
CAP TU RE REACTIONS I N H

(1); and where initial atomic P states are concerned,
all compete with the 2P ~ 1S radiative transition. The
latter goes with a rate of order 10"sec '. We now argue
that reactions (3) and (4) cannot be significant for
initial P states; the 2P —& 1S rate certainly is much
larger than the rate for (4),' and very likely also for (3).
From initial S states, (3) and (4) are expected to be
significant only when channel (1) is forbidden and
channel (2) is either energetically forbidden or strongly
suppressed. As one sees from Table I, these conditions
could be met only in the case of even cascade parity,
for then the 'S& initial state can deplete only through
channels (3) and (4). The observation of an appreciable
probability for reaction (3), according to this argument,
would in itself be strong evidence that the cascade
parity is even. Corroborative evidence in such a circum-
stance would be provided by studying the correlation
function P discussed above for reaction (1). For now
we would expect that (1) proceeds mainly through
initial 'So states and hence P~1—n'p& p2.

As for the relative importance of reactions (1) and

(2), we can say nothing beyond what is implied by the
selection rules of Table I. One doesn't even known if
(2) is energetically allowed. Moreover, for initial 2P
states we cannot reliably estimate the importance of
either process relative to 2P —+ 1Sradiative transitions.
Nevertheless, one pertinent observation can be made,
This concerns the case of odd cascade parity. Here,
assuming that production of 6nal D states in reaction

4 One believes that the " lifetime is of order 10 '0 or greater;
see a summary talk by I. Alvarez, Proceecbngs of Seventh Annual
Rochester Conference on High Energy Nuclear -Physics (Interscience
Publishers, Inc., New York, 1957), p. VI-1.

(1) is negligible, we see that among all initial P states
only the 'Ps state can react according to (1). If the P
states are populated statistically this represents a
maximum probability of one-twelfth for reaction (1) to
occur from a P state. The remaining P states either
react according to (2) or undergo radiative transitions
to the 1S states. We can therefore conclude the fol-
lowing: If it is found experimentally that reaction (2)
does rot occur with appreciable probability, then either
the cascade parity is even; or, if odd, the capture
reactions (1) occur predominantly from S states. But
for the latter case one has stringent restrictions on the
correlation function of the A-decay pions. In particular,
Kq. (16) must hold in good approximation. In this way
one could distinguish between the two possibilities.

Finally, suppose reaction (2) occurs with large prob-
ability. If the energy release is nevertheless small, less
than a few Mev, one would argue on the basis of
centrifugal barrier sects that this implies a pre-
ponderance of captures from the S states —for reaction
(2) and therefore also for reaction (1). In this case the
parity of ™can again be determined by studying the
correlation function P.

It is clear then that for many circumstances the
parity of ™could be rather cleanly established. Only if
reaction (2) is prominent and proceeds with a large
energy release would the situation become highly
ambiguous.
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A unique equivalence is established between the Riemann curvature tensor and two spinors. The fourteen
invariants which can be constructed from the curvature tensor are listed in terms of the spinors. The van-
ishing of the invariants for several diferent types of spaces is described. A classification of Einstein spaces
is made together with a few additional remarks concerning classification of spaces.

I. INTRODUCTION

HE general theory of relativity deals with the
metric tensor, g„„and its first and second deriva-

tives with respect to space-time. It has long been
known that fourteen independent differential invari-
ants can be constructed from the second derivative of

* This research was supported in part by a contract with the
U. S. Air Force, monitored by the Aeronautical Research Labora-
tory.

' C. N. Haskius, Trans. Am. Math. Soc. 5, 71 (1902).

the metric tensor and that these invariants can be
expressed in terms of g„~ and the Riemann curvature
tensor, E&&"'. The fourteen invariants have been con-
structed'; it is obvious by inspection of these invariants
that when the contracted curvature tensor E&~ vanishes
(Einstein's equations for empty space), ten of the
invariants also vanish leaving four of them which may

~ J. Geheniau and R. Debever, Bull. acad. roy. Belg. 42, 114
(1956).
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not be equal to zero. It becoines now pertinent to
consider the possible signiGciance of the nonvanishing
invariants and the possible signiGcance of there being
four of these invariants (the same number as the
dimensionality of space-time). Regarding the latter
point it becomes proper to ask how many independent
invariants do not vanish when space is not empty but
is rather filled with electromagnetic fields. We shall
show later that the number is nine for a non-null
electromagnetic Geld. For a null electromagnetic Geld
it will turn out that ten invariants vanish, the same
ten as for empty space-time. A null electromagnetic
Geld is one in which the two electromagnetic invariants
are both equal to zero. We also explicitly exhibit a
space where there may be at most five surviving inde-
pendent invariants. Further, one asks whether the
invariants can be usefully used in classifying geometric
spaces. From the above remark on null electromagnetic
Gelds and from our later analysis, it is clear that the
vanishing of ten invariants is not sufBcient to guarantee
that R&q=0; in fact all fourteen invariants can vanish
and still R&q may have nonzero components.

This paper is concerned with the above issues. In
Sec. II, we show how the curvature tensor R&'"' can be
equivalently (uniquely) represented by means of two
spinors of special types. In Sec, III, we construct the
fourteen invariants from these two spinors; we then
show that at most four independent invariants are not
zero when space-time is empty and that at most nine
independent invariants are not zero when space-time
is Glled with a non-null electromagnetic field and four
when it is Glled with a null electromagnetic Geld. In
Sec. IV we show how the invariants can be used. to
classify the geometry when R„,=O and in Sec. V we
make one or two general remarks concerning classifi-
cation of spaces. The speciGc calculations in these last
four sections could, of course, be done without the use
of spinors but using only tensor algebra; however, we
thought it interesting to see how the matter went in
spinor language.

II. THE RIEMANN CURVATURE TENSOR AND
ITS EQUIVALENCE TO TWO SPINORS

Spinor Gelds' 4 have been treated in general relativity
from several points of view. It is known that to each
real tensor one can assign a spinor. In this section we
assign a spinor to the Riemann curvature tensor and
see what the symmetries of the tensor require of the
assigned spinor, which turns out to be a unique spinor.

Regarding notation, Latin tensor indices (as in g"&)

are given values 0, 1, 2, 3; the signature of the metric
tensor is +, —,—,—;Greek spinor indices (as in gv p)

s W. L. Bade and H. Jehle, Revs. Modern Phys. 25, 714 (1933),
review spinor analysis and have references to the previous liter-
ature.

E. M. Corson Ietrodlctiorl, to Tensors, SpirIors, and Relativistic
Wave Equatsols (Hafner Publish-ing Company, New York, 1953).
Chapter 2 discusses spinor algebra and uses it in special relativity.

are given two values (n= i, 2; rr = 1, 2, etc.). The spin
matrices, gv p, transform like tensors for the index p
and like spinors of the proper type for each index a, p.
We use a representation in which the g matrices are
Hermitean, gp p=g"P (bar denotes complex conjugate)
and deGne the spin matrices by

gsiapgs. +grapgv. = 2gsr/iP

The Latin index in g& p, g~ p can be lowered or raised
by using the metric tensor g„, or g&q. The Greek indices
n, p can be raised or lowered by using the antisymmetric
fundamental spinors e'&, e p, e t', e p which are equal to
0 when n= p and equal +1 if n= 1, p= 2, and equal to
—1 if n=2, P=1.

An Hermitean second-rank spinor p p is determined
by four real numbers and can therefore be made to
correspond to a real world vector x& by the relation

4'ap =gsvaP&"v

which can be inverted by multiplying by gq'& to give

&s—r gs, pyap

For the more complicated Riemann tensor,

(3)

g g
.

g „g .
g

. (ediiiappvpr+eappvxprpv} (6)

where we have deGned

2pappvpr yapjiv Xpr+ypatii Xpr

p is symmetric in the indices sip.
To verify (6), consider (5) in the cases n=P, ii=X;

ri=P, itWX; rrWP, it=A; and ci/P, itvaX. The anti-
symmetry relation R„,„,= —R~„„imposes the relation

ergapjivpr+eaQr kpriii — (erma'pvprp+eapfrXrpvpj (8)

so that

g, g p~g, g, Levy (it,appvpr p pvp ap)r
+sap(prXprpv itirXrpvp)] (9)

By considering the cases p, =v, p=a, j,=v, pro", pW~,
p=o" t'tW v pro" and defining 2f' pp"'= f'Ppp p+tvvap"'" '—
2itsappr= ilva&q"pr+papi, "rp, on—e sees that

+svsrv= itgvargsp&grupgvvr[& e V " +e e" 4'

+.srxepiyappr+ eapepryvxtiv j (10)

it
'P"'"' is symmetric in np and in t'tv; papp' is symmetric

in up and in po.

. ~hPP, i «XpoRpqrs= gpa~gqpgrI'pgtt7'o~

The reality of J'„,„, requires rtvapp""~pr=vtv"1' »" The'.
antisymmetry relation R„,„,= —R,„„, imposes the
relation PaPPv'r"Pr= —itipasv""Pr so that7

(yapjiivxpr qi papi4rpr) (5)

This can be rewritten as
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Rqvqrs+Rqvrsq+Rqvsqr (12)

Tedious but very straightforward calculations starting
with (10) and using the symmetries of i' and it will

show that (12) is satisfied if and only if

(13)

Equation (10) thus represents the Riemann curvature
tensor by means of two independent spinors f~&pp and
g'i'p'. These two spinors are symmetric in an inter-
change of their two Grst indices or of their two last
indices, moreover f~&p"'=Pp"''& and Q'&ps=&pa'a& also
f"~& =pap~ . Let us look at the number of independent
components of each spinor. First f~&pp: the pair ap
can take three independent values, and the pair pi
can take three more, making nine altogether. P'&p"'

=pp"''& impose three constraints; there are now six
complex or twelve real components left, which number
is reduced to eleven because of condition (13). @'@
can have three choices for aP and three more for p0,
making again nine choices. pn&p can have so far nine
complex and eighteen real components. The Hermitean
requirement Q'»'=QP'Pa& imposes one constraint for
each choice of indices, leaving nine independent real
parameters. Thus P ~"" has eleven independen. t real
parameters and stv'&"" has nine, for a total of twenty.
There are twenty independent components in E.„,„, so
that the results are compatible.

It is instructive to look at the contracted curvature
tensor R,„=E&,„„.Using the spinor relation g&,g„~,
=2e ~e„, one has

The symmetry requirement E„,„,=E„,„,means that

skqpr'ala~ ji+qaSqiiipsipa+ qsi qpvitaflpa+'q iiqpsit scapi

qsiqplTPpvnp+ qntiqpv1PK ip 0

+qapqpsyii psi+ qpvqsiyp pa)

Equation (11) is satisfied if fa»v=fpva~ and if pn»v
=@p'"' & which conditions we now impose. There is still
one other restriction that the tensor R„,„,must satisfy
before it can be considered a curvature tensor. This is
the cyclic constraint

~&yqrs= 4,g&yqab&edrs«Vabed

Now let Epq„,=R~q„.+Rpq„, . De6ne the dual

(2o)

+hdqrs= gg &yqab~ rs (21)

E„,„, is purely imaginary if E„,„, is real. It can be
readily seen that

psipa Lgppsgq X~ apg .st g rs+g rs j (22)

Z„,„,and E„,„,are purely geometric tensors. Obviously
any scalar invariant which can be constructed from
pa»v and p &p" can be written, by use of (19) and (22),
in terms of geometric tensors alone.

To list the invariants, there is first the scalar corre-
sponding to R:

(23)

This is a real expression and corresponds to one invari-
ant. There are three independent real invariants which
can be constructed from p sp„alone:

yn»v @.~ y»vpst np y. . ~ ypivpy yiiis.p (24)

There are two independent complex or four independent
real invariants which can be constructed from pa»v
alone:

(25)

We have so far found eight real invariants. The con-
struction of the other invariants involves products of
P's with p's. There are six real invariants or three
complex invariants of this type:

III. CURVATURE INVARIANTS

The fourteen invariants that can be derived from the
curvature tensor can now all be expressed in terms of
the two spinors P»" and itp»". Any expression involv-
ing these two spinors can be re-expressed in terms of
geometric elements. Obviously, from (18),

yPPpr= ig Ppg Ps(Rpq qgpqR) (»)
Now we must construct a geometric expression from
P»". Define the double dual R~q„, of the Riemann
curvature tensor

R,„,'g, ,g„„.$~'pp"»—.—+qpQ p .+2y»p j. (14)

Using the spinor relation

pap ..ypsjji @yq. pap ..p p psky

yvqatiy . .gpss' „..y pi (26)

R=4$ p& . (17)

s

gsv agqtip gqvqqap+qg &qvqrsg ag ppv (15)

and, the fact that p'&p is antisymmetric in p and p,
one finds

Rnq=fqq~ li a+fpi4qi4 ""
Contracting again,

This completes the listing of the invariants. Suppose
now space is empty and R~q=O. By (17) and (18) this
requires f p~ and it

'&p" both to vanish. Hence all the
invariants vanish except those labeled. (25). Thus in
empty space there are at most four nonzero curvature
invariants.

Suppose that space-time is not empty but is 611ed
with electromagnetic 6elds. In this case the stress-
energy-momentum tensor relation takes the form

Let S„,=R„, gpqR/4 so that S„—,=R„, if R=O. —
Then

~ Pw~~ yq
=

gyppgqI a4

Rnq= f~ fq" 'C~qf-f"'—-(27)

(18) fqq= (2G)'~pq/c'; G is th—e gravitational constant, c is
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the velocity of light, and F„,is the usual antisymmetric
electromagnetic tensor. In Qat space and Cartesian
coordinates F~2= the Z component of the magnetic
field; F~4= the X component of the electric field multi-
plied by c, etc. Define the dual tensor of f by

f" =
2g—'*e" "f« fvv=2g'*&«vvaf ~ (28)

e&&"' and e„,„,are tensor densities which take the values
+1 when pqrs is an even permutation of 1230; —1
when pgrs is an odd permutation of 1230; and 0
otherwise. The second of relations (28) follows from
the first and from the properties of the e's. Now define
the self-dual antisymmetric tensor,

tensor one can construct the complex invariant, co„,co~'.
In case this vanishes we shall call the field a null 6eld
and the tensor co„, a null tensor. It is easy to establish'
that for a null antisymmetric tensor, co„„ the corre-
sponding spinor, qP~, takes the form @ pe. With g e

=P Pe one sees that all of the invariants (33) and (35)
vanish. Thus if space time-is filled with electromagnetic
radiation of the null retd -type, the same ten inmriants
iianish as vanish for empty space tim-e, teaiiing four
possible nonoani shing invari ants.

Another interesting case to consider is one where the
field contains a Quid with no pressure or internal
stresses. In this case

us= ua ue (29) TPQ= popPpQ (36)

It is mell knowns that a self-dual antisymmetric tensor
of the second rank can be represented uniquely by a
symmetric second rank spinor:

oiva=gn vga' vs
" 't '= age "ga'"&"' (30)

Moreover, the equation (27) becomes
~ ~

+yvi=OiyvOie =gn pgvavgvvv g v'v4' "4
(31)

2g~'ega'A'—"&"'.

Consequently consider the two spinors vp»" and gas&v

which represent the curvature tensor. It is clear that
in the case of space ulled with electromagnetic energy
the spinors are constrained to satisfy the conditions

isa P —0 yhpivv 2yait~v

For electromagnetic fields, invariant (23) thus vanishes.
Of the three invariants (24), the first one survives in
the form (neglecting in the following constant factors)

fiick 4 (33)

Using relations such as

(34)

one sees that the second invariant of the series (24)
vanishes and that the third is expressed as the square
of (33). The four real invariants of (25) are unaffected
by the change in the controlling equation for R„,.
Consider the three expressions (26), the first two
remain independent and are expressed by

4 tet 4"" 4.e4" 4'4 4"""4""'4e4' (35)

The third expression (26) becomes

4" 4'""4' ~4' v"'""4 r4' 4 e4 "
This is not independent, being the product of (33) and
the complex conjugate of the first expression in (35).
Thus in the case of electromagnetic radiation there may in
general be nine independent noniianishing insariants;
only one i neariant must vanish; only nine of the remaining
thirteen are independent From the el.ectromagnetic

~ gee reference 4, p. 31.

T&' is the stress-energy momentum tensor, po is the
proper density of the Quid, and e& is the proper velocity
(dx"/ds), si', being a real tensor, can be represented
by a spinor p'~ with p'~=pe,

(37)

Since T&„=po, and R&&——,'g~~R= —T"', we see that
Lfrom (16) and (17)j ip ee =-,'po and p'&"v=-', poea&ezv
—-', pg

'
"g"'&. Leaving out constant factors, the invariant

(23) thus equals po,
' the invariants (24) become po', po',

po', respectively; the four real invariants (25) are still
free; the six real invariants (26) become

po'4' ~A'imp'ee'4""4"'= po',

po'4" 4"eip"ed''""""4&a&4"~=po'
(38)

so'(l ""—4 "0")(&-Ar)
yyqrtvy. y. (i &yb&jiv y p yd ) O

5

The equalities in (38) are true up to constant factors
because of the symmetries of Pa»" and because y'~y ~

= ee~. Thus in the case of a Quid with no pressure or
internal stresses there are at most fi oe indepen'dent non
eaeishieg imariamts.

From the above analysis concerning null electro-
magnetic fields, it is obvious that one cannot tell
whether space is empty by counting the number of
invariants which are not equal to zero. To show this
more strikingly, we make the following remark: It is
possible that all fourteen iniiariants may vanish and still
R&& mi/l not ~unish.

An example of the vanishing of the fourteen invari-
ants with R„,~O is the case of the null field above with
the additional requirement that the spinor iP»" vanish
or at least that iP»" be so chosen that the invariants
(21) vanish. There are other choices of ip»" and p'e&"

which will make the fourteen invariants vanish without
requiring p»" to vanish, or without requiring R~,&0.
Suppose for example iP»" is identically zero. Then only
the three invariants (24) will not be zero. These three
can be made equal to zero, leaving still many nonzero
components in the spinor pa»" or correspondingly in
the tensor R„,.
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pn»vp ' —gppv (39)

Here X is obviously an invariant and we ask whether
any eigenspinors exist. Obviously P&" is symmetric in p
and v if it exists. Expanding equation (39) into compo-
nents, recalling that Pii ——P', f'2 P", f——i2 ———P', and
that f must be symmetric, one gets a set of three
algebraic linear homogeneous equations in P"" which
permit a nontrivial solution if, and only if, the following
determinant, D, vanishes:

IV. CLASSIFICATION OF EINSTEIN SPACES

Calling a space for which R„,=O an Einstein space,
we see that for an Einstein space the curvature tensor
R~,„,is completely determined by the spinor P»" with

f ' p=0. Such a space allows the existence of four
nonzero differential invariants of the type we are con-
sidering. It becomes reasonable to attempt to classify
the space by the behavior of these invariants. Let us
define an eigenspinor P ' of P»" by the following
equation:

eigenspinors. There is the important possibility, which
we shall not investigate further here, that an eigenbi-
vector may be null, co pcs &=0, and therefore not
normalizable.

Degenerate cases can now be considered. One of the
six real quantities represented by X&, X2, and 3,3 may be
equal to zero, in which case one of them, say X&, is
either purely real or purely imaginary. In this case
f»"P pP„„=~/'»"P 'P„'„,. the positive sign being
chosen for purely real X& and the negative for purely
imaginary X&. In either case there remain still three
independent eigenspinors. Suppose two of the six
quantities in the A, 's are zero. Here we can still have
three independent eigenspinors if, for example, X~ is
real and X& is purely imaginary. On the other hand,
it might be, for example, that one of the X's, say X~,

equals zero. In this case there are only two independent
eigenspinors, P ' and q ', which satisfy

(43)

$2211 g 2/1211 $1111

D—P2212 2/1212 g $1112

f2222 2/1222 $1122

=0. (40)

There is, however, a/ p orthogonal to $ 'and g 'such
that

(46)

A. &, P2, and X3 may all be complex; they represent by
virtue of the vanishing of their sum four independent
invariant quantities which may be represented by the
group (25). Each symmetric spinor can be made to
correspond to a self-dual antisymmetric tensor of the
second rank.

~~a= g~"-gauche",

J's a= g„"~gesp~

(42)

These self-dual tensors (each of which is complex and
hence contains two real tensors) are eigenbitensors of
the curvature tensor. That is, they satisfy relations like

(43)

The eigenspinors for nondegenerate X's are orthogonal
as can be proved easily; for degenerate A. 's they can be
chosen orthogonal; moreover they can be normalized
so that

The second equation defines orthogonality of the

This is a third order algebraic equation in X; however,
by virtue of f'.s P"" 2P"——"+P'—"'=0, the sum of
the three roots must equal zero. X&+X2+X3=0. Thus
we can find three symmetric eigenspinors with the
properties

Pa»vP —j fyv

(41)

Again we may have the case that X2 is either purely
real or purely imaginary. This does not change the
remarks just made. If all four independent invariants
vanish so that Xi=X2=F3=0, Eq. (39) degenerates

completely to Eq. (46). There are thus three important
cases to consider.

Case l. Xi/0, X2"0, X3= —(Xi+X2)WO. In this case
there are three eigenspinors or three self-dual tensors
(six real tensors) which satisfy (43). X& may be purely
real or purely imaginary; so may X2. There are thus
two, three, or four nonvanishing real invariants. If
there are fewer than four, additional constraints are
imposed on the eigenspinors.

Case Z. Xi=0, X2/0, Xq= —X2. (The role of the ~'s
can of course be interchanged). In this case there are
two eigenspinors or two self-dual eigenbitensors. One
can also find an eigenspinor, P„p, that satisfies (46).
It is important to see that one can require also the f '
that satisfies (46) to be null in the sense that/ 'P p=0;
in this case/ 'canbe represented by asingle component
spinor P '=PQ& such that

(4/)

The eigenbitensor constructed from f by M„~
=g„' g,p„PQ& is null in the sense that its complex
invariant &~PI&&=0. (This requires two real invari-
ants to vanish. ) X& may be purely real or purely imagi-
nary which will impose additional constraints on the
eigenbispinors.

Case 3. X~=0, X2=0, X3=0. Here there are no spinor
relations of the type (39). All eigenspinors satisfy (46).
It is probably true for this case where all invariants are
equal to zero that, if P»" has nonvanishing compo-



362 LO U I S WI TTEN

nents, one can find a particular coordinate system where
a noncovariant relation that looks like (39) is satisfied.
It is probably true also in case 2 that in a particular
coordinate system under certain conditions one can
satisfy a noncovariant relation that looks like (39).

The cases we have enumerated would seem to corre-
spond to the "types" of Petrov and Pirani': case 1 to
type 1, case 2 to type 2, and case 3 to type 3.

gatv/. yppv (50)

Obviously qP"=qVP, so the vector l„defined by /„
= sig„hpP'P is real and is an eigenvector of E~„

R„qlq=hl„. (51)

It can be shown easily that (50) can be satisfied if, and

'A. Z. Petrov, Sci. Nat. Kazan State Univ. 114, 55 (1954);
F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).

V. GENERAL REMARKS ON THE
CLASSIFICATION OF SPACES

In the previous section we have discussed the classi-
fication of spaces for which R„,=O. It is important to
see that this discussion actually concerns a much larger
variety of spaces. Suppose we require only that R=O,
or P P p=0. Call such a space a traceless space. Con-
struct from f»" the tensor G"'"';

g '
g

'
g~ppg» Le" e'V ""+e' e""1""3 (48)

When R„,=O this tensor equals the Riemann curvature
tensor, However, it can be constructed even when

R„s/0. In the case of a traceless space (R=O), the
classification of the previous section can be applied to
G„,„, and there are three possible cases for t"„,„,. If
the energy-momentum tensor is built up of the electro-
magnetic field and the 6eld of the two-component
neutrino and nothing else, the space is traceless; thus
this type of space is not without physical signi6cance.
One may thus make remarks like the following: A

space being investigated is traceless, contains electro-
magnetic fields, and is represented by case 1; or it
contains the two-component neutrino field and is
represented by case 2.

For a traceless 6eld R„,=S„„where S„q has been
defined in Eq. (18), we have

r a=gr~I gap~4' (49)

We wish to classify these 6elds by looking for eigen-

spinors defined by

only if, the determinant D' vanishes,

y 2121

y2 221

2122

y2222

y1121

y 1221

@1122

y 1222

@2111

@2211

@2112

y2212

F1111

y1211

9|,1112

y 1212
I

=0.

(52)

Because of the symmetries of &t P&", the four X's defined
by (52) are real; moreover Xi+Xs+Xs+X4——0.

There are thus in general four independent vectors
that satisfy (51). The space can now be additionally
classified by investigating the possibilities that one,
two, three, or four of the invariants vanish. If they do,
Eq. (51) takes the special form

R„t,=O. (53)

Classi6cation along these lines has been implicitly
discussed many times. '

One can of course classify spaces for which R„, is
completely arbitrary; this amounts to "diagonalizing"
by the process of equations (37), (40), (50), and (52) the
"matrices" P»", p

'»" which will involve a classification
in terms of the behavior of the invariants (23), (24),
and (25). One should also define something resembling
a "simultaneous diagonalization" of both P'»" and
g'P&" which would introduce the "mixed" invariants
(26). In this general case, instead of dealing with the
spinor P»" it might be convenient to deal with a new
spinor P»" defined by

t PV —s rAt PV ~APqPVsf~& P4 p e ~ (54)
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Construct now the tensor Fpq„, '.

~vs«:sgsri&gsp&gr»g»~[e" e t ""+e pe""p ~ ]. (55)

The tensor Il„q„, has the same symmetries as R„,„,. It
is equal to R„q„, for the case of an Einstein 6eld and
in general can be classi6ed as was R„,„,for the Einstein
field.


