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Proof of Dispersion Relations for the Production of Pions by Real and
Virtual Photons and for Related Processes*t

RzrNirARn OEHME, Eurico Fermi Iustitute for Nuclear Studies aud DePartmeut of Physics,
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It is shown that the amplitudes for the production of pions by photons and electrons (virtual photons),
as well as for elastic photon-proton and photon-deuteron scattering, have certain analytic properties as
functions of energy and momentum transfer. These properties are proven on the basis of the axioms of field
theory, especially local commutativity and the spectral conditions. They guarantee the validity of the
usual dispersion relations for restricted values of the invariant momentum transfer. In the construction of
these dispersion formulas the electromagnetic interaction is treated in lowest order. The residua of the poles
arising from the single-particle intermediate states are related to the corresponding vertex functions. For
fixed values of the total energy the absorptive parts of the amplitudes are analytic functions of momentum
transfer; they are regular inside certain ellipses. These properties make it possible to continue the absorptive
parts into the "unphysical region" appearing in the nonforward dispersion relations by means of partial-
wave expansions.

In the Appendix a brief survey is given of the limitations in momentum transfer or the unphysical mass
restrictions, which one encounters in the proof of dispersion relations for some elastic scattering processes.

1. INTRODUCTION coefficients in these expansions (multipoles) are physical
quantities and in principle measurable. Also in the
relations for pion production by electrons the con-
vergence of the multipole expansion in the unphysical
region is important. In the electromagnetic approxima-
tion considered, one is dealing practically with the
production of pions by virtual photons.

The amplitude for a process like photoproduction of
mesons is a matrix in spin and isotopic spin space. It is
usually given in the center-of-mass system as an ex-
pansion in terms of a complete set of basic matrices
which are compatible with all invariance properties.
For the purpose of dispersion relations, it is convenient
to use a corresponding expansion of the covariant
amplitude with respect to a complete set of irreducible
forms in spinor space. The coefficients of these forms
are invariant functions of the momenta only, and they
have simple symmetry properties if the matrices are
properly chosen. In the present paper we shall not dis-
cuss these kinematical aspects' 4; they are unimportant
for the analytic properties in which we are interested.
It is su%cient for our purpose to work with spin-zero
fields only, provided we observe all selection rules which

are relevant for the spectral conditions. All steps of
our proof can be directly applied to the invariant co-
e%cients in the expansion of the general amplitude.
These functions may be expressed in terms of the com-
plete amplitude by means of projection operators and
traces, and in this form the discussion of their analytic
properties is completely analogous to the spin-zero case. '

The analytic properties of the photoamplitudes are
obtained on the basis of general assumptions under-

SEUERAL processes involving electromagnetic and
strong interactions simultaneously can be studied

to some extent on the basis of relativistic dispersion
relations. In this approach the electromagnetic radia-
tive corrections are neglected, but the strong inter-
actions are treated exactly. With these restrictions one
obtains dispersion formulas' for the amplitudes de-
scribing photoproduction of mesons, ' the production of
pions by electrons, ' and the elastic scattering of.photons
by protons. 4

It is the purpose of the present article to derive some
analytic properties of the amplitudes mentioned above
and to show that these properties guarantee the validity
of the corresponding dispersion relations for restricted
values of the momentum transfer. In addition they
make it possible to continue the amplitudes into the
"unphysical region" by means of expansions in terms
of Legendre polynomials and their derivatives. In the
case of photomeson-production and y-p scattering, the

*Work supported in part by the U. S. Atomic Energy
Commission.

t A brief report of our results appears in the Proceedings of the
Annual International Conference on High-Energy Physics at
CERN, Geneva, Switzerland, 1958.

f, On leave of absence from Christ's College, Cambridge,
England.' No proof of all these dispersion relations has been attempted
till now.

2 These relations have been considered by many authors; see
for instance: Chew, Goldberger, Low, and Nambu, Phys. Rev.
106, 1345 (1957); E. Corinaldesi, Nuovo cimento 4, 1384 (1956);
Logunov, Tavkhelidze, and Solovyov, Nuclear Phys. 4, 427 (195/).

'Fubini, Nambu, and Wataghin, Phys. Rev. 111, 329 (1958);
Logunov, Solovyov, Kukin, and Frenkin, Joint Institute for
Nuclear Research, 1958 (to be published).

4T. Akiba and I. Sato, Progr. Theoret. Phys. Japan 19, 83
(1958). For forward scattering, see also Gell-Mann, Goldberger
and Thirring, Phys. Rev. 95, 1612 (1954). These papers conta'
further references.

' Compare Appendix I of the pa er by Goldberger, Nambu, and
Oehme, Ann. Phys. N. Y. 2, 226 1957).
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lyiag relativistic quantum held theory. 6 The most
important axioms are local commutativity (causality)
and the spectral conditions. However, the information
contained in these axioms has not been completely
exhausted and hence the limitations in momentum
transfer, which we encounter, are not necessarily char-
acteristic for the assumptions we have made. In this
respect the present situation is somewhat different
from that of the mass restrictions for the vertex func-
tion and other processes. '

The problem of proving the analytic proper ties which
are relevant for the dispersion relations is actually a
special case of a more general task. This consists in a
complete exploration of the consequences of causality
and spectrum for the analytic properties of Green's
functions. In the present paper we are dealing with the
Fourier transforms of vacuum expectation values of
fourfold retarded products. It follows from the axioms
that these transforms can be characterized by invariant
functions depending on the six inner products which
can be formed from the three independent vectors. ' As
a consequence of local commutativity and the spectral
conditions, these functions are analytic on a certain
"primitive" domain D in the space of six complex
variables. The problem is to characterize this domain,
to compute its envelope of holomorphy E(D), and to
derive a representation for the most general function
in the class of interest, which is analytic in E(D) and
has singularities everywhere on the boundary. '

Our present exploration is much less ambitious. ' For
the purpose of dispersion relations, we are mainly
interested in the analytic properties of the amplitudes
as functions of the "total energy variable" z6 and the
invariant "momentum transfer variable" z5, with the
other four variables si s4 on the massshell (except
for virtual photons). So we prove, for instance, that
there is a certain region E in the space of the variables
zi ~ z4 such that for fixed, real z5, the amplitude is
analytic in si s4 and ss for (si s4) in R and for zs

in the whole complex plane except for a "physical cut"
along the positive real axis. If this region R includes the
points z~ . z4 on the mass shell for some physical values
of the momentum transfer z5, then we can prove the
corresponding physical dispersion relation. But if the
mass-shell points are outside E, we cannot guarantee

that the amplitude is regular in the cut z6 plane for

physical values of z& . .z5. In fact, in some cases we

tl See Bremermann, Oehme, and Taylor, Phys. Rev. 109, 2178
(1958) for discussion and references. This paper will be quoted in
the following as BOT.' Res Jost, Helv. Ph s. Acta 31, 263 (1958); Reinhard Oehme
Phys. Rev. 111, 1430 1958).

'D. Hall and A. Wightman, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 31, No. 5 (1957}.

9At present the envelope E(D) is known only for the three-
point function, where no specihc spectral conditions have been
assumed. G. Kallen and A. Wightman, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. (to be published). With the present
mathematical method an extension of these results to include
special mass spectra is quite involved.

qi' ———'o'L1+ (m' ti') /o'—j' m'—
qs2 —ro2L1+ (m2 y)(o2]2 m2

qi qs
——Lqisqssj-' cos8= 2Ltls'(o, y) —A'j,

where

~s'(o ~)= s(qi'+qs' —L(t
'—y)/2oj')

(2 3)

and 0. is the total energy of the system in the c.m.
frame. The spectral conditions for the amplitude are
determined by the properties

(0I j(x) In)=0 unless p„'& (3p)',

(Ol J(x) In)=0 unless p„'& (2ti)',

(Ol f(x) In)=0 unless p„'& (m+ti)'.

(2.4)

Here j(x)= (&+ps)P(x), J(x)= OA(x), f(x) = (C1+ )m

X,tP(x), and the spin-zero fields P, A, and iP correspond
to "pions, photons and nucleons, " respectively. The
state In) describes an eigenstate of the energy-mo-
mentum operator with the eigenvalue p„; we have
always p„'~&0 and p„s)0. The intermediate states of
the complete initial or final system consist of the dis-
crete one-nucleon state with cT=m and all allowed
continuum states with o. &~ m+ti.

Using the basic axioms of 6eld theory, especially
local commutativity and the spectral conditions de-
scribed above, we have shown that the invariant ampli-

know from examples that causality and spectrum are
rot sufhcient to prove the desired dispersion relations. 7

In order to find the details of the region of analyticity
in the z6 plane for such amplitudes, a more general
approach, along the lines outlined earlier, would be
required.

2. STATEMENT OF RESULTS

We consider the S-matrix element for the reaction
k+p ~ k'+p', where p and p' are the initial and final
four-momenta of the target nucleon, k is the four-
momentum of the initial real (k'=0) or virtual (k'(0)
photon, and k' corresponds to the final pion (k"=ti')
or photon (k"=0). It is suflicient for our purpose to
describe all particles by the corresponding spin-zero
fields. In this framework we introduce the invariant,
causal amplitude M„by

s(k', p', k,p) = (O'I k)(p'I p)yi(2~)4&(k'+ p' —k —p)
X (16ks'pp'kppp) ~M„(k+p, p', p),

(2.1)

where 3f„may be considered as a function of the inner
products,

p&2 p2 m2 k&2 r k2 —~ (p& p)2 —(k k&)2 — 4+2

(k+p)'= (k'+ p')'= o' (2 2)

Let us concentrate first on the amplitude for the pro-
dmc&ion of pions by real and tirtna/ photons. Then we
have &

——p, ', y&~0, and if q& and q2 are the momenta of
pion and photon in the center-of-mass frame of the
final pion-nucleon system, we find



DISPERSION RELATIONS FOR PRODUCTION OF PIONS

pm' ) 2m
T(3p'l l

and p(2p'l l, (2.12)
Em —p& &2m —p1. Consider p and 6 real, y ~&0 and 6th &&6 &A~,~,

where 6 '(y) )h~b'(y), and respectively.
In the general case of the invariant coeS.cients in

the expansion of the covariant amplitude, the residua
are determined in the same way as in the present model.
There appear the Yukawa constant f, corresponding to
our g(0), and the charge e or the static anomalous
nucleon moments pv and p,„corresponding to e(0) in
our model. "

4. The limitation 6, (p) is given by

m (po —y)
m+p~ 4 )

is the physical value of 8,' at threshold (o.=m+p).
Then the function M(y, h', z) is analytic in s= x+oy and
it may be written in the form

M (y,dP, s) =F(y, A',s)+F(y, A', s),

tude M„(y,h', o') is the boundary value of an analytic The functions g(r) and e(p) are analytic in a complex
function 3f'(y, h, s). In the following we list only those neighborhood of the real axis for
properties of M(y, LV,s) which are important for the
physical dispersion relations.

with

F(y,h', s) =F(y,h', —s+2m'+p'+y+4LV).

(2.5)

where

a,'(y) = min {ao'(~,y)+&(o,y)}, (2.13)

The function F is regular in the s plane except for the
cut y=O, x&~(m+p)' and the pole y=0, x=m'. It
satisfies the relation and

~ (~D) = l{l grgoj'+ [(gr+qr') (go+ qo') 3'} (2 14)

p*(~,a', s*)=Z(~,Zo, s) (2 6)
8p'(2m+p)

gx= g2=
~'—(m —2p,)'

(4p' —v) (2m+p) p

o' —(m —p)'
for all s in the cut plane. For lyl)8)0, one can find

an integer E and constants C„(y,d, ',8) such that'
y &yo ——2p (mo —p' —o') (m —p)

—', or g, =.Voo —qoo,

(2 7) wltlllF h, ~',s) I (2 C.lsl-. p(2m+ p) 1
+ {((m+—p)'+ o' yj' 4—(m+ p—)'o'}o

20 20

n=p

for y(yp.
Note that the conventional variable v = (k+0') (p+ p')/
4' is related to s by

2mv = s m' —ro(P'+—y) 2LV— (2.8)

limM(y LV o'+io) =M (y 5'o') (2.9)

holds, where 3f„ is the invariant production amplitude
defined in Eq. (2.1).The energy o nb„, is given by

~.b. '(V ~') =-'(p'+V)+m'+2&'
+ L(m'+&') {-'(p'+v)+~'+l. (p' —~)/4~j }j-:. (2.10)

3. The residuum of the function F(y,h', s) at s= m'
is the product of two real constants mg(p') and me(y),
where

mg(r) = (2po)'(ply(0) l p.)(2p.o)o for

p=p ™(p p )'= (211)

and the replacement s~ —s+2m'+p'+p+45' cor-
responds to the change of v into —v.

2. Let ovbv, (y,LV) be the threshold energy for the
physical reaction with given y ~& 0, and 6th'&&6'&6, '.
If 0 ~~ 0 phy ~

then the improper limit

The quantities hp', g~', and q2' have been defined in
Eq. (2.3). For real photons (y=O) and for virtual
photons with y larger than —2.7p' (p/m= experimental
mass ratio), the minimum in Eq. (2.13) is at o =m+p
and we find

m p' —y 8p'2m+p4p' —y ( p q
I

1+
m+p 4 3 2m —p 2 ~ 2m) .

p' —p m (2m+p, )'—y ilX- 1+ 1+ . (2.»)
2 4p' —y (m jp,)' 2m+p

-v/v'

'(v)/s '
3 5 7 8 9

5.00 6.00 7.03 7.50 7,95

In the case of photoproduction of pions (&=0), Eq.
(2.15) leads to 6, '=3p'. For virtual photons with

p( —2.7p' the minimum in Eq. (2.13) appears for
o)m+p. In Table I we give some values of 6, '(y).

TAEJ,E g. Maximum invariant momentum transfer 2rtaaa(r)
for which the dispersion relations have been proven in the case
of virtual photons. '

me(p) = (2po)o(pl J(0)
l p„)(2pao)o for

a y =ko~ —k~, where k is the four-momentum of the photon. This table
p pa m r (p pa) p bae been calculated for v/m 140/940.
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5. Let us assume, for reasons of simplicity, that
M(y, LV,s) vanishes like s ' for s~ po. Then the prop-
erties described above may be summarized by the
representation

M(y LV s) =F(y LV s)+F(y As —x+2m'+p, '+y+42P)

1 r" 1
dap g(~ Qp a2), l

(m+p) 1.-s

+e (y)g(p') m'
o'+ s—2m' —y,

'—y —4A'

are determined by the values of P for 1cos81&~ 1.i "
In this range the function P is equal to the absorptive
part of the physical amplitude. For practical applica-
tions the Legendre expansions may be chosen to co-
incide with the usual multipole expansions.

In the representation (2.16), and therefore also in
the dispersion relations, the function p is needed for
real d' and all o~&m+p We see from Eq. (2.21) that
the I.egendre expansions will converge in the whole
unphysical region if 6' is restricted by

max {hp'(o,y) —A(a,y)}&LV
tr& tn+Ig

& min {Ap'(a,y)+A(a, y)}=6,„'(y). (2.22)

X
m' —s 2 —nz' —p,

'—y —4A'

=—lim {F(y,D', a'+is) F(y,D',—o' is) }—(2.17)
2z a~0+

is a real weight function which coincides with the ab-
sorptive part of the production amplitude for physical
values of 0".

P(y, A', o') = ImM„(y, h', o') for o.& a. i, , (y,A'). (2.1g)

In the "unphysical region" m+tu~&a&a, i,r., the func-
tion p may be obtained by explicit analytic continua-
tion in 6' with the help of expansions in terms of
I.egendre polynomials or their derivatives. This con-
tinuation is made possible by the following properties
of p:

6. For y and a fixed, P is an analytic function in A'.
It is regular inside an ellipse, with foci at LB= As'(y, o)
&s(qt'qp'j' and the boundary

ass (2m+is)
g(~) =,a' —(m —p)'

(2.24)

Using the experimental mass ratio, we find that the
minimum is at a =m+ls, and

The range mph'&~6'&8, ,„' is contained in (2.22). Pre-
liminary calculations indicate that the maximum of the
left-hand side of the inequality (2.22) appears for
(T —+ ~ and has the value zero.

In the present paper we shall not discuss the analytic
properties of M(y, LV, a'Hie) as a function of LP for
fixed values of 0-. We hope to come back to this problem
in a later publication.

Let us brieRy discuss the limitations we encounter in
the proof of dispersion relations for elastic y-p scattering.
In this case we have r= &=0 in Eq. (2.2) and the c.m.
quantities are given by

q'= qts = qpr = -', o-'(1 —m'/o')', 6'= -,'q'(1 —cos8). (2.23)

The dispersion formulas can be proven for 0 ~& lV &6,„',
where

A, '= min {q'+g},
e& m+y,

with

6'= Ap'(o. ,y) —A (o,y) cosP+iB(or,y) sinth, (2.19)

where
(2m+ p)' 2m+ls1

~max =P 3p, .
4(m+Is)' m

(2.25)

A(o.,y), gi, gp are defined in Eq. (2.14), and Aps(a, y),
qtp qps in Eq. (2.3). For o.)m+p we may introduce the ( ' ) ( ' )+
cosine of the c.m. angle 8 as a new variable. Then p is
an analytic function of cos8, which is regular inside an
ellipse with foci at %1 and the boundary

00 1 1

a' —s a'+s —2m' —4A'

B(~,V) = s BA'(~,V) —«t'qp'j'

{L ( y s)]i+.L ( +. p) jt}. (2 20) The representation corresponding to Eq. (2.16) is of
the form

where
cos8= $ coslh&iLp —1]'sing,

5= 2A (~,v) Lqt'qs'1-'.
(2.21) +e'(0)m'

m' —s s—m' —46'
(2.26)

Hence we may expand @ in terms of Legendre poly-
nomials in cos8=2(Ap —LV)L«t'qs ) l or in terms of
derivatives of these polynomials. The expansions are
convergent inside the ellipse (2.21) and the coeKcients

where @(6',as) is again an analytic function of A' for

Gabor Szego, Orthogoma/ Polynomials (American Mathemati-
cal Society, New York, 1939), p. 238."Corresponding results for the case of pion-nucleon scattering
have been obtained earlier by H. Lehmann, 1958 (to be published).
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fixed o.&~ m+ts. It is regular inside an ellipse" with the
boundary

2'=-', q' —{-',q'+g} cosib&iLg(g+q'))' sing. (2.27)

We can express p in the unphysical region (m+tt) &~ o.

(6+Lm'+i)P)'* by Legendre expansions (multipole ex-
pansions) in costi=1 —2h'/q', provided t),s is restricted
to the range 0~& lV&d,„', where 6, ' is given in Eq.
(2.25).

So far we have treated the electromagnetic inter-
action only in lowest order. If we take into account all
orders in the 6ne structure constant and introduce a
small, auxiliary photon mass )I,)0, then t), ,„' for y-p
scattering is given by

with

a,„'= min {q'+g(o., )%,)},

8)i'(2m+)i)
g(a,))=

o'—(m —2)~)'

(2.28)

3. DERIVATION OF DISPERSION RELATIONS

Since the following considerations are similar to
those given in Sec. 2 of HOT, we may restrict ourselves
here to a brief outline. "It is convenient to introduce a
special Loretz frame where p+p'=0 and

p'= pa, p= p a, E=-', (k+k') = {oi,K},
with

pa= {Ea,ck}, Ea= (m'+lP)&,
Ks=oi' n 6', —2K—A=P.

Here we have introduced the variables n= ,'(r+p), -
P = is (r—P), r= k", P =k'; and on the "mass shell" for
the production amplitude, with v =y' and p=y~&0, we
write no s(P'+y)——, Pe ——, s(tP —y). We chose our sPace
frame so that

cL=Aei, K= (P/26)ei+(~' n 6' P'/—4A='$'*es—
) (3.1)

where e~ and e~ are two orthogonal unit vectors. Note
that the quantity

The minimum is at o.=m+X and we find the value
t),„'=(8/3))P(2m+)i)(2m —)i) '. Hence we can only
prove the dispersion formulas for forward scattering and
for the derivative amplitudes. The situation is the same
for photon-electron scattering.

Dispersion relations for elastic photon delter-ott scatteri' can also be proven; they will be discussed brieQy
in the appendix.

=a2E&i d'x e"x *e(axe)(Pa ( Lj(-',x), &(—&x))
~ P a)

+P C„(n,P,A')~o'", (3.3)

where the dispersive part D, the absorptive part A, and
the coeflicients C„are real quantities; this may be
shown using invariance under space-time inversion or
charge conjugation. Let us assume now that n& —6'
—p'/4A'. Then the absorptive part is defined by Eq.
(3.3) for all real oi, and by decomposition of the matrix
element into intermediate states we obtain the spectral
representation

A (n,p,D',o)) = ' do' p(n, p, D',o')

where

X {8(o'—n —m' —2A' —2Ea&v)

—8(o'—n —m' —2D'+2Ea~o) } (3.4)

p( n, pD', a') =7rm'g(n+p)e(n —p)b(o' —m')

+d (n, P,A', o'), (3.5)

and @=0 for o(m+ts. The functions g(7) and e(p)
have been defined in Eq. (2.11) and they will be dis-
cussed later.

We see from Eqs. (3.3) and (3.1) that for n, P, LV

fixed and n+6'+Ps//4dP(0, the functions M„and M„
taken together, define an analytic function in ~ which
is regular in the cut co plane. There are no branch
points on the imaginary axis because M„and 3f are
symmetric under e2 —+ —e&. If we require in addition
that 0.& —262, then there is a finite gap on the real
axis where A= (1/2i)(M„—M,) =0, and we have one
analytic function M(n, p,h', oi). We prefer to introduce
the variable"

s= 2Et,oi+n+ms+2A', (3.6)

and consider M(n, P, BP,s) in the cut s plane. Assuming
sufhcient boundedness at infinity, we obtain for M a
representation of the form

sponding advanced amplitude M, . In the special frame
these are of the form

M...(n,P,A', a&) =D (n,P,A', oi) &iA (n,P,A', io)

cv i, ,(y dP) =
I no+6'+pe'/4LP)& (3.2)

is the physical threshold energy in the special system.
Sy the usual methods we obtain Fourier representa-
tions for the invariant amplitude M„and the corre-

"See also Bogoliubov, Medvedev, and Polivanov, Problems of
the Theory of DispersioN Relatzorts LGostechnisdat, Moscow (to be
published)); ¹ N. Bogoliubov and D. V. Shirkov, Irttrodletiol
irtto the Theory of (tlarttised Fields (Gostechnisdat, Moscow, 1957),
Chap. 9.

o' —s o'+s —2m' —2n —4A'

+g(n+P)e(n —P)m', +, (3.7)
) m2 ~ ~ m2 2& 4g2

where g has been defined in Eq. (3.5).
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Let us discuss first the functions g(r) and e(p), which
are special cases of the meson-nucleon and photon-
nucleon vertex functions. We are interested herc in the
analytic properties of g(r) and e(p) in the neighobrhood

of the real axis for r ~& pP and p &~ y ~& 0. These properties
may be obtained from the representation of the vertex
function which has been described earlier by one of us
(R.O.)."Here we use this representation in the form

X (K', k,n, ~')

{~+~)2 ~ 0
2

&& {[2K'+-', (1+p —i)')o' —(m'+Zs)+r) (m' —Zs))' —pX (m', Zs,o') ) ', (3.8)

( 5$ /' 2m i
r &3/J, 'l l and p &2u

l l, (3.11)
&m —/& &2m —/i)

Ko ——min{0, m+/i —sr o.[(1+g)'—P]i,
b—k~[(1—n)' —F]')

respectively.
In the following section we shall show that the func-

tion d (n,P,ZP, o') has analytic properties in n, P, and 6'
for fixed o.~&m+p. Here we are interested in the fact
that there is a b) 0 such that for all o &&m+1', L4h'&~6'
&5,„', p=po&&-', u', @ is an analytic function of n for
~eS, where S is the strip'

We have b=3p, zs ——r, zo ——ass for the pion vertex g(r)
and b= 2u, zo= p, zo ——m' for the photon vertex e(p); the
weight functions y are, of course, diGerent in both
cases. A discussion of the denominator in Eq. (3.8)
shows that g(r) and e(p) are analytic in a strip along
the real axis provided

where y is a real generalized function, X(ztzszo) =zt'+zs' analytic in a strip about the real axes provided
+zo' —2zrzo —2zrzo —2zszo, and

(28$+p) (2m+1')
(3 9)

&2m —p, 2m

f
(pl j(o) I

q)(4poqo)'= ' «'d'u
x(K',u, p)

(3.10)
K' —(-,'p —

q
—u)'

where p'= q'=m' and where X is a real weight function
which vanishes outside the region

luol+ lul &-',m,

K &+max{0, a—[(-,'m+uo)' —u'-)l, b —[(-,'m —uo)' —u']1),
a =m+u, b =3u or 2u, respectively.

respectively. Both functions are rea/ for real values of
r and p which satisfy Eq. (3.9). We will encounter the
restriction (3.9) again in Sec. 4 when we discuss the
analytic properties of p(cr, P,A', o') as a function of
r =n+P and p= n ll, for fixed —A' and all o )~rN+u.

It may be of interest to note that the limitations
(3.9) have been obtained from a representation which is
an analytic function in the cut s3 plane in addition to its
regularity properties as a function of zs (r or p). At the
special points f3=m', we have regularity also for some-
what larger real values of ~ or p. This can be seen from
a representation of the form

.S'=[o.:
l
Immi &3, Ren&o:o+3],

and ao ——s (u'+p), &~&0; by "[u: ]"we denote "the
set of all a which satisfy the condition ." From Eq.
(3.9) we see that the functions g(n+Po) and e(n Po)—
are also analytic for 0.~5, and hence we may continue
M(rr, Po, h', z) in terms of the right-hand side of Eq.
(3.7) from n&D'+Po/4hz, n& —4hz to the physical
value O. =o.o. For the M thus continued, it remains to be
shown that the improper limits

limM(no, Po,h', o'+is) =M, (no,Po,,b', o')

hold for o.&~o.~qr, (y,As), where M...are the amplitudes
defined in Eq. (3.3) in terms of Fourier representations.

These representations define an analytic function of
or and n for

l
Im&u

l
) l

1m[co'—n —A' —Po'/4LV)i l, (3.12)

and the right-hand side of Eq. (3.7) is certainly regular
for

lyl =2' IIm~l & IImrr
I (3 13)

Now we choose a=a.o+2iae and co=co„&i6 N ~~Gophys

(y, LV), which corresponds to z= o'&2i(Ea+a) e,
o.~& o.ohr, (y,A'). Then (ar,n) satisfy the conditions (3.12)
and (3.13) provided

l
~—~,

l
&[~,'—~o—~'—Po'/4~']-:

At least for 6'~& D~h' such an a can always be found and
we have

lim M(no, Po,h', o'+is)
d

= limM(uo+2iae, Po,h', o'&2i(Ea+a)e)

=M„,,(no, Po,h', o'). (3.14)

The formula (3.10) is a direct application of the Dyson-
Jost-Lehmann representation. ""In the Lorentz frame
for which p=0 and q= {co, ego —m')*'), with e being
some axed unit vector, the denominator in Eq. (3.10)
cannot vanish for to)coo ——(m'+ma ab)(m+—a b) '—
Hence the functions g(r) and e(p), with p= (q —p)', are

"Reinhard Oehme, reference 5. See Eqs. (3) and (4)."F.J. Dyson, Phys. Rev. 110, 1460 (1958).
'o R. Jost and EK Lehmann, Nuovo cimento 5, 1598 (195/);

L. Girding and A. Wightman, 1958 (to be pub1ished).



I

DISPERSION RELATIONS FOR PRODUCTION OF PIONS 377

This gives the required dispersion relations. If the
function M(n, pp, LV,s) should be less bounded for s ~ 00,
then we have to make "substractions" in Eq. (3.7) and
there will be a polynomial in s with coeKcients depend-
ing on 0. and 6'. The proof that these coeKcients are
analytic functions of o. for O.eS may be given using the
method described in Sec. 2 of BOT.

G„—G~;=0

G;,—G;„=0

G'2=0

for (ql+qo)'& (m+p)' and

(ql —qo)'& (3p)',

for (q2+qo)'& (m+p)2 and

(q2 —qo)'& (2p)',

unless q22 &~ (m+ p) 2 and qop) 0.

conditions (2.4), have the properties

(4 3)

4. ANALYTIC PROPERTIES OF THE
ABSORPTIVE PART

In this section we wish to prove some analytic
properties of g(42,P,LV,o') as a function of n, P, and LV.

The regularity in n for 420S and fixed p= pp, &th &~&'

&6,„2, 0 &~m+p has been used in Sec. 3 in order to
derive the dispersion relations. Analytic properties in
LP make it possible to express @ in the unphysical region
in terms of physical quantities via Legendre expansions.

Let us introduce the variables

From Eq. (4.4) we see that the functions G;, are
analytic in q& and q2 in certain tube domains. ' We may
take these functions as one function G(qlq2qo) which is
then analytic in the region (ql, q2)pWXW for each real
q3, where

W=Cq: IImq
I
& IImql j. (4 6)

Let us denote the "joining up region" of Eq. (4.6) by
(ql, q2)0S2XS2, where S„is the set of real points

S„=Lq: Imq=0, (Req+qo)2( (m+p)2,
(R q

—q)'&( )'3

and the function

G(qlqoqo) = (o' m2)y—(n,P,62,o2)

In the c.m. system we have then

q3= 0, gap
———,0.,

1

qio = (m' )/r2—, orq2p
——(m' —p)/20,

r=n+p, p=n —p,

ql'=-'~'L1+ (m' —r)/0')' —m'

q
2 —1~2L$+ (m2 p)/~2)2 m2

(ql q2)2 —44412yp2/112

(4 2)

(4.3)
ql=Elel+Deo,

(qi+ q2)'+ (ql' —q2')
~1, 2

2I (ql+q2)'3'

2 =E2Cy —DC2

ql'q2' —(qi q2)' '
D—

(qi+q2)'
(4 7)

The function G satis6es all the conditions of the edge

of the wedge theorem of BOT and hence it may be con-
tinued, for every fixed qo, into the region (Wv/2)
X(WVE2), where S„ is some complex neighborhood
of the set S . This continuation is sufhcient to prove
the dispersion relations for 62= 64h2(y). Writing

By standard methods we obtain for G a Fourier repre-
sentation of the form

G...(qlqoqo)
,f—(m2 4q 2) if4xl d4x2 ei(014'1+92&2)8(xlp)8( x20)

J

xx Z (0ILf(2») J(—2») jl~)
n, y~=2qa

x(~IV'( —-', *,), J(-,*,)jl0)
+degenerate terms, (4.4)

where we have assumed that r&(3p)2 and p((2p)2.
The "degenerate terms" contain equal-time commuta-
tors; they do not alter the analytic properties of G.
In Eq. (4.4) we have introduced the subscripts r and a
of G in order to indicate the retarded and advanced
character of the integrand in the variables x~ and x~,
respectively. We introduce in addition to G„, the three
other functions G„„, G, and G,„by replacing in Eq.
(4.4) 8(—x20) by —8(x20) 8(xlo) by —8(—xlp), and
8(xlo) by —8(—xlo) as well as 8(—xoo) by —8(x20)
spectively. Then we have the four functions G,;(qlq2qo),
i =r, e and j=r, a, which, on the basis of the spectral

with qio, q2o, ql', q2', and (ql —q2)' given by Eqs. (4.3)
we have

(ql+q )'= (q2+qo)'=m', (ql qo)'=~+—p,

(q2
—

qo)
2= 42—p, (ql —q2)'= —4LV, 4q22= 0'; (4.g)

foi P=Pp aild 42&~420 the vectors (ql, q2) are lying in the
region of analyticity provided llP —641,2I &8 with 8

positive and suKciently small. Hence, for the present
case, the edge of the wedge theorem proves the required
analyticity of the @ as a function of 42.

A straightforward method to extend the proof to
larger values of d' would be the following. We map the
domain (WVX2)X (WVE2) (or its envelope of holo-

morphy) into the space of qlp q20 and the inner prod-
ucts ql', q2', (ql —q2)', and compute the complete
envelope of homomorphy. However, the present func-
tion-theoretic methods for the construction of envelopes
are very impractical; we prefer to use a general repre-
sentation of functions which have properties like those
expressed in Eqs. (4.5) and (4.6). The existence of such
a representation has been proven by Dyson, "who re-
duced the problem to the simpler case of symmetric
spectral conditions which has been treated by Jost and
Lehmann. "With these tools we obtain for G a repre-
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K;&~max{0 a;—[(12o+s;p)2—u,2]**

b,—[(-'o—S;p)'—u,2]'*).
(4.10)

In Eq. (4.10) we have used the special Lorentz frame
where q3=0 and F30=—20-. From the spectral conditions
in Eq. (4.6) it follows that

ai=as=m+tt, b1=3tt and b2=2tt. (4.11)

The reality of p may be demonstrated using the
representations (4.4) for the G;; and invariance under
inversion of motion. The function y is also invariant
under space rotations, and in the c.m. frame we may
write

If we now introduce (4.12) into the representation (4.9)
and perform the redundant angle integration, then we

sentation of the form"

G(qiqsqs) = (o'—trt2)y(n, P,A2, a2)

I
d Sld S2dK1 dK2 X(K1 )K2 )Sl)S2)gs)

(4.9)
[KP—(qi —Si)'][K '—

(q2
—S2)']

where p is an arbitrary real weight function'which
vanishes for o &rrt+tt and also outside the region

are left with a function depending only on q&0, F20, and
the inner products q&', q2', and q& q2. We may take
these variables complex and discuss the points of regu-
larity of this representation for every fixed value of the
generalized variable o&~trt+tt. The set of all points
where the function is analytic is then the envelope of
holomorphy which we have discussed earlier. For the
purpose of dispersion relations we are interested in the
analytic properties of P as a function of rr, P, and A2,

especially for n and P in the neighborhood of the real
axis.

First we discuss the representation (4.9) for the
special case where the parameters u~ and u2 are zero.
Then the integrand depends only upon g&0, F20, q&', and
q2'-, and it is independent of 6'. We are interested in
those real points T and p (or n and p) for which the
denominator does not vanish for arty o ~&222+ttt, and we
find the conditions

(22ts+tt ) t'2rtt+tt )
& 22rt —S) & 2m )

The restrictions (4.13) are the same as those obtained
with the representation (3.8) for the corresponding
vertex functions.

Let us now consider the cases u;WO. We introduce
polar coordinates and perform one angle integration,
Then we have

(o'—2N')$(n&p, A', o') =22r sidsi ssds2 dKpdK2'

where

X(K1 K2 Slp, S20, u1 u2 cos1fr sin 021 sin p22+cos 021 cos022 0)
X

"0 o o &B'2+[@'p—qp) (tV22 —q22) ]'—[qpq p]' cos (8—
1J )

[
tV1

X — + I, (4.14)
[rp —q, ']-'* [$2'—q, ']-**

I

K,'+ u,'+ q —(q„—s,,)S'= (4.15)

where

[g1(T)+q P]',

minÃ2 ——[g2 (p) +q2']-',
(4.16)

for

(4.17)
g2(tp) (a2 222 ) (b2 p)/[a (a2 b2) ]

(r, t ) &&(rp, pp) =b La' a'/(a' b')]— —

and 6 is the angle between the vectors q& and q&. In
order to discuss the limitations in r, p, and 6, it is
useful to have the minima of the E; as functions of the
parameters a,', u, and u;o, where these variables are
restricted to the region given in Eq. (4.10). We find,
for real r, p and o &~222+tt, with 02;= —2,2r,

and

gi(r) =tYP(r) —qi', g2(P) =iV2 (P) —q2'

with
8; SS 1

E (l1) = + ((a'+o' 7)' 4a'o') —l (4 17a)— —
20 2|T

for
(r,t ) & (Tp, t 0), («,pp) & (0,0).k

The masses a; and b; are given in Eq. (4.11), and in
Eqs. (4.3) the quantities qp and qp have been expressed
in terms of ~, o- and p, o-, respectively. The correspond-
ing minimum of the expression E1%2+[(XP qP)—

f Pote added trz proof We would like to.—tharik Professor A. A.
Logunov and Professor V. S. Vladimirov for bringing this second
possibility to our attention.
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X (1V2'—q2') ]'* becomes then

2A(» ) =([(g +q ')(g +q ')]*'+Lg g ]'}. (4.1g)

Let us consider first the last factor in the representation
(4.14). It is independent of 62 and leads only to the
restrictions r& (3p)' and p& (2p)' for all values of
o~&2N+p. These limitations are due to the onset of
the static cuts in the complex r and p planes.

For o.~& 2N+p, and real 2 and p, the first denominator
in Eq. (4.14) leads to a region of analyticity in 6 which
is the inside of an ellipse with foci at

A'=A0'(~, p r)~2[qi'q2']', (419)

and the boundary

&'= ~0'(~,p, r) A(rr, p,—r) cosiP&2B(o,p, r) sinlt. (4.20)

Here 8 is given by

B(o,p, r) = 2[4A —qi q2 ]1
= 2([gi(g2+q2')]'+[g2(gi+qi')]'} (4 21)

and we have
[qisq22]'* cos8 =2 (602—&2)

with

60 (o,P,r)= —(qi+q2 (f10 f20) }
=-s'(~2 —22222 —r—p+ (2222—r) (222' —p)/o'} (4.22)

We note that in the region of interest; i.e., for o &~ 222+ p, ,
v~&p, ', and p~&y~&0, the functions A, 8, and 40' are in-
creasing with decreasing values of r and/or p. Then we
find from Eqs. (4.13) and (4.20) that for p= p0= 2 (p,

'—p)
and real dP the function P has the required analytic
prOpertieS in o.=si(r+p) prOVided

max f202(o.,y,p2) —A(o,v,p2)} &g2
o) mug

& min (602(o,y,p2)+A (o.,y, p2) }. (4.23)

This leads to the limitations in momentum transfer
which we have discussed in Sec. 2. There we have also
described the implications of Eq. (4.20) for the con-
tinuation of the absorption part into the unphysical
region by means of Legendre expansions.

It should be noted that those analytic properties of

g, which we have derived earlier in this section using
the edge of the wedge theorem, follow also from the
representation (4.14). We have discussed here both
methods in order to show that the dispersion relations
for lV=~&h' follow already from the very general, and
in principle quite simple, edge of the wedge theorem.
In addition we wanted to point out the connection
between the use of the Dyson representation and the
function theoretical methods which we have employed
in BOT.
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We give here a brief survey of the limitations in the
invariant momentum transfer 24, which we encounter
in the proof of dispersion relations for some elastic
scattering processes. As has been explained in the
Introduction, these restrictions need not be character-
istic for the assumptions (causality, spectrum etc.) we

have made. For the elastic amplitudes the quentity
~,„' is given by an expression of the form"

where

A,.2 =min f q'(n, xi,x2)+g(~,xi,x2) }, (A1)

q'(o, Xi,X2) = —,'o' —-', (Xl+X2)+ (»—X2/20)

g(o.)X,,X2) = (u' —Xi) (b' —X2)/[o' —(a—b)'])

a~& 6,

xs& b[a—~2/(ti —b)],

and o'= (b+p)', xi= p', x2 ——k2; the masses c, b, and c

are determined by the spectral conditions. For fixed 0.,

the absorptive part of the corresponding amplitude is

an analytic function of LV, regular inside the ellipse

given by

&2 = -'2 q' —{-2,q2+g} cosset &i[(q2+g)g]1 sing. (A3)

These analytic properties can be used in order to ex-

press the absorptive part in the "unphysical region" in

terms of physical quantitie's by means of Legendre
expansions. The dispersive part is also an analytic
function of 6'; it is regular inside a smaller ellipse

given by"

62= —',q' ——',[q'(q'+g)]f cosP&i-', [q'g]'* sing. (A4)

The following relations have been proven:

Pion pi022 scatteritig-We have .—xi=x2=p, '; a=b=3p
and c=2p. The minimum in Eq. (A1) appears at 0=4p
and we find A,„2=7p,2.

Pion-nlcleon scattering. —Here we have x~=nz', x2

=p,', a=222+p, b=3p, and c=222+p,. The minimum is

at o.=222+ p and
Sp,' 22N+p

~max =
3 2m p,

'0 See the footnote in Sec. 4 of BOT, where Eqs. (A1) and (A2)
have been given in a somewhat diferent form.

~~SOT, Sec. 4. Compare also N. N. Bogoliubov and V. S.
Vladimirov, 1957 (to be published); and V. S. Vladimirov, Joint
Institute for Nuclear Research, 1958 (unpublished). In these
papers the original proof of Bogoliubov has been extended to
larger values of A~. In the Grst preprint the limitation dP(2p' is
given and in the second preprint the proof is extended to A~

&2.56p2 (with ra=7p).
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Commonwealth Fund of New York for a grant.

We are much indebted to Mr. Chieh Ho, Mr. John
Curtis, and Mr. Wayles Browne for the computation
of Table I.

APPENDIX



380 R. OEH ME AN D J. G. TAYLOR

Photon-deuteron scattering. —We may either consider
the deuteron as an elementary particle and describe it
by a separate field operator which satis6es the require-
ment of local commutativity, or we may treat it as a
composite particle. In the latter case, we make use of
the formalism developed by several authors, ' who have
shown that it is possible to define a local deuteron field-
operator in terms of the operators for neutron and
proton. The 5-matrix element for y-d scattering may
then be expressed in terms of retarded products of
photon and deuteron operators in the same way as in
the case of "elementary" particles only. We obtain,
from Eq. (A1) with xi ——Mg=(2m —B)', xs ——0, and
@=2m, b=3p, c=2m,

A~sx'= Bti (4m B)/(2—m ti) y B—'(.1 B/4m)—'.
Here the electromagnetic interaction has been treated
in lowest order.

I'hotots proton s-cattering Th.—is case has been dis-
cussed at the end of Sec. 2.

There are some important elastic scattering processes
for which the dispersion relations cannot be proven on
the basis of causality and spectral conditions alone.
Even for forward scattering, the analytic properties of
the absorptive part,

In a perturbation theory based upon the usual pion-
nucleon interaction, it can be shown that the dispersion
relations for nucleon-nucleon scattering hold in every
finite order provided 6'&—'p' "

E-meson-nucleon scattering. —The parameters are x~
=m, xs= pit', a=m+ti, b=tirr+2p, and c=ms+ti. For
xi——m', LB=0, and all o &~mq+p, , a real point r is inside
the region of analyticity of the absorptive part provided

2ab+o (o —a—b) —xtL1 —(u—b)/o jv'(7 0=min (A5)
o)c 1+(u b)—/~

With the parameters given above, the minimum is at
o=c=mit+ti, and it is smaller than tiir' by a narrow
margin. ' Note that the condition tl'(o. ,m', r)+g(o, ms, r))0 is fulfilled for T(Tp and all o &~mi.+ti. We have
again analytic properties of the absorptive and the dis-
persive part as functions of lV. On the mass shell the
absorptive part is regular in (A3) for fixed o)os, where
mz+ti&os(m+tiir and q'(os, m', p')+g(os, m', ti') =0;
the dispersive part is regular (A4) for fixed o)m+prc.

Pi on-deuteron scatteri ng.—As in the case of y-d
scattering, we treat the deuteron. as an elementary par-
ticle. We have the parameters x~=3fd', x2=p, ', and
a=2m, b=3p, c=2m. The limitation in r becomes

y(p&2 ps P2 $2 (P P)2 (P+p)2) r & re =3pB(4m B)/(4m —3p), —(A6)
=Q(xt)xt)r)r, —4As o')

as a function of r are not sufficient to include the points
on the mass shell (r= xs) for every o &&c.

In special cases we obtain the following limitations:

nucleon-nucleon scattering. —For @~=m' and LB=0,
the real points v. belong to the region of analyticity for
all o &&2ti Provided r& is(m+ti)s. The mass shell (r=m')
could be reached only under the unphysical condition
ti) (K2—1)m 'For f.ixed o.) (m+p)+L(m —ti)' —2p'jl
and r on the mass shell, the absorptive part P is analytic
in A', it is regular inside the ellipse (A3) with the
parameters xi——xs=m, a=b=m+ti and c=2p, . Corre-
spondingly, for fixed 0-)2m, the dispersive part is
regular inside the ellipse (A4).

"K.Nishijima, Phys. Rev. 111,995 (1958); W. Zimmermann,
1958 (unpublished); R. Haag, Phys. Rev. 112, 669 (1958).These
papers contain further references.

and is far below the mass shell v=p'. Again the ab-
sorptive and the dispersive part have the corresponding
analytic properties as functions of LV.

I.et us recall brieRy the implications of a restriction
like (A6). According to the method of our proof, it
says that the amplitude is an analytic function of
z=x+iy= (k+p)' in the complex z plane except for
the cut y= 0, x~& c'= (2m)' provided r (7 p. Foi r) rp,

causality and spectrum do not guarantee the absence
of additional singularities in the s plane. In.the present
case of x-d scattering, it is. possible that, even in a
perturbation theory with intermediate lines corre-
sponding to deuterons, nucleons, and pions only, we do
not have the cut y=O, x~& (2m)' alone if r=ti'. There
appear additional singularities on the real axis below
x= (2m)'."

r' K. Symanziit, 1958 (to be published).
'0 Y. Nambu (private communication).


