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The connection between phase shifts, bound-state energies, and
the potential is studied for a Dirac particle in a spherically sym-
metric potential. An explicit method is developed for the con-
struction of the potential from the scattering and bound-state
data for a single angular momentum and parity. The technique
used in this relativistic problem is an extension, appropriately
generalized to matrices, of the methods used by Jost and Kohn
for the nonrelativistic case. For potentials with J~"r"~V(r) tdr
finite for n=0, 1, and 2, it is shown that a spectral function
can be constructed from the phase shifts, the bound-state energies,
and the norm of the bound-state wave functions. A generalization
of the Gel'fand and Levitan method is developed for the deter-
mination of the potential from the spectral function. First,
eigenvectors associated with two di8erent potentials are related;
from the operator that connects the two systems of eigenfunctions,

a modified kernel is defined which satisfies an integral equation
determined by the spectral function and eigenfunctions corre-
sponding to a "comparison potential" and the spectral function
associated with the "unknown potential. " Second, the potential
difference is obtained by the differentiation of a certain com-
bination of the elements of the modified kernel.

These properties lead to the following method for the con-
struction of the potential: (1) the spectral function is determined
from the data for both positive and negative energies; (2) with
the spectral function for the unknown potential and the spectral
function and eigenfunctions of a convenient comparison potential,
the integral equation for the modified kernel is constructed;
(3) from the solution of the integral equation the difference
between the unknown and the comparison potentials is
determined.

I. INTRODUCTION

''N this article a method will be developed for the
~ ~ construction of a spherically symmetric potential in
the Dirac equation from scattering and bound-state
data. This problem is of general theoretical interest,
since a central problem of physics is to determine the
structure of interactions from directly measurable data.
The problem treated is admittedly too simplified to
describe general particle interactions, but it represents
an extension to the relativistic domain of previous work
on nonrelativistic systems, and thus is a step toward
the goal of determination of relativistic interactions
from observation of elementary particle reactions.

The general problem of constructing a spherically
symmetric potential or potentials that will give a
determined set of phase shifts and bound-state energy
eigenvalues has been definitely discussed in the case
of the nonrelativistic Schrodinger equation by Jost and
Kohn' and by Levinson, ' by combining the results of
Jost's' analysis of the properties of the solution of the
radial wave equation with the elegant techniques used

by Gel'fand and Levitan' in their solution of the inverse
Sturm-Liouville problem.

The method can also be generalized to deal with
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Research and Development Command. This paper contains part
of dissertation research submitted to the University of Maryland
Graduate School by Francisco Prats in partial fulfillment of the
requirements for the Ph.D. degree in Physics.
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more complicated potentials than the central potential,
such as that of the tensor force with spin-orbit coupling.
The first step in this direction was taken by Newton
and Jost' who extended the techniques to the case of
systems of differential equations formally similar to the
Schrodinger equation. This extended technique was
used by Fulton and Newton' for constructing examples
of spin-orbit and tensor potentials for which the solu-
tions of the Schrodinger equation can be given ex-
plicitly. The Gel'fand and Levitan theory has also been
stated in a different form by Kay and Moses, ~ using
the theory. of operators in a vector space. In most of
this work, the data for only a single angular momentum
but all energies are used. Wheeler' has shown how it is
also possible to consider determination of the potential
by knowledge of the phase shift for all angular momenta
at a single fixed energy.

All the above-mentioned contributions to the problem
of the connection between phase shifts and potential
have been restricted to the nonrelativistic domain. It
is natural to examine the problem when the particle
has to be described by a relativistic equation and see
whether the method found for the Schrodinger-type
particle can be extended. The first attempt in this
direction is due to Corinaldesi' who considered the
case of the Klein-Gordon particle in a central potential
for l=o (S waves). In this paper" we show how a
procedure analogous to that of Jost and Kohn can be

' R. G. Newton and R. Jost, Nuovo cimento I, 590 (1955).' T. Fulton and R. G. Newton, Nuovo cimento 3, 276 (1956).'I. Kay and H. E. Moses, Nuovo cimento, 3, 276 (1956),
where reference to previous papers by the same authors can be
found.' J. A. Wheeler, Phys. Rev. 99, 630 (A}, (1955).

9 E. Corinaldesi, Nuovo cimento 11, 468 (1954).
"This work was previously reported in Bull. Am. Phys. Soc.

Ser. II, 3, 36 (1958}.For a more detailed discussion of many of
the items in this paper, see Ph.D. dissertation of Francisco Prats,
University of Maryland, 1958 (unpublished}.
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established for the Dirac equation. Similar results have
been obtained by Verde, "who has applied them to a
discussion of the high-energy limit of potential scat-
tering. The relativistic case divers from the Schrodinger
case in two main respects: first, we have to deal with a
system of differential equations instead of with an
ordinary equation, and, second, the relativistic energy
as a function of momentum is a double-valued function.
These features lead to the somewhat greater complexity
of the methods necessary for the relativistic case.

An analysis of the properties of the Dirac eigen-
functions for central potentials similar to that of Jost'
for the Schrodinger equation has been carried out by
Carter. " In Sec. II, we use Carter's results to discuss
the properties of expansions of arbitrary functions in
terms of the Dirac eigenfunctions. The orthogonality
and closure properties are established. All these proper-
ties are conveniently expressed by the introduction of
the spectral function. In Sec. III we derive expressions
for the relation between eigenfunctions associated to
two different potentials, and some properties of the
kernel that appear in the relation between eigen-
functions are also obtained. In Sec. IV it is shown how
these results provide a method for the construction of
the potential when the phase shifts for both positive
and negative energies and the bound-state energies for
a given value of angular momentum are given.

II. PROPERTIES OF THE SOLUTIONS OF THE DIRAC
RADIAL WAVE EQUATION

1. Definitions and Properties; f(k)
The radial-dependent parts F(r)/r, G(r)/r of the

Dirac wave function for a particle in a central potential
V(r) satisfy the system of differential equations"

(E+m V(r) 7F=dG/dr+ —()t/r) G,

l
E—m —V (r)7G= dF/dr+ (X(r)—F,

where the units are chosen so that A = c= 1, )t = & (j+sr),

j is the total angular momentum eigenvalue (j=—,',
), and

l
F(r) and

l
G(r)

l
are uniformly bounded.

We introduce the spin vector notation,

/F)l

&G) E ps'

and the matrices

(0 1q (0 1q )1 () y
M= ) 0]=

~
gg=

(—1 03 (1 03 &0 -Ij
Verde (private communication). Some of the results

appear in Nuovo cimento 4, 560 (1958). We thank Professor
Verde for the communication of his result prior to publication.

& D. S. Carter, Ph.D. thesis, Princeton University, 1952
(unpublished).

» See, for instance, P. A. M. Dirac, The Principles of Qnantnnt
Mechanics (Clarendon Press, Oxford, 1947), third edition, p. 266,
or L. Schiff, Qnantnnt Mechanics (McGraw-Hill Book Company,
Inc., New York, 1949), pp. 314 and 322.

Then Eq. (1) reads:

tody/dr+or() /r) q
—asm it+ V(r) p= E(p. (2)

For potentials V(r) such that

r"
l V(r) ldr is finite for ts=0, 1, and 2, (3)

Q

Carter" has shown that for a given E with lEl )m
there is a unique solution, fx(k, r), of Eq. (2) such that

( i (E—m)/—k )
fx(kr) —(tk)"

lf'~00 1
(4)

with k= (E'—m') '*. In other words, fx(k, r) is the solu-
tion of Eq. (2) that is asymptotic to an incoming
spherical wave of momentum k. fx(—k, r) = fx*(k,r) is
also a solution of Eq. (2), which is asymptotic to an
outgoing spherical wave. The pair of solutions fx(k,r),
fz(—k, r) form a, fundamental system of solutions of
Eq. (2), and therefore the physically admissible solu-
tion can be expressed as a linear combination of them.
The physically admissible solution is denoted by y (E,r).
It is defined by the boundary condition at r=0,

q ~(E,r) ' (1/px i)
0 )'

where we use y&, = 1X3XSX . X (2)i+1). From
Carter's result" it is easy to show that, in terms of the
solutions asymptotic to spherical waves, we have

v~(E,r) = {f.(—k)f~(kr) —f~(k)f. (—k, r)), (6)
A, (k)

where we have introduced

Ax(k) =det{fq(k, r),fi(—k, r) j = —2ik'~ '(E—m), (7)

and

r"fx (k,r) l

fx(k) =

I fx(k) I

yx(E,r)

( cos[kr ——',sr)~+st, (k)7
Xl

~ [k/(E —m)7 sinLkr ——,'~) +n„(k)7&

tin(k), the )tth phase shift, is equal (mod 2z) to
»g{fz(k)). It is also clear from Eq. (6) that the )tth

Lf&,s(k,r) is, according to the notation introduced in
Eq. (2), the second component of the vector f&, (k,r).7
From the asymptotic behavior of fz(k, r) and f&, ( k, r)—
Lof Eq. (4)7 it follows that
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eigenvalue of the S matrix, Sz(k), is given by

S~(k) = fi(k)/f~(- k). (10)

where
rr

tt (r) = V (r') dr' (16)

In all the above properties we have been referring to
solutions of Eq. (2) for E)+rtt or E(—rtt, which
correspond physically to scattering states. For these,
k was a real number, k= + (E'—sN')'*.

If we now consider fi, (k,r) as a function of the
parameter k, then since E=&(k'+srt')&, f&,,(k,r) is a
double-valued function of k. Carter has shown that this
f&, (k,r) can be extended into a double-valued function
of the complex variable k, which has branch points at
k= Aim. The two Riemann sheets can be conveniently
separated by introducing cuts extending along the
imaginary k axis from +im to +i~ and from —irtt to
—i~; on each sheet in this cut k plane, the sign of
Re{E}is fixed, so we designate the two sheets of fi,(k,r)
by fi,'(k, r) with o.=+ or —,where a=sign[Re{E}7.
Carter has also shown" that, with the assumptions (3),
fi(k, r) is a solution of Eq. (2) which satisfies the
asymptotic condition (4) and is an analytic function
of k in Im{k}~&0 in the cut k plane. Further, for
~k~ ~ ~ in Im{k}~&0,

fi'(k, r) f&, '(k, r) exp ie, "—U(t)dt, (11)

F(k) =ln[f+(k) f (k)7, (17)

where

G(k) =
E„(k)

f'(k)
ln +2itt(~),

f (k)

tt(~) = V(r)dr

2. Construction of f(k)
It is apparent from the properties of fi (k) stated

above that phase shifts and bound-state energies are
determined from fq'(k). The converse is also true:
phase shifts (for both positive and negative energies)
and bound-state energies determine f&,'(k). The pro-
cedure for construction of fq (k) depends on a repeated
application of a theorem due to Titchmarsh" and is a
slight modification of the procedure used in the non-
relativistic case.' This modification is to introduce"
the functions F(k) and G(k) given by

according to Eq. (16). First consider the case when no
e (k ) th f l t [V( ) 07 f E (2)

bound states exist; then F(k) and G (k) are analytic and
bounded functions in the lower half of the complex
k-plane. Furthermore

llm
I &l~ E,(k)

(12)
—00

~ImF(k) ~'&k and J" ~ImG(k) ~'dk

The zeros of fi'(k), kt, in Im{k}&~0 all lie on the
imaginary axis, between 0 and i srt (kt, —— —itt�., —

t0&�~tt,

~& stt). Except for the case X= 1 when fi (0) may
be zero and there is not a bound state at E= —stt (see
reference 12), there is a one-to-one correspondence
between the zeros of fi ('k) on the lower imaginary
axis and the energy levels. The level corresponding to
the zero k&,= —il(& has the energy value

can be shown to be finite by use of the following
property" of the phase shifts:

E.(k)
rt (k) —— tt(~)+0(1/k).It'~

From this it follows'4 that

Ei.——o (stt' —ttt. ') &. (13)
P +" ImF(k')dk'

ReF (k) =——,(k real) (19)

The eigenfunction corresponding to E~, is proportional
to f&,,'( ittt„r), whic—h is real and for r ~ ~

fi'( ittt. , r) (tt—t.r) "~
' '

~
exp( —ttt.r). (14)„t' (Et.—srt)/ttt. &

1

Also qi(E, (k),r) is a solution of Eq. (2) with the
boundary condition (5) for any k with ~k~ finite in the
cut k plane and, considered as a function of k, it is
analytic there. It is simple to show, by use of some of
Carter's results, that

1 p cos[kr ——,'sr' —e.tt(r)7 p
e (E.(k) ) - —

~ . , I (15)
l "l "k" 5 e, sin[kr ——,'srA —e.tt(r)7)

P ~~ ImG(k' dk'
ReG(k) = ——

where, from Eqs. (17) and (18), for k real, we have

ImF (k) = sf+(k)+rt —
(k), (21)

ImG(k) = (k/E+(k))[~+(k) —~ (k)7+2M(~) (22)

"E. C. Titchmarsh, Theory of Fourter Iutegrais (Clarendon
Press, Oxford, 1948), p. 128.

» This procedure is used by Corinaldesi in his discussion of the
Klein-Gordon equation, reference 9.

~~ This property was proved by G. Parzen, Phys. Rev. SO, 261
(1950) and was further discussed by Carter, reference 12.
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It is therefore possible to obtain, by means of expres-
sions (19) and (20), f+(k) and f (k) when g+(k) and
g-(k) are given.

So far we have assumed that no bound states were
present in order that F(k) and G(k) satisfy the condition
of boundedness in the lower half of the k plane. If bound
states are present, f'(k) is equal to zero at those points
which correspond to bound states. Those zeros are
simple and all lie in the k imaginary axis: kz= —i~z

with 0&xi&+m. We then define a modified f'(k) and
q'(k) according to

the di6erential equation for j(E',r) by p(E,r) on the
right, and subtraction, yields

Lv (—E',r)~ p(EF)j= (E E') v
—(E'r) ~ (Er)

dr

from which, by integration between 0 and r and use
of the boundary condition at r =0, one obtains

det{ p(E', r), y(E,r) }
(25)

f'(k) =f'(k) II
t. k+z~t.

(23)

&zo

q (k) =q'(k) —2 P arctan —,
za k

where the product and summation are extended to all
the bound states associated to the same branch o-.of E.

Then, since g'(k) = Im{lnf'(k) } and f'(k) is nonzero
in the lower half k-plane, Eqs. (19) and (20) will hold
for F(k) and G(k), where by F and G we mean the
expressions obtained by substituting f, g by f, p in Eqs.
(17), (18) and (21), (22). Thus, for a given X, if the
phase shifts for both positive and negative energies
g'(k) (o.=+, —) and all the binding energies Ei, are
known, then f'(k) is easily constructed.

If we let r~ ~ in Eq. (25) and call

~ QO

j (E',r) p(E,r')dr'= (y(E',r), y(E,r)), (26)
0

the scalar product of y(E', r) and q(E,r), then the
scalar product of two eigenfunctions is determined by
the asymptotic behavior of the eigenfunctions ac-
cording to Eq. (25). By use of Eq. (6) for p(E,r) in
terms of f(k,r) and f(—k, r) in the right-hand side of
Eq. (25), it can be shown that

f
p(Ei, r) q (Ei,r) dr = tiii. ,

—
&0

3. Orthogonality of Eigenfunctions
j (E,r) q (E',r)dr= g(E)6(E E'), —

o

(27)

Assume X fixed. (The subscript X will be omitted
hereafter except when needed for clarity. )

From the results reviewed in the previous paragraphs
it appears that there are solutions q (E,r) of Eq. (2)
Lwith V(r) satisfying the conditions (3)] together with
the boundary condition (5) for any E such that
+m&~ E& ~ or —~ &E&~—rN, and perhaps also for a
certain finite number of isolated points Ez such that
—m&Ei&+m, All these values of E, associated with
solutions q(E,r) constitute the eigenvalue spectrum.
The eigenfunctions p(E,r) possess orthogonality proper-
ties when their scalar product is appropriately defined
and this property allows one to make generalized
Fourier expansions in terms of the y(E,r).

Consider two eigenfunctions q (E,r), q (E',r) corre-
sponding to diferent eigenvalues 8, 8' of the energy.
They satisfy the differential equation (2), and the
boundary condition (5), which implies that q (E,O) =0.
YVith the notation j= transposed of q, that is, if

w= (FG)
&G)

and the properties

1 Ei (df(k)
f( k)I . l

k0',
Cz ~z—m

~l f(k) I'
g(E) =

k'" '(E—m)

(28)

4. Expansions in Eigenfunctions

The orthogonality properties of the radial eigen-
functions for a Axed value of X suggest the possibility
of expanding arbitrary vectors F(r) in terms of them.
By an arbitrary vector F(r) we mean a one-column
two-component matrix, the components of which are
arbitrary functions of r, integrable square in the range
(0, oo):

~F ()~
F(r) =

I

y(Ei, r) p(E', r)dr=0,
0

where Ez, Ez are discrete eigenvalues, E, 8' continuous
ones, and Ci, g(E) are given in terms of f(k) by

CO= Q)) 0 J,
=0$) 03 03)

multiplication of Eq. (2) by N(E', r) on the left and of
As in the case of expansion of an arbitrary function

in terms of a Sturm-Liouville problem eigenfunctions,
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(34)
=Pi Cil(E Ei)—for m—&E&+mdp/dE=1/g(E) for E&+m or E& —m,

=pi Cib(E —Ei) for m&—E&+m,
'

(29)
Therefore we have to establish k as a function of E so
that dp/dE&~0 for all E's. This is done by taking for
k(E) in the spectral function the function

where g(E), Ci are the same quantities that appear in
the orthogonality relations (27), and the sum
extends over all bound states.

With the spectral function as dedned above, we can
write the expansion of F(r) in terms of the eigenvectors
q(E,r) in the form

k=+(E'—m')I for E&~+m,
= —(E'—m') ' for E&~

—m.
(35)

To prove Kq. (33) we evaluate the matrix integral F:

the expansion formula is most concisely written when dp 1 P"—'(E—m)
a so-called spectral function p(E) is introduced. for E&~+m or E~&—m,

We define p(E) by dE s.
I f(k) I'

F(r) =
) dp(E) a(E) q (E,r). (3o) F (r,t) = dp(E) q (E,r) P(E,t).

For such an F(r) the expansion coeflicient a(E) is Use of Kq. (34) with definition (35) gives

determined by F(r) and q (E,r) according to F=Q+2 2 Ci.v («.r) v («.,t), (36)

a(E) = ~ j (E,r)F(r)dr,
0

as can be seen by multiplying Kq. (30) by p(E,r),
integrating over r, and making use of the orthogonality
properties of the eigenvectors given by Kq. (27).

That Kq. (30), with p(E) and a(E) given by Kqs.
(29) and (31), is actually true for an arbitrary function
F(r) is a consequence of the "closure" property of the
eigenvectors q (E,r) which will be proved in the next
section. We remark also that a property similar to
Parseval's theorem holds for the expansion (30). This
is seen by introducing in the expression for the norm
of F(r) the expansion (30). It is found that

(32)

where we have made use of Kqs. (27) and (29).

5. Closure Property

The eigenvectors p(E,r) possess the property

where

Q= + p(E,r) p(E, t) dE.
"'"I '

I

J

Change of the integration variable from 8 to k and use
of the properties of the integrand under the change
k ~—k and of the expression (6) for y(E,r) gives

p+ k 1
dkP f.(k,r) p(E.(k), t).

~ E.(k) f.(k)

The integrand in this expression is a meromorphic
function in Im{k) &0 in the cut k-plane, because the
only singularities correspond to the zeros of f,(k)
which are simple zeros, and f.(k,r) and rp(E, (k),t) are
analytic functions of k. Also the integrand is continuous
for Im{k) &~0.

Therefore we can deform the path of integration into
the lower half plane as shown in Fig. 1.The integrations
over the contour I' are to be understood in the limit as
E~ ~. There are contributions from the residues at
k=ki. and from I'. Since f.(k) is analytic we can
evaluate the residues immediately:

dp(E) (p(E,r) (p(E,t) = 15(r—t), (33) Res.[k=ki~]=—
1 ki. f.(k„,r)

2 i E,.[g.(k)/dkjI ~=~,.s (Ei. t)

(1=unit 2)&2 matrix) which shall be called "closure. "
We shall prove Kq. (33) utilizing the analytic properties
of the eigenvectors in the complex k plane.

Before entering into the proof of the closure property
some remarks about the spectral function are necessary.
We want p(E) to be a monotonic increasing function,
a consequence of the relation between the derivative of
the spectral function and normalization integrals given
by Kqs. (27) and (29). On the other hand, expressions
(28) for g(E) and Ci and the definition (29) imply that

= (1/2mi)Ci, q (Ei.,r) q (Ei.,t),

where the expression for Ci, given in (28) has been used.
The contribution from F comes only from the two-
quarter circles because the integrals along the sides of
the cut cancel each other and the contribution from the
circle around the branch point —im goes to zero in the
limit of vanishing radius. The contribution from the
two-quarter circles is evaluated using the asymptotic
expressions (IkI~ ~) for f(k, r) and p(E,t). One finds
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,
, k,

+ LIYl

k-plane

1 I+" k 1I= — dk Q f.(k,r)
2iri & „.E.(k) f.(k)

X pl(E. (k),s)q i(E,s)ds+p p C&,&p(@.,r)
4p

P,(E...s) qp, (E,s)ds. (37)
0

Fio. 1. Contour for the proof of Eq. (33) and the evaluation
of expressions I and J.

then that

The path of integration can be deformed into the lower
cut half k plane as shown in Fig. 1.We get contributions
from the zeros of f, (k) and from the two halves of the
semicircle lkl~ eo. Contributions from both sides of
the cut cancel. The sum of residues cancels the sum-
mation on the right-hand side of Eq. (37) when one
makes use of Eq. (28). Then I is equal to the sum of
the contributions from the two halves of the semicircle
as

l
k

l
—+ eo. These contributions are calculated making

use of the asymptotic expressions f, (k,r) and
pi(E. (k),s) for lkl~ eo, Im{k}(0, Eqs. (11) and
(15).One obtains

Q= —Q Q Ci.p(Ei.,r) to(Ei.,t)+13(r—t), introducing
I=aM(r) p, (E,r),

which, introduced in Eq. (36), gives 8=15(r—t), thus
proving Eq. (33).

M(r) =1 cos[p(r) —pi(r))+o& sin[ted(r) —pi(r)). (39)

Calcllatioe of J.—By use of Eq. (25), J can be
written:

III. RELATION BETWEEN EIGENFUNCTIONS OF
DIFFERENT POTENTIALS

1. Derivation of Relation

We shall show now that there exists a relation
between the eigenfunctions y(E,r), q i(E,r) associated,
respectively, to potentials V(r), Vi(r). We shall assume
that both potentials satisfy the conditions (3). A fixed
value of X will be assumed and both systems of eigen-
functions correspond to this same value of X.

Following a procedure similar to that used by Jost
and Kohn' in the case of the Schrodinger equation, we
consider the two expressions

dpi(E') y(E',r) q i(E',r)nil i(E,r).

To avoid the singularity of the integrand at E'=E,
consider instead J(e) obtained by putting e instead of
E in J, where e is complex and e=E+irf with rt)0.
We obtain by the same transformations used repeatedly
before that

1 f
+" dk k e+E,(k) 1

~(e) = f
2iri k —X ~ E.(k) X+k fi, (k)

X q (E.(k),r)fi.(kr)coqi(er)+P P Ci.'q (Ei, ',r)

I=~ dp(E') p(E', r) P, (E',s) pi(E, s)ds,
p

~= fd"(E) .(E"))f -"(E, )"(E,)"
0

The integration over E' can be carried out by utilizing
the properties of the eigenfunctions in the k plane and
it is found that I and J are simply related to the
eigenfunctions p and q~. Then, the relation between

p and p& results by subtraction of I and J.
Calculation of I.—The integration over E' is changed

to an integration over k as in the proof of the closure
prope«y

X e i(Ei.',r)oiyi(e, r), (40)
Elfr

where X has been chosen to be that root of e'—nP that
lies in the lower half k plane. We can now calculate this
integral by deforming the path of integration into the
lower cut half k plane. As in previous cases the con-
tribution from the integrals along the sides of the cut
is zero. There are contributions from the poles due to
zeros of fi(k) and the pole at X, and from the two halves
of the semicircle as lkl~ eo. The residue from k=X
contributes to(e,r). The remaining residues cancel the
sum in Eq. (40) when rt —+ 0. The integrals over the two
halves of the semicircle lkl~ ~, Im{k}(0 can be
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evaluated as in the calculation of I by use of the
asymptotic expressions for f and p. Collecting these
results, one obtains that

sponding equation for pi(E, r), we obtain the condition
for the kernel:

~K(r, r) K(—r,r)&'u+ (M M) (—o.iX/r o—.am) =0.

Hence

J= q (E,r) ~M—(r) q i(E,r).
This condition on K(r,r) can be easily transformed into
the following condition on F(r,r):

J I=—y(E,r) M(r) —yi(E,r) = K(r,s) yi(E, s)ds, (41)
0

where

t d[pi(E') —p(E')) y(E', r) qi(E', s) =K(r,s). (42)

Equation (41) gives the relation between the eigen-
functions y, qi. Notice that K(r,s) is a matrix inde-
pendent of K

Except for the matrix M(r), defined in (39), that
multiplies pi, Eq. (41) is formally similar to the one
that appears in the nonrelativistic case.

2. Integral Relation for the Kernel

As has just been shown in the previous section, the
eigenfunctions q, yi are related by Eq. (41) with

K(r,s) and M(r), respectively, defined according to
Eqs. (42) and (39).

Multiplying Eq. (41) by qi(E, t) on the right and
integrating with weight d[pi(E) —p(E)] we obtain,
using Eq. (42), that

orF (r,r) F(r,—r)~+ (MM 1) ( .0ki—/r —0 qm) =0. (47)

This equation for the matrix elements F;,(r,r) yields
only two independent conditions, which are con-
veniently written as

Fi2 (r,r) +F2i (r,r) =S(r) = 2 si nAp [(X /r cosAti

ms—inDti),
(48)

F22(r,r) —Fii(r, r) =D(r) = 2 sinAp[m cosAp

+ (X/r) sinai],

where Ap, =p(r) —pi(r). By simple algebra and diGer-
entiation, we obtain:

d D(r) d ( mr)
V(r) —Vi(r) =—arctan ——

~
arctan ~. (49)

dr S(r) dr( X )
In addition to Eq. (49), the elements of F(r,r)

satisfy a second condition which can be combined with
Eq. (49) to give other equivalent formulas for the
potential V(r). This connection between the elements
can be given as:

[(7/r) —D)'+ (m+S)'= (X/r)'+m' (50)

where

K(r, t) =M(r)G(r, t)+ K(r,s)G(s, t)ds, (43) which is readily obtained from Eq. (48).

IV. METHOD FOR CONSTRUCTING THE POTENTIAL

G(r, t) = t d[pi(E) —p(E)] yi(E,r) pi(E, t). (44)

From Eq. (43) the matrix F(r, t) is shown to satisfy the
following integral equation, formally similar to the
Gel'fand-Levitan integral equation:

F(r, t) =G(r,t)+ I F(r,s)G(s, t)ds (46)

If we introduce p(E,r) as given by Eq. (41) into the
Dirac radial wave equation (2) and use the corre-

Equation (43) is an integral equation of the Fredholm

type for the kernel K(r, t). Notice that the matrix
G(r, t), that is the kernel in this integral equation and
appears in the inhomogeneity term, is constructed
from both spectral functions pi(E) and. p(E) and from
the eigenfunctions associated only with the potential
Vi(r). It is convenient to transform this equation so
as to eliminate the explicit appearance of the orthogonal
matrix M(r). To do this, we define a transformed kernel
according to

From the properties relating the eigenfunctions
corresponding to the two potentials V(r) and Vi(r) a
procedure can be established to construct V(r) when
the phase shifts rt (k) and the bound-state energies
Ei, (1=1,2, , m, ), a=+, —are given for both
positive and negative energies for fixed angular mo-
mentum, that is for a fixed A. . The steps in this pro-
cedure are as follows:

1. First f, (k) (o=+, —) can be constructed from
rt, (k) and Ei, by the Hilbert transform type of relations
[Eqs. (19) and (20)).

2. From f (k) we obtain dp/dE by means of Eq.
(34). Since it(k), Ei do not determine the constants
C&„ these can be chosen arbitrarily as long as they are
positive, in accordance with their definition (27). Once
these constants are chosen the spectral function deriva-
tive is known.

3. If a comparison potential Vi(r) is taken for which
everything (i.e., spectral function and eigenfunctions)
is known, we can construct the matrix G(r, t) according
to Eq. (44). Then we have the kernel and inhomo-

geneity of the generalized Gel'fand-Levitan integral
equation (46).
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4. The solution of the generalized Gel'fand-Levitan
integral equation for r~&1 yields Ii(r,1); the difference
of the unknown potential V(r) and the comparison
potential Vi(r) is given by Eq. (49), and we can con-
struct the matrix cV(r) defined by Eq. (39) and then
the kernel X(r,1) from Eq. (45). Once E(r,t) is known,
the eigenfunctions p(E,r) are given from the qi(E,r)
by Kq. (41).

V. DISCUSSION

The procedure derived above for the construction of
the potential in the Dirac equation is similar in most
respects to the previously known method'2 for the
nonrelativistic Schrodinger equation. In fact, each step
in the procedure can be shown to reduce in the limit of
small velocities to the corresponding step in the non-
relativistic case." In this nonrelativistic limit, the
phase shifts for the same angular momentum and
opposite parities become equal; the positive-and nega-
tive-energy regions are no longer interdependent but
split into separate problems; in each the phase shifts
and bound-state data (e.g., for positive energies only)
will be sufFicient to determine the potential.

The procedure for construction of the potential that
has been presented is mathematically straightforward
but there are three reasons for the lack of practical
usefulness in the direct analysis of experimental values:

1. The interaction was restricted to a spherically
symmetric static potential; all actual physical inter-
actions are more complicated. Furthermore, in most
cases when relativistic effects are important
(E trsc'=wc ) the p—ossibilities of recoil or of inelastic
eGects, or even of particle creation, are significant.
The present method could probably be generalized to
include some of these complications, but this is not of
great importance because of the other limitations of
applicability.

2. The method for construction of the potential
requires exact knowledge of the phase shifts for all
energies. Since experimental values have limited ac-
curacy and are available only for a finite range of

'~ For detaHs, see Chap. Vl of the dissertation of reference j.o.

energy, an application of the method to experimental
values should be accompanied by a discussion of the
effect of an error in the data on the predicted potential.
This problem is especially dif6cult and has not been
thoroughly analyzed even in the simpler nonrelativistic
case."

3. The method presented is necessarily quite cumber-
some. The procedure for the nonrelativistic case was
already so complicated as to preclude many practical
applications, and the present relativistic treatment is
necessarily much more involved.

In the nonrelativistic case, Bargmann described"
interesting families of potentials for which the solutions
f(k,r) of the Schrodinger equation were rational
functions of k. These examples were especially in-
structive, because the phase shifts, wave functions, and
potentials were given in convenient closed form. We
have investigated to see if similar families of solutions
can be found for the Dirac equation. However, it is
easy to show that the f(k,r) cannot be rational functions
even in the two variables 8 and k, because such a non-
trivial rational form is inconsistent with the asymptotic
behavior in the complex k plane Lsee Eq. (11)j; no
simple transformation has been found which can meet
this difhculty.

The procedure of Sec. IV exhibits the one-to-one
correspondence between potentials satisfying the inte-
grability conditions (3) and "allowable" sets of scat-
tering data (including phase shifts and bound-state
energies and norms). However, it. remains to find
convenient characterizations of the class of phase shifts
that can be obtained from a Dirac equation potential.
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