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It is shown that the amplitudes for the production of pions by photons and electrons (virtual photons),
as well as for elastic photon-proton and photon-deuteron scattering, have certain analytic properties as
functions of energy and momentum transfer. These properties are proven on the basis of the axioms of field
theory, especially local commutativity and the spectral conditions. They guarantee the validity of the
usual dispersion relations for restricted values of the invariant momentum transfer. In the construction of
these dispersion formulas the electromagnetic interaction is treated in lowest order. The residua of the poles
arising from the single-particle intermediate states are related to the corresponding vertex functions. For
fixed values of the total energy the absorptive parts of the amplitudes are analytic functions of momentum
transfer; they are regular inside certain ellipses. These properties make it possible to continue the absorptive
parts into the ‘“unphysical region” appearing in the nonforward dispersion relations by means of partial-
wave expansions.

In the Appendix a brief survey is given of the limitations in momentum transfer or the unphysical mass
restrictions, which one encounters in the proof of dispersion relations for some elastic scattering processes.
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1. INTRODUCTION

EVERAL processes involving electromagnetic and
strong interactions simultaneously can be studied
to some extent on the basis of relativistic dispersion
relations. In this approach the electromagnetic radia-
tive corrections are neglected, but the strong inter-
actions are treated exactly. With these restrictions one
obtains dispersion formulas' for the amplitudes de-
scribing photoproduction of mesons,? the production of
pions by electrons,® and the elastic scattering of photons
by protons.

It is the purpose of the present article to derive some
analytic properties of the amplitudes mentioned above
and to show that these properties guarantee the validity
of the corresponding dispersion relations for restricted
values of the momentum transfer. In addition they
make it possible to continue the amplitudes into the
“unphysical region” by means of expansions in terms
of Legendre polynomials and their derivatives. In the
case of photomeson-production and v-p scattering, the
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1 A brief report of our results appears in the Proceedings of the
Annual International Conference on High-Energy Physics at
CERN, Geneva, Switzerland, 1958.
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1 No proof of all these dispersion relations has been attempted
till now.

2 These relations have been considered by many authors; see
for instance: Chew, Goldberger, Low, and Nambu, Phys. Rev.
106, 1345 (1957); E. Corinaldesi, Nuovo cimento 4, 1384 (1956);
Logunov, Tavkhelidze, and Solovyov, Nuclear Phys. 4, 427 (1957).

3 Fubini, Nambu, and Wataghin, Phys. Rev. 111, 329 (1958);
Logunov, Solovyov, Kukin, and Frenkin, Joint Institute for
Nuclear Research, 1958 (to be published).

4T. Akiba and I. Sato, Progr. Theoret. Phys. Japan 19, 83
(1958). For forward scattering, see also Gell-Mann, Goldberger,

and Thirring, Phys. Rev. 95, 1612 (1954). These papers contain
further references.

coefficients in these expansions (multipoles) are physical
quantities and in principle measurable. Also in the
relations for pion production by electrons the con-
vergence of the multipole expansion in the unphysical
region is important. In the electromagnetic approxima-
tion considered, one is dealing practically with the
production of pions by virtual photons.

The amplitude for a process like photoproduction of
mesons is a matrix in spin and isotopic spin space. It is
usually given in the center-of-mass system as an ex-
pansion in terms of a complete set of basic matrices
which are compatible with all invariance properties.
For the purpose of dispersion relations, it is convenient
to use a corresponding expansion of the covariant
amplitude with respect to a complete set of irreducible
forms in spinor space. The coefficients of these forms
are invariant functions of the momenta only, and they
have simple symmetry properties if the matrices are
properly chosen. In the present paper we shall not dis-
cuss these kinematical aspects®™; they are unimportant
for the analytic properties in which we are interested.
It is sufficient for our purpose to work with spin-zero
fields only, provided we observe all selection rules which
are relevant for the spectral conditions. All steps of
our proof can be directly applied to the invariant co-
efficients in the expansion of the general amplitude.
These functions may be expressed in terms of the com-
plete amplitude by means of projection operators and
traces, and in this form the discussion of their analytic
properties is completely analogous to the spin-zero case.’

The analytic properties of the photoamplitudes are
obtained on the basis of general assumptions under-

5 Compare Appendix I of the paper by Goldberger, Nambu, and
Oehme, Ann. Phys. N. Y. 2, 226 (1957).
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lying relativistic quantum field theory.® The most
important axioms are local commutativity (causality)
and the spectral conditions. However, the information
contained in these axioms has not been completely
exhausted and hence the limitations in momentum
transfer, which we encounter, are not necessarily char-
acteristic for the assumptions we have made. In this
respect the present situation is somewhat different
from that of the mass restrictions for the vertex func-
tion and other processes.”

The problem of proving the analytic properties which
are relevant for the dispersion relations is actually a
special case of a more general task. This consists in a
complete exploration of the consequences of causality
and spectrum for the analytic properties of Green’s
functions. In the present paper we are dealing with the
Fourier transforms of vacuum expectation values of
fourfold retarded products. It follows from the axioms
that these transforms can be characterized by invariant
functions depending on the six inner products which
can be formed from the three independent vectors.? As
a consequence of local commutativity and the spectral
conditions, these functions are analytic on a certain
“primitive” domain D in the space of six complex
variables. The problem is to characterize this domain,
to compute its envelope of holomorphy E(D), and to
derive a representation for the most general function
in the class of interest, which is analytic in E(D) and
has singularities everywhere on the boundary.?

Our present exploration is much less ambitious.® For
the purpose of dispersion relations, we are mainly
interested in the analytic properties of the amplitudes
as functions of the “total energy variable” 2z and the
invariant ‘“momentum transfer variable” 25, with the
other four variables z;---2; on the massshell (except
for virtual photons). So we prove, for instance, that
there is a certain region R in the space of the variables
21+ -24 such that for fixed, real zs;, the amplitude is
analytic in z;---24 and 2 for (21 --24) in R and for z
in the whole complex plane except for a “physical cut”
along the positive real axis. If this region R includes the
points 21 - - - 24 on the mass shell for some physical values
of the momentum transfer z;, then we can prove the
corresponding physical dispersion relation. But if the
mass-shell points are outside R, we cannot guarantee
that the amplitude is regular in the cut 2z plane for

physical values of z;---25;. In fact, in some cases we

6 See Bremermann, Oehme, and Taylor, Phys. Rev. 109, 2178
(1958) for discussion and references. This paper will be quoted in
the following as BOT.

7 Res Jost, Helv. Phys. Acta 31, 263 (1958); Reinhard Oehme
Phys. Rev. 111, 1430 (1958).

8D. Hall and A. Wightman, Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 31, No. 5 (1957).

9 At present the envelope E(D) is known only for the three-
point function, where no specific spectral conditions have been
assumed. G. Killen and A. Wightman, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Medd. (to be published). With the present
mathematical method an extension of these results to include
special mass spectra is quite involved.
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know from examples that causality and spectrum are
not sufficient to prove the desired dispersion relations.”
In order to find the details of the region of analyticity
in the z plane for such amplitudes, a more general
approach, along the lines outlined earlier, would be
required.

2. STATEMENT OF RESULTS

We consider the S-matrix element for the reaction
k-+p— k'+p', where p and p’ are the initial and final
four-momenta of the target nucleon, % is the four-
momentum of the initial real (¥2=0) or virtual (¥2<<0)
photon, and %’ corresponds to the final pion (k2=u?)
or photon (k2=0). It is sufficient for our purpose to
describe all particles by the corresponding spin-zero
fields. In this framework we introduce the invariant,
causal amplitude M, by

S p" kp)= k' | R)(P'| p)+i(2m) 6 (R +p' — k—p)
X (16k" po kopo) M . (k+ 5, p',),

where M, may be considered as a function of the inner
products,

Pr=pr=mt, ki=r, K=y, (/= p)= (h—K)= 4,
(k+p)?= (F'+p")?=0o% (2.2)

Let us concentrate first on the amplitude for the pro-
duction of pions by real and virtual photons. Then we
have r=u2 v<0, and if q; and ¢ are the momenta of
pion and photon in the center-of-mass frame of the
final pion-nucleon system, we find

4= 1+ (=) /o =,
4=+ (=)o P,

q1- 2= [ q:°q2* ] cosd=2[ A¢*(o,y) — A%],
where

Ad(oy)=H{a’+ e’ —[W—v)/20 1%},

and o is the total energy of the system in the c.m.
frame. The spectral conditions for the amplitude are
determined by the properties

(0[7(x)|2)=0 unless p.*> (3u)?,
(0]J (x)|7)=0 unless p.2> (2u)?
(01£(@) [#)=0 wnless p23> (m-s)".

Here j(x)= (043¢ (), J ()= OA(x), f(x)= (O +m*)
X (x), and the spin-zero fields ¢, 4, and ¥ correspond
to “pions, photons and nucleons,” respectively. The
state |#) describes an eigenstate of the energy-mo-
mentum operator with the eigenvalue p,; we have
always $,220 and $,0>0. The intermediate states of
the complete initial or final system consist of the dis-
crete one-nucleon state with o=m and all allowed
continuum states with o2 m-+pu.

Using the basic axioms of field theory, especially
local commutativity and the spectral conditions de-
scribed above, we have shown that the invariant ampli-

(2.1)

(2.3)

(2.4)
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tude M ,(v,A%0?) is the boundary value of an analytic
function M (y,A%z). In the following we list only those
properties of M (y,A%z) which are important for the
physical dispersion relations.

1. Consider v and A’ real, y< 0 and A< A< Ao,
where Amax?(v)>Au?(y), and

et ()
e
C T mta\ 4

is the physical value of A? at threshold (o=m-u).
Then the function M (y,A%z) is analytic in z=x-14y and
it may be written in the form

M (v,A%2)=F (v,A%2)+ F (v,A%2),

with
F(‘Y;Azyz)= F(77A21 —'z+2m2+ﬂ2+7+4A2)'

The function F is regular in the z plane except for the
cut y=0, %2> (m+u)? and the pole y=0,x=m? It
satisfies the relation

F*(v,A2 2%) = F(v,A%)2)

(2.5)

(2.6)

for all z in the cut plane. For |y| >8>0, one can find
an integer N and constants C,(v,A%8) such that®

[F(v,A%3)| <§0 Culz| ™ (2.7)

Note that the conventional variable y= (k+2%') (p+p")/
4m is related to z by

2my=z—m?—(u2+v)—2A% (2.8)

and the replacement z— —z+42m2+u2+vy+4A2 cor-
responds to the change of » into —».

2. Let opuys(v,A% be the threshold energy for the
physical reaction with given y<0, and A2 < A2< Apax?.
If 02> opnys, then the improper limit

lim M (v,A?, 0®>+ie) = M .(v,A2,0%)
0

(2.9)

holds, where M, is the invariant production amplitude
defined in Eq. (2.1). The energy ophys is given by
ophys(7,4%) =3 (u?+7)+m?+-2A2

+2[ (m?+A2) {5 (w2 +v)+ AH-[ (u2—) /44T JE. (2.10)

3. The residuum of the function F(v,A%) at z=m?
is the product of two real constants mg(u?) and me(y),
where

mg(r)=(2p0)¥p|7(0)| p») (2pno)t for

PP=pa=m?, (p—pa)’=7, (2.11)
and
me(p)= (2p0)Xp|J (0)| pn) 2pno)? for
P2=p"2= m21 (P'—Pn)2=9
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The functions g(7) and e(p) are analytic in a complex
neighborhood of the real axis for

m 2m
T<3}1,2( ) and p<2u2( ), (2.12)
m—u 2m—p

respectively.

In the general case of the invariant coefficients in
the expansion of the covariant amplitude, the residua
are determined in the same way as in the present model.
There appear the Yukawa constant f, corresponding to
our g(0), and the charge e or the static anomalous
nucleon moments u, and u, corresponding to ¢(0) in
our model.!:?

4. The limitation Ap.2(y) is givenfby

Amax2 (7) = min {A02 (0-77) +A (G‘,’Y) }7 (2' 13)

o>m+u

where

A(oyy)=3{{gige 1+ [ (g1t a:?) (g2t D) ]} (2.14)

and
8u®(2m—+p)

(=) 2mtp)u
S e =2

§2=

o*— (m—p)?
for

v 2v0=2u(m?—ul—o") (m—u)l, or g=N2—q,

with
p(2m+p) 1

Ny L)y P},
: a (o2

for v <#o.

The quantities A¢% qi%, and q.®> have been defined in
Eq. (2.3). For real photons (y=0) and for virtual
photons with y larger than —2.7u? (u/m= experimental
mass ratio), the minimum in Eq. (2.13) is at e=m+pu
and we find

m w—y [8u?2m+u dut—y e\
Amax i — __{_[_"‘ (1 { ):l
m+u 4 3 2m—u 2 2m
1 P~y m Cmtp)?—y]
X~{1+[1+M ]} (2.15)
2 4~y (m+p)?  2mtp

In the case of photoproduction of pions (y=0), Eq.
(2.15) leads to Amm®=~3u?. For virtual photons with
¥<—2.7u? the minimum in Eq. (2.13) appears for
o>m~+u. In Table I we give some values of Amax(7).

TaBLE I. Maximum invariant momentum transfer 28max ()
for which the dispersion relations have been proven in the case
of virtual photons.?

—v/u? 3 5 7 8 9
Amax(y)/u? 500 6.00 7.03 7.50 795

a y =kg? —k?, where & is the four-momentum of the photon. This table
has been calculated for u/m =140/940.
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5. Let us assume, for reasons of simplicity, that
M (v,A%2) vanishes like 7! for z— . Then the prop-
erties described above may be summarized by the
representation

M<77A2’Z) = F(‘Y;Azyz) +F('Y)A2) - Z+ 2m2+”'2+7+ 4A2)

1 00
=_f dd* ¢'('Y:A2:0'2) l

2

T (mtp)® o3
: |+egms
+ +e(v)g(w?)m
I o2+ z—2mP—pu2—y—4A2 §
1 1
><| + } (2.16)
mi—z z—mP—ul—y—4A?

for v<0, A2 < A2< Amax®. Here
é(v,4%0%)

1
=— lim {F(y,A?, 0>+ie)— F(y,A% a>—i)} (2.17
- lim( ) (2.17)

is a real weight function which coincides with the ab-
sorptive part of the production amplitude for physical
values of o:

¢ (’y,A2,0'2) =ImM.(y,A%0?) for o> O phys (v,A%). (2.18)

In the “unphysical region” m~+pu<o<opnys, the func-
tion ¢ may be obtained by explicit analytic continua-
tion in A? with the help of expansions in terms of
Legendre polynomials or their derivatives. This con-
tinuation is made possible by the following properties
of ¢:

6. For v and o fixed, ¢ is an analytic function in A2
It is regular inside an ellipse, with foci at A%=Ag?(y,0)
+1[q:2q22]* and the boundary

A=A (a,y) — A (o,7) cosy+iB(ayy) sing, (2.19)
where
B(o,y)=13[44%(0,7) — a7 ]
=3{{g1(g2t+a?) P+[ga (g1t a) ] ;  (2.20)

A(o,y), g1, g2 are defined in Eq. (2.14), and A¢(s,y),
q:% q2® in Eq. (2.3). For ¢>mu we may introduce the
cosine of the c.m. angle ¢ as a new variable. Then ¢ is
an analytic function of cosd, which is regular inside an
ellipse with foci at =1 and the boundary

cosd= £ cosy==1[ ££—17% siny,

£§=24(o,v)[a’q* T2

Hence we may expand ¢ in terms of Legendre poly-
nomials in cosd=2(A2—A?)[qlq*T* or in terms of
derivatives of these polynomials. The expansions are
convergent inside the ellipse (2.21) and the coefficients

where (2.21)
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are determined by the values of ¢ for |cosd| 1.0
In this range the function ¢ is equal to the absorptive
part of the physical amplitude. For practical applica-
tions the Legendre expansions may be chosen to co-
incide with the usual multipole expansions.

In the representation (2.16), and therefore also in
the dispersion relations, the function ¢ is needed for
real A? and all 2 m+pu. We see from Eq. (2.21) that
the Legendre expansions will converge in the whole
unphysical region if A? is restricted by

ma_)li_ {A¢(o,y)—A(o,y)} <A?
o> m+tu
- < min {A¢(e,¥)+4(0,7)} = Amax (7).

o>m—+tu

(2.22)

The range Ap?< A2<Ap,® is contained in (2.22). Pre-
liminary calculations indicate that the maximum of the
left-hand side of the inequality (2.22) appears for
o — o and has the value zero.

In the present paper we shall not discuss the analytic
properties of M (v,A% o’4ie) as a function of A? for
fixed values of . We hope to come back to this problem
in a later publication.

Let us briefly discuss the limitations we encounter in
the proof of dispersion relations for elastic y-p scattering.
In this case we have 7=vy=0 in Eq. (2.2) and the c.m.
quantities are given by

0= ait= g7 =12 (1—m2/o%)%, A=t (1—cos0).

The dispersion formulas can be proven for 0 A2 < Ay,?,

(2.23)

where
Aned= min {@+g},
. o> m+tn
with ( )
413 (2m~-u.
glo)=———. (2.24)
o?— (m—p)?

Using the experimental mass ratio, we find that the
minimum is at o=m-+p, and

Cm+w)? 2m+tu
s
dm+u)?® m

The representation corresponding to Eq. (2.16) is of
the form

M(A%5)=F(A%2)+F (A2, — 5+ 2m2—4-442)

1f°°
—7I'

(mt-p)?

}z3u2. (2.25)

1 1
do® $(A%0%) [ + i
o?—z otz—2m>—4A?

(2.26)

Il
I

+e2(0)m? },
mr—z g—mP—4A?

where ¢(A20?%) is again an analytic function of A? for

10 Gabor Szegd, Orthogonal Polynomials (American Mathemati-
cal Society, New York, 1939), p. 238.

1t Corresponding results for the case of pion-nucleon scattering
have been obtained earlier by H. Lehmann, 1958 (to be published).
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fixed o2 m+p. It is regular inside an ellipse™ with the
boundary

A*=3¢°— {3q*+g} cosyilg(g+a) Fsing. (2.27)

We can express ¢ in the unphysical region (m+u)<o
< A4[m*+A%]E by Legendre expansions (multipole ex-
pansions) in cosd=1—2A?/¢? provided A? is restricted
to the range 0< A?< Apax?, where Apg? is given in Eq.
(2.25).

So far we have treated the electromagnetic inter-
action only in lowest order. If we take into account all
orders in the fine structure constant and introduce a
small, auxiliary photon mass A>0, then Ama* for v-p
scattering is given by

Apax>= min { ‘12”!‘8(‘7,}\) } ’
o>m+N

(N = 8N (2m—+-N)
817 _02— (m——Z)\)2.

(2.28)
with

The minimum is at o=m-4\ and we find the value
Anax®= (8/3)A2(2m~+)\) (2m—A)~1. Hence we can only
prove the dispersion formulas for forward scattering and
for the derivative amplitudes. The situation is the same
for photon-electron scattering.

Dispersion relations for elastic photon-deuteron scatter-
ing can also be proven; they will be discussed briefly
in the appendix.

3. DERIVATION OF DISPERSION RELATIONS

Since the following considerations are similar to
those given in Sec. 2 of BOT, we may restrict ourselves
here to a brief outline.?? It is convenient to introduce a
special Loretz frame where p+p'=0 and

p’sz, p=1p-n, K=%(k+k')={w,K},
with
PAz{EA;A}y EA:(m2+A2)*:
Ke=w2—a—A?, 2K-A=8.

Here we have introduced the variables a=3(7-+p),
B=%(r—p), 7=k, p=Fk?; and on the “mass shell” for
the production amplitude, with 7=p? and p=v<90, we
write ao=%(2+7), Bo=%(u?—v). We chose our space
frame so that

A=Aey, K= (8/24) e1+[w?—a—A2—B2/4A ]tes, (3.1)

where e; and e, are two orthogonal unit vectors. Note
that the quantity

Wphys (7,A%) = [010+ A2+302/4A2]’} (3.2)

is the physical threshold energy in the special system.
By the usual methods we obtain Fourier representa-
- tions for the invariant amplitude M, and the corre-

12 See also Bogoliubov, Medvedev, and Polivanov, Problems of
the Theory of Dispersion Relations [ Gostechnisdat, Moscow (to be
published)]; N. N. Bogoliubov and D. V. Shirkov, Introduction
gzltlo the Theory of Quantized Fields (Gostechnisdat, Moscow, 1957),

ap. 9.
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sponding advanced amplitude M,. In the special frame
these are of the form

M., .(a,B,A%w) = D(a,8,A%w) 14 (a,8,A%w)
2B f @ ¢%-#0(£10) (pa | [(3), T (—3)]| pon)
N
+3 CalaB At (3.3)
n=0

where the dispersive part D, the absorptive part 4, and
the coefficients C, are real quantities; this may be
shown using invariance under space-time inversion or
charge conjugation. Let us assume now that a<<—A?
—B%/4A2. Then the absorptive part is defined by Eq.
(3.3) for all real w, and by decomposition of the matrix
element into intermediate states we obtain the spectral
representation

A(a80%0) = f d0® p(8,0%0°)

X{8(a?—a—m?—2A2— 2FEpw)

___6(0‘2-—--0[—”12_2A2_f_2EAw)}y (34)
where
(08, 48,0%) = mmPg (a-+B) e(—B)3 (o —m?)
+¢>(a,ﬁ,A2,02), (35)

and ¢=0 for oc<m-+u. The functions g(v) and e(p)
have been defined in Eq. (2.11) and they will be dis-
cussed later.

We see from Egs. (3.3) and (3.1) that for «, 8, A?
fixed and o+ A24-82/4A2<0, the functions M, and M,
taken together, define an analytic function in w which
is regular in the cut w plane. There are no branch
points on the imaginary axis because M, and M, are
symmetric under e;— —e,. If we require in addition
that a<—2A? then there is a finite gap on the real
axis where A= (1/2¢)(M,—M,)=0, and we have one
analytic function M (e,8,A%w). We prefer to introduce
the variable

z=2Es0+ta+m?2A2, (3.6)

and consider M (a,8,A%z2) in the cut z plane. Assuming
sufficient boundedness at infinity, we obtain for M a
representation of the form

1 0
M(“:BJAZ)Z) = '—f

T (et

do® ¢(,8,A%0%)

1 1
YN |
02—z o*+2—2m?— 20— 4A?
1

+oertB)ela—Bne] - } 37)

m2—z g—mi—2a—4A2

where ¢ has been defined in Eq. (3.5).
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Let us discuss first the functions g(7) and e(p), which
are special cases of the meson-nucleon and photon-
nucleon vertex functions. We are interested here in the
analytic properties of g(7) and e(p) in the neighobrhood

f X(K yEynyU)
d&f dnf dx ———
0' — 2323

V (m?39,35) =
(m+n)?

X{[2¢+3(14+8—

where x is a real generalized function, A (212223) = 21>+ 22
+ 232 — 22129 — 29123 — 22523, and

ko=min{0, m~+u—3o[ (147)*— &1,

—3ol (1= £T).

We have b=3u, z2=r, 23=m? for the pion vertex g(7)
and b=2u, 25=p, 33=m’ for the photon vertex ¢(p) ; the
weight functions x are, of course, different in both
cases. A discussion of the denominator in Eq. (3.8)
shows that g(7) and e(p) are analytic in a strip along
the real axis provided
+u
), 69

2m~-u 2m
T <3,u2( ) and p< 2,u2(
2m—p. 2m

respectively. Both functions are real for real values of
7 and p which satisfy Eq. (3.9). We will encounter the
restriction (3.9) again in Sec. 4 when we discuss the
analytic properties of ¢(a,8,A%0?) as a function of
r=a-+B and p=a—p, for fixed A? and all ¢>m+u.

It may be of interest to note that the limitations
(3.9) have been obtained from a representation which is
an analytic function in the cut z; plane in addition to its
regularity properties as a function of 2 (7 or p). At the
special points z3=m?, we have regularity also for some-
what larger real values of 7 or p. This can be seen from
a representation of the form

. . x (&0, )
(8170 |0)pogi= [ avau =22
= (3p—q—u)’
where p?=¢g?=m? and where x is a real weight function
which vanishes outside the region

(3.10)

[o| + [ u| <3m,
x2max{0, a—[ (Gm+uo)*— v}, b— [ (Gm—uo)*—w*]H},
a=m-+pu, b=3u or 2u, respectively.

The formula (3.10) is a direct application of the Dyson-
Jost-Lehmann representation.’*5 In the Lorentz frame
for which p=0 and ¢={w, e[w?*—m?*]}}, with e being
some fixed unit vector, the denominator in Eq. (3.10)
cannot vanish for w>wo= (m*+ma—ab)(m—+a—>b)"L
Hence the functions g(7) and e(p), with p= (¢— p)?, are

18 Reinhard Oehme, reference 5. See Egs. (3) and (4).

4 F, J. Dyson, Phys. Rev. 110, 1460 (1958).

15 R. Jost and H. Lehmann, Nuovo cimento 5, 1598 (1957);
L. Garding and A. Wightman, 1958 (to be published).
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of the real axis for 7< u? and p<v<0. These properties
may be obtained from the representation of the vertex
function which has been described earlier by one of us
(R.O.).1 Here we use this representation in the form

)0 — (mP+22) +n(m* — 22) P— EN (0 22,0%) } 7, (3.8)
analytic in a strip about the real axes provided
m 2m
T<3[-L2( ) and p<2,u.2( ), (3.11)
m—pu 2m—

respectively.

In the following section we shall show that the func-
tion ¢(e,3,A%¢?) has analytic properties in «, 8, and A?
for fixed o2 m—~+pu. Here we are interested in the fact
that there is a >0 such that for all o2 m-+u, Ap2< A?
<Anax?, B= ﬁo\ $u%, ¢ is an analytic function of « for
aeS, where S is the strip®

S=[a: [Ima| <3, Rea<as+35],

and ao=3(u?+7v), ¥<0; by “[a: ---]” we denote “the
set of all ¢ which satisfy the condition- - -.” From Eq.
(3.9) we see that the functions g(a+4Bo) and e(a—pBo)
are also analytic for aeS, and hence we may continue
M (e,B0,A%2) in terms of the right-hand side of Eq.
(3.7) from a<A’-Bo/4A?, a<—4A? to the physical
value a=ao. For the M thus continued, it remains to be
shown that the improper limits

hm M (ao,,Bo,A2
e—0+

2:|:Z€) Mr a(ao,ﬁoa i )

hold for o2 ophys(v,A%), where M., , are the amplitudes
defined in Eq. (3.3) in terms of Fourier representations.

These representations define an analytic function of
® and a for

|Imw| > | Im[w?—a—A2—B2/4A7 7%,  (3.12)

and the right-hand side of Eq. (3.7) is certainly regular
for
aeS,

=2FEx|Imw|> |Ima|. (3.13)

Now we choose a=ap==2ige and w=w,31€, W, Wphys
(v,4%, which corresponds to z=02£2i(Er+a)e,
02 opnys (7,A%). Then (w,a) satisfy the conditions (3.12)
and (3.13) provided

|a—w,| <[w2—ai—A2—B?/4A°]F and |e| <Ea.

At least for A22> Ag? such an @ can always be found and
we have

hm M(ao,ﬁo,Az,
e~

and |y|

==
= lim M (ao=24a¢, B0,A2, 0*4=2:(Ex+a)e)
0+

=M, o(a0,B0,4%0%). (3.14)
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This gives the required dispersion relations. If the
function M (a,80,A4%,2) should be less bounded for z — o,
then we have to make “substractions” in Eq. (3.7) and
there will be a polynomial in z with coefficients depend-
ing on a and A? The proof that these coefficients are
analytic functions of & for aeS may be given using the
method described in Sec. 2 of BOT.

4. ANALYTIC PROPERTIES OF THE
ABSORPTIVE PART

In this section we wish to prove some analytic
properties of ¢(a,8,A%,6% as a function of «, 8, and A2
The regularity in « for aeS and fixed 8=, A< A
< Amax?, 02 m-+p has been used in Sec. 3 in order to
derive the dispersion relations. Analytic properties in
A? make it possible to express ¢ in the unphysical region
in terms of physical quantities via Legendre expansions.

Let us introduce the variables

q=30'-k), @=30—k, @=iktp), “I)
and the function
G(q19295) = (o> —m*)p (,8,4%,0%). (4.2)
In the c.m. system we have then
=0, g¢s=30,
qu=(m*—1)/20, qu=(m’—p)/20,
r=a+B, p=a—pB, (“4.3)

q*= o1+ (m*— 1) /> P—m?,
q*= o[ 1+ (m*—p)/o* P—m?,
(q1— q2)°=4A2+B%/0%

By standard methods we obtain for G a Fourier repre-
sentation of the form

G, a(91Q293)

= (m*—4qs?) f dixy d*ey e (20 (110)0 (— x90)

Xr T L), j(~]in)

X (n|Lf1(—4%2), T (322)]10)

+degenerate terms, (4.4)

where we have assumed that 7<(3u)? and p<(2u)2
The ‘“‘degenerate terms” contain equal-time commuta-
tors; they do not alter the analytic properties of G.
In Eq. (4.4) we have introduced the subscripts 7 and @
of G in order to indicate the retarded and advanced
character of the integrand in the variables x; and «»,
respectively. We introduce in addition to G-, the three
other functions G,,, Gqs and G., by replacing in Eq.
(4.4) 0(—x20) by —0(x2), 6(x10) by —6(—x10), and
6(x10) by —0(—x10) as well as 6(—x20) by —0(xs0), re-
spectively. Then we have the four functions Gi;(g19:¢3),
i=r,a and j=r, ¢, which, on the basis of the spectral
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conditions (2.4), have the properties

G,i—Gqai=0 for (q14¢3)?<(m+p)® and
(q1—¢3)*< (3w)?,
(g2+¢3)?< (m4+p)® and
(g2—g3)*< (2w,
¢*2 (m+p)?* and  g3>0.

GiT—Gia=0 fOI‘ (45)

G;;=0 unless

From Eq. (4.4) we see that the functions G;; are
analytic in ¢; and ¢ in certain tube domains.® We may
take these functions as one function G(gigsgs) which is
then analytic in the region (¢1,q2)eW XW for each real
¢s, where

W=[g¢: |Imgo| > |Imgq| . (4.6)

Let us denote the “joining up region” of Eq. (4.6) by
(g1,92)6S3X.S2, where S, is the set of real points
Sa=[g: Img=0, (Reg+gs)* < (m+n)’,

(Reg—gs)*< (nu)*].
The function G satisfies all the conditions of the edge
of the wedge theorem of BOT and hence it may be con-
tinued, for every fixed ¢;, into the region (WU N3)
X (WU N,), where N, is some complex neighborhood
of the set S,. This continuation is sufficient to prove
the dispersion relations for A?= Ay?(y). Writing

q=Rse;+De,,
(g1 q2)*+ (@2 — qo?) D [(I12(122— (qi- Q2)2]
(q1+q2)?

q:=R.e;—Dey,

1
7

2[(qi+q2)% ]t
4.7)

with gio, g0, 423 @2%, and (qi—q2)? given by Eqs. (4.3)
we have

(i qs)?= (gt qa)?=m?, (q1—qs)?*=a+B,
(e—go)*=a—B, (1—@)*=—44% 4¢f=0"; (4.8)

for 8= and a<ao the vectors (¢1,q2) are lying in the
region of analyticity provided |A?—Ag?| <8 with &
positive and sufficiently small. Hence, for the present
case, the edge of the wedge theorem proves the required
analyticity of the ¢ as a function of a.

A straightforward method to extend the proof to
larger values of A? would be the following. We map the
domain (WU N3) X (WU N3) (or its envelope of holo-
morphy) into the space of g1, ¢20, and the inner prod-
ucts q:%, 2%, (qi—g2)? and compute the complete
envelope of homomorphy. However, the present func-
tion-theoretic methods for the construction of envelopes
are very impractical; we prefer to use a general repre-
sentation of functions which have properties like those
expressed in Egs. (4.5) and (4.6). The existence of such
a representation has been proven by Dyson,** who re-
duced the problem to the simpler case of symmetric
spectral conditions which has been treated by Jost and
Lehmann.'® With these tools we obtain for G a repre-
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sentation of the form!!
G(q19:95) = (= m*)p(,8,4% %)
do1duadrr?drs? X (k2 K22 U1,02,q3)
B f['<12* (q1— )Tk (g—2)?]’

where x is an arbitrary real weight function which
vanishes for ¢ <m-+u and also outside the region

(4.9)

[uil S%‘T— luiola 7’=1’ 2,
Ki? max{O, a;— [(%U-!-Mm)z— lli2j%,
bi— [ (Go—uwn)’—u]}.
In Eq. (4.10) we have used the special Lorentz frame

where q;=0 and ¢so=3%0. From the spectral conditions
in Eq. (4.6) it follows that

b1= 3[.1. and b2= 2}1.

(4.10)

G =a=mtpu, (4.11)

The reality of x may be demonstrated using the
representations (4.4) for the G;; and invariance under
inversion of motion. The function x is also invariant
under space rotations, and in the c.m. frame we may
write

x=x (k1 k2,010,820, 0%, U 0y - we (w1 | | w2] )7L, o). (4.12)

If we now introduce (4.12) into the representation (4.9)
and perform the redundant angle integration, then we

(a2—m?) ¢ (a,8,A%,0%) =27 f u1duy UsdUs dri’dis’
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are left with a function depending only on g¢i0, 20, and
the inner products q:%, qs% and q;-q.. We may take
these variables complex and discuss the points of regu-
larity of this representation for every fixed value of the
generalized variable ¢2>m-+pu. The set of all points
where the function is analytic is then the envelope of
holomorphy which we have discussed earlier. For the
purpose of dispersion relations we are interested in the
analytic properties of ¢ as a function of e, 8, and A%
especially for @ and B8 in the neighborhood of the real
axis.

First we discuss the representation (4.9) for the
special case where the parameters u; and u, are zero.
Then the integrand depends only upon g0, ¢20, 4%, and
q2% and it is independent of A% We are interested in
those real points 7 and p (or @ and B) for which the
denominator does not vanish for any o2 m-pu, and we

find the conditions
2m—+u 2m—+p
T<3p.2( ) and p<2u2( ) (4.13)
2m—u 2m

The restrictions (4.13) are the same as those obtained
with the representation (3.8) for the corresponding
vertex functions.

Let us now consider the cases u;0. We introduce
polar coordinates and perform one angle integration.
Then we have

2 T ™ x(ka?ke? 10, %00, U1, U2, COSY Sin e SiN@aCOS @1 COS @, 0)
x [ [ e[ de
0 0 0 NiNo+[(N2—q) (N2~ q2) '~ [q:2q2 ]t cos@—)

Ny N,
X 4+ L 414
[Vi—q] [Ni—qi]
where
k0448 — (gio—ti0)?
N;= , (4.15)
2| u;| sine;
and & is the angle between the vectors q; and qs. In  and
order to discuss the limitations in 7, p, and A? it is a(r)=N2(7)—q:% g:(p)=Ns(p)—q2?
useful to have the minima of the N, as functions of the with
parameters k2, w2 and u;, where these variables are at—m? 1 )
restricted to the region given in Eq. (4.10). We find, N\ = +E‘{ (a2 +a*—=N)—4ale’}i, (4.17a)
for real 7, p and o> m~+u, with ¢;=%7, for o o
minV:=[g:(7)+a:* ], (4.16) (70) <(70,00), (70,00) < (0,0).§
minNy=[gs(p)+q:" ¢, The masses a; and b; are given in Eq. (4.11), and in
where Egs. (4.3) the quantities q® and qs? have been expressed
= (a2—m?) (b2— 2 (g1—by)? in terms of 7, ¢ and p, o, respectively. The correspond-
a(n)= (er=m) (b =n/[o"= (a1=b)"], (4.17) ing minimum of the expression NiN.+[(Ni®—q:?)

g2(p) = (a—m?) (b2 —p)/[0*~ (as—b2)*]

(1,0) 2 (10,p0) =bi[ @ai— 0/ (ai—b) ]

for

§ Note added in proof.—We would like to thank Professor A. A.
Logunov and Professor V. S. Vladimirov for bringing this second
possibility to our attention.
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X (N22— q2%) ]} becomes then
24 (o,p,7) ={[ (&1t a) (g2t @) 1+ [grg2 14} (4.18)

Let us consider first the last factor in the representation
(4.14). It is independent of A? and leads only to the
restrictions 7<(3u)? and p<(2u)? for all values of
o> m~+u. These limitations are due to the onset of
the static cuts in the complex 7 and p planes.

For 62 m—+pu and real 7 and p, the first denominator
in Eq. (4.14) leads to a region of analyticity in A? which
is the inside of an ellipse with foci at

A= Ad(o,0,7) £ 3[ 0’2" T,
and the boundary
A2=Ag(o,p,7) — A (0,p,7) cosy==1B(ap,7) sing. (4.20)
Here B is given by
B(op,7)=3[44"—a’q’ ]

(4.19)

=3{{g1(g2+ D) [ (gt aD) ]}, (4.21)
and we have
[a’q2" ]t cost=2(Ag*— A%,
with
Ad(o,p,7) = {42+ 42— (g10—¢20)%}
=§{o*—=2m*—r—p+ (m*—7) (m*—p)/d*}. (4.22)

We note that in the region of interest; i.e., for o 2> m—tu,
7< 12, and p<v<0, the functions 4, B, and A¢ are in-
creasing with decreasing values of 7 and/or p. Then we
find from Eqgs. (4.13) and (4.20) that for B=B¢=3% (u*—")
and real A? the function ¢ has the required analytic
properties in a=%(7-+p) provided

max {A¢*(a,v,u%)— A (o,7,u%)} <A?

o>m+tp .
< min {AOZ (0'77’“2) +4 (0'77’/‘2) } .
o>m+tp

(4.23)

This leads to the limitations in momentum transfer
which we have discussed in Sec. 2. There we have also
described the implications of Eq. (4.20) for the con-
tinuation of the absorption part into the unphysical
region by means of Legendre expansions.

It should be noted that those analytic properties of
¢, which we have derived earlier in this section using
the edge of the wedge theorem, follow also from the
representation (4.14). We have discussed here both
methods in order to show that the dispersion relations
for A?=Ay? follow already from the very general, and
in principle quite simple, edge of the wedge theorem.
In addition we wanted to point out the connection
between the use of the Dyson representation and the
function theoretical methods which we have employed
in BOT.
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APPENDIX

We give here a brief survey of the limitations in the
invariant momentum transfer 2A, which we encounter
in the proof of dispersion relations for some elastic
scattering processes. As has been explained in the
Introduction, these restrictions need not be character-
istic for the assumptions (causality, spectrum etc.) we
have made. For the elastic amplitudes the quentity
Amax? is given by an expression of the form!®

Amax2=min{q2 (ayxlyx2)+g(0)x1:x2)}: (Al)
o>cC
where
o) =To ok )+ /20,

g(aaxhx?) = (0’2_ xl) (62_ x2)/[‘72_ (a_ b)2]’
azb,
%22 bla—d*/(a—0)],

and o= (k+p)%, w1=p%, x2=Fk?; the masses @, b, and ¢
are determined by the spectral conditions. For fixed o,
the absorptive part of the corresponding amplitude is
an analytic function of A% regular inside the ellipse
given byl

N=}q?—{}3¢°+¢} cosp=ti[ (q?+g)g]t siny.

These analytic properties can be used in order to ex-
press the absorptive part in the “unphysical region” in
terms of physical quantities by means of Legendre
expansions. The dispersive part is also an analytic
function of A?; it is regular inside a smaller ellipse
given byl

A=3q*— 3 q*(q*+g) I} cospiz[¢°g J! sing.

The following relations have been proven:

(A3)

(A4)

Pion-pion scattering—We have x1=x,=p*; a=b=3u
and ¢=2p. The minimum in Eq. (A1) appears at e=4u
and we find Apa®=7u2

Pion-nucleon scattering.—Here we have xi=m?, s
=u?; a=m-+u, b=3u, and c=m-+p. The minimum is
at o=m-+u and

8u? 2m~+-p
N .17
3 2m—u

16 See the footnote in Sec. 4 of BOT, where Egs. (A1) and (A2)
have been given in a somewhat different form.

17 BOT, Sec. 4. Compare also N. N. Bogoliubov and V. S.
Vladimirov, 1957 (to be published); and V. S. Vladimirov, Joint
Institute for Nuclear Research, 1958 (unpublished). In these
papers the original proof of Bogoliubov has been extended to
larger values of A2 In the first preprint the limitation A2<2u? is
given and in the second preprint the proof is extended to A?
<2.56u% (with m="Tu).

max ~
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Photon-deuteron scattering.—We may either consider
the deuteron as an elementary particle and describe it
by a separate field operator which satisfies the require-
ment of local commutativity, or we may treat it as a
composite particle. In the latter case, we make use of
the formalism developed by several authors,!8 who have
shown that it is possible to define a local deuteron field-
operator in terms of the operators for neutron and
proton. The S-matrix element for y-d scattering may
then be expressed in terms of retarded products of
photon and deuteron operators in the same way as in
the case of “elementary” particles only. We obtain,
from Eq. (Al) with x1=M2= (2m— B)?, x,=0, and
a=2m, b=23u, c=2m,

Amax?= Bu(4m—B)/ (2m— )+ B*(1— B/4m)>.

Here the electromagnetic interaction has been treated
in lowest order.

Photon-proton scattering.—This case has been dis-
cussed at the end of Sec. 2.

There are some important elastic scattering processes
for which the dispersion relations cannot be proven on
the basis of causality and spectral conditions alone.
Even for forward scattering, the analytic properties of
the absorptive part,

(P05, (R—E')7, (k+1))

= ¢(x1,x17777> - 4A2) 0'2);

as a function of 7 are not sufficient to include the points
on the mass shell (r=ux,) for every o> c.

In special cases we obtain the following limitations:

Nucleon-nucleon scattering—For x1=m? and A?=0,
the real points = belong to the region of analyticity for
all ¢ 2u provided 7<% (m~+u)% The mass shell (r=m?)
could be reached only under the unphysical condition
u>(V2—1)m.% For fixed o> (m—+u)+[ (m—u)2—2u> ]t
and 7 on the mass shell, the absorptive part ¢ is analytic
in A?; it is regular inside the ellipse (A3) with the
parameters x;=x2=m?, a=b=m-+u and ¢=2u. Corre-
spondingly, for fixed o>2m, the dispersive part is
regular inside the ellipse (A4).

18 K. Nishijima, Phys. Rev. 111, 995 (1958); W. Zimmermann,
1958 (unpublished); R. Haag, Phys. Rev. 112, 669 (1958). These
papers contain further references.
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In a perturbation theory based upon the usual pion-
nucleon interaction, it can be shown that the dispersion
relations for nucleon-nucleon scattering hold in every
finite order provided A2<%y21

K-meson-nucleon scattering.—The parameters are
=m?, xo=pux? a=m+pu, b=px+2u, and c=ms+u. For
x1=m?, A’=0, and all 02> m+p, a real point 7 is inside
the region of analyticity of the absorptive part provided

2ab+c(c—a—b)—x[1— (a—b)/o]
14+ (a—b)/o '

With the parameters given above, the minimum is at
o=c=my+pu, and it is smaller than ux® by a narrow
margin.® Note that the condition q*(o,m?7)+g(o,m?,7)
>0 is fulfilled for 7<79 and all ¢>mpa+u. We have
again analytic properties of the absorptive and the dis-
persive part as functions of A% On the mass shell the
absorptive part is regular in (A3) for fixed ¢> o9, where
mat+p<co<m+tux and q*(oo,m*u*)+g(o0,m*u?)=0;
the dispersive part is regular (A4) for fixed ¢>m-+pux.
Pion-deuteron scattering—As in the case of v-d
scattering, we treat the deuteron as an elementary par-
ticle. We have the parameters x1=M4?, x;=pu?, and
a=2m, b=23u, c=2m. The limitation in 7 becomes

7<10=3uB(4m— B)/ (4m—3u),

(A5)

7<To=min
o>c

(A6)

and is far below the mass shell 7=u2 Again the ab-
sorptive and the dispersive part have the corresponding
analytic properties as functions of A2,

Let us recall briefly the implications of a restriction
like (A6). According to the method of our proof, it
says that the amplitude is an analytic function of

z=x+1iy= (k+9)? in the complex z plane except for

the cut y=0, x> ¢*= 2m)? provided v<vo. For >,
causality and spectrum do not guarantee the absence
of additional singularities in the z plane. In.the present
case of w-d scattering, it is possible that, even in a
perturbation theory with intermediate lines corre-
sponding to deuterons, nucleons, and pions only, we do
not have the cut y=0, x> (2m)? alone if r=u2. There
appear additional singularities on the real axis below
x=(2m)2.»

¥ K. Symanzik, 1958 (to be published).

2Y. Nambu (private communication).



