of oscillations and
period of the inner sphere or cylinder and n2 and ~&

are the corresponding quantities for the outer sphere
or cylinder. Since the two shells will be close together,
v.2 is approximately given by

r,= rg+ (dr/drp) (2R .).

2 (d(u„/dx) X

V. MORE GENERAL OSCILLATIONS IN A
UNIFORM PLASMA

(22)

Thus one finds that the length of time for fine-scale
mixings to begin is given by

(18)

More generally shaped oscillations are not so easily
treated. One may, however, obtain a differential
equation for their motion, which is similar to Eq. (3).
Let (xp,yp, zp) be the equilibrium position for a particle.
Let X(xo,yo,zo), F (xo,yo, zo), Z(xo,yo, zp) be its displace-
ment in the x, y, and 2 directions. In vector notation,
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the equilibrium position may be written in the form

rp ——ixp+ jyp+ ks,

while the displacement may be written as

R=iX+jF'+kZ.

(23)

(24)

The position of a particle in space is given by

r= r,+R.

a (xp,yp, sp)
dV=dVp.

8 (x,y, s)
(26)

If ep is the equilibrium number density of electrons,
then their number density after the displacement is
given by

Now consider the particles which, in their equilibrium
position, occupy the volume element dVp. After the
displacement they will occupy the volume element dV.

The displacement of the particles may be viewed as
a mapping of the rp space onto the r space. If this
mapping is single-valued and regular, then the two
volume elements, dVp and dU, are related by the
Jacobian of the transformation. Thus one obtains

Equation (29) gives the divergence of E in terms of
the divergence of a rather complicated expression %'.
Thus E must be equal to creep%' plus the curl of some
function P.

The magnetic field is assumed to be negligible since
for electrostatic oscillations the displacement current
cancels the electron current. Therefore, the curl of E
is zero. The function P must be chosen so as to make
this so. If E were simply set equal to (4vreep@) this
would not in general be true. For example, if the
motion were a one-dimensional shearing motion such
that

X Vip)
I"=0,
Z=O,

X= Vpypt,

Y=O,

Z=O,

then all the terms in the expression for %' except R are
zero, and R is the curl of k,Vpy'/2. Since V' R is 0, E
may be set equal to 0 and P is equal to —k,4s exp Vpy'/2.
No electric Geld is set up by such a shearing motion.
P in eBect cancels out the shearing terms on the right-
hand side of Eq. (29). Shear motions will give rise to
magnetic fields, but these have been neglected.

Equation (29) may be used to determine %'. Then

or
rId V=mpd Vp, VX VXP= —4meepVX~. (30)

V'„E= —4s-exp
cj (xp,yp, sp)

B(x,y, s)

~(~p,yp, sp)
S Sp

8(s,y,s)

and the charge density is given by

p= e(m mp—)—
Poisson's equation becomes

(27)

(28)

E= 4m exp%' —VXP. (31)

The motion of the particles is found from Newton's
equations of motion. All these equations must be solved
in a self-consistent manner.

It may be verified that the plane, cylindrical, and
spherical solutions discussed earlier, satisfy these
equations. It also follows from these equations that
small curl-free disturbances obey the equation

The solution of Eq. (30) determines P, and once P is
known E is determined by

The subscript r indicates that the divergence is to be
taken with respect to the spacial coordinates r; not
with respect to the initial position coordinates rp.

Equation (28) can be converted into

V'„E=4 en, V„{R—-,'[R(V'„R)—R V'„R]

+-p, [R((V„R)'—V„R:V„R)+2((R V'„R) V'„R

—R V„RV„R)]}= 47renpV„%'. (29)

All terms on the right-hand side of Eq. (29) have the
usual dyadic meaning. One may verify Eq. (29) by
writing the right-hand sides of Eqs. (28) and (29) in
terms of X, I', Z and their derivatives and compare
results. (This is a rather tedious computation and will

not be given here. ) For one-dimensional oscillations
only the R term appears on the right-hand side of Eq.
(29); for two-dimensional oscillations R and —,'R[(V, R)
—R V„R] appear, and for three-dimensional oscil-
lations all the terms appear.

d'R/dP = —(o 'R co '= 4n e'Np/m. (32)

E=4semp {R—~p[R(V„R)—R.V„R]}+V)&P.(33)

The two dimensions in which the oscillation takes place
may be chosen to be the x, y space. Equation (33) may

Thus all such disturbances oscillate with the plasma
frequency.

Large-scale oscillations other than those already
discussed can not be analyzed exactly. Some approxi-
mate method such as expanding the motion in terms
of the amplitude of oscillation must be employed. A

complete analysis of this type has not been carried out.
However, the following example may serve to show how

things go.
Consider the case of a two-dimensional oscillation.

Equation (31) reduces for this case to
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Xl = pXo slllElxp sin((d&3+n),

Yl= p Yp sinE&yp sin(co„t+p).

Proceeding as described above, one finds

(36)

(37)

then be written in terms of X and Y to give

iE„+jE„=47relop{i[X+,'(X-(BY/By).
—Y(BX/By),)]+j[Y+-',(Y(BX/B*)„

—X(BY/Bx) „)]}+VX P. (34)

The equation of motion is given by

i(d'X/dt')+j (d'Y/dt') = —
&u '{i[X+-,'(X(BY/By) ~

—Y(BX/By) *)]+j[Y+l(Y(BX/B ).
—X(BY/Bx)„)]}—(e/m) VXP. (35)

It must be remembered in solving Eq. (35) that d'X/dt'
and d'Y/dt' are second time derivatives keeping the
particle constant (constant xo and yp), while the de-
rivatives on the right-hand side keep the spacial
coordinates x and y fixed.

Now consider the problem where X and X andY
and Y, at time 3=0, have the values given below:

X=EXp slnEyxp slnQ,

I=6MpXp slnEysp costx,

Y= o Yp sinE&yp sinP,

Y = ool Y'p sinEpyp cosp.

Here e is to be small. To first order in e the above initial
conditions will give rise to two plane oscillations at
right angles to each other. The equations of motion
may be solved by the following iteration method. Let
X and Y be the results of the eth iteration. Let P„+~
be the P determined from X„and Y„by the use of
Eq. (30). Substitute X„, Y', and P ~I in the right-hand
side of Eq. (35) and integrate the resulting equation
to obtain X +~ and Y„+~. The two constants of inte-
gration are determined by the initial conditions. This
procedure may be varied by keeping only terms of order
e" and lower in the nth iteration.

Take for X~ and Y~ the solution of the linearized
equations:

X2 oXO sinElxp sin(pl„t+n)

1 p'XpYpEoo
+— sinElxp cosEoyo [~op„'t' cos(n —P)

2 Eo'-+EP

+—' cos(2'„t+n+p)+ 'pp t —cos(n+p)], (39)

Yo= oYo sinEoyp sin(pl„t+P)

1 &'Xp YpEg'
+— sinEpyp cosElxo[ pl ~ cos(~+p)

2 Eoo+EP

+ o cos(2(uI ~+n+ p)+ ',pl„I co-s(~+p)] (4o)

If one goes further and calculates X3, keeping only
terms of order e' and lower, one 6nds

Xo= oXp sinElxp sin(&v„r+p)

1 E2Xp Yp+23
+ slllElxp cosEoyp[4pl&~P cos(e+p)

2 Eoo+EP'
+o c os( 2&v„t+n +P) +-, oopt cos(n+P)

—(1/48)cv„4' COS(n —P)+-o'o COS(2ol„t+n+P)

—(1/24) pl~oto cos(n+p)]+higher order terms. (41)

A similar expression is obtained for V3. Higher iterations
give only terms of order e' and higher. From the equa-
tion for X3 it is clear that X3 is no longer periodic with
period ar„. There are terms which increase with time.
These can be interpreted as a change in frequency,
amplitude, and phase of the oscillation. These terms
depend on the position of a particle and on the relative
phase a+p of the two waves. Thus, particles at different
positions will in general get out of phase. This is similar
to what happened for cylindrical and spherical oscil-
lations. It seems likely that the mixing phenomenon
found there will occur here also. In fact, it seems likely
that it will occur for almost all oscillations.

Sturrock has found results of a similar nature by a
much diferent method and for the quite different case
of two plane oscillations whose planes of oscillation are
tilted slightly with respect to each other.

(EP EP)—'

Po =k2oremoo'Xp Yo [sinElxo sinEoyp]
Eoo+EP

&& [sin(&u„t+n) sin(pl~t+p)],
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