E- CAPTURE REACTIONS IN H

(1); and where initial atomic P states are concerned,
all compete with the 2P — 1§ radiative transition. The
latter goes with a rate of order 10'2 sec™’. We now argue
that reactions (3) and (4) cannot be significant for
initial P states; the 2P — 1S rate certainly is much
larger than the rate for (4),* and very likely also for (3).
From initial S states, (3) and (4) are expected to be
significant only when channel (1) is forbidden and
channel (2) is either energetically forbidden or strongly
suppressed. As one sees from Table I, these conditions
could be met only in the case of even cascade parity,
for then the 3S; initial state can deplete only through
channels (3) and (4). The observation of an appreciable
probability for reaction (3), according to this argument,
would in itself be strong evidence that the cascade
parity is even. Corroborative evidence in such a circum-
stance would be provided by studying the correlation
function P discussed above for reaction (1). For now
we would expect that (1) proceeds mainly through
initial 1S states and hence P~1—a?p;- p..

As for the relative importance of reactions (1) and
(2), we can say nothing beyond what is implied by the
selection rules of Table I. One doesn’t even known if
(2) is energetically allowed. Moreover, for initial 2P
states we cannot reliably estimate the importance of
either process relative to 2P — 15 radiative transitions.
Nevertheless, one pertinent observation can be made.
This concerns the case of odd cascade parity. Here,
assuming that production of final D states in reaction

4One believes that the E lifetime is of order 107 or greater;
see a summary talk by I. Alvarez, Proceedings of Seventh Annual

Rochester Conference on High-Energy Nuclear Physics (Interscience
Publishers, Inc., New York, 1957), p. VI-1.
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(1) is negligible, we see that among all initial P states
only the 3P, state can react according to (1). If the P
states are populated statistically this represents a
maximum probability of one-twelfth for reaction (1) to
occur from a P state. The remaining P states either
react according to (2) or undergo radiative transitions
to the 1S states. We can therefore conclude the fol-
lowing: If it is found experimentally that reaction (2)
does not occur with appreciable probability, then either
the cascade parity is even; or, if odd, the capture
reactions (1) occur predominantly from S states. But
for the latter case one has stringent restrictions on the
correlation function of the A-decay pions. In particular,
Eq. (16) must hold in good approximation. In this way
one could distinguish between the two possibilities.

Finally, suppose reaction (2) occurs with large prob-
ability. If the energy release is nevertheless small, less
than a few Mev, one would argue on the basis of
centrifugal barrier effects that this implies a pre-
ponderance of captures from the .S states—for reaction
(2) and therefore also for reaction (1). In this case the
parity of E~ can again be determined by studying the
correlation function P.

It is clear then that for many circumstances the
parity of 5~ could be rather cleanly established. Only if
reaction (2) is prominent and proceeds with a large
energy release would the situation become highly
ambiguous.
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A unique equivalence is established between the Riemann curvature tensor and two spinors. The fourteen
invariants which can be constructed from the curvature tensor are listed in terms of the spinors. The van-
ishing of the invariants for several different types of spaces is described. A classification of Einstein spaces
is made together with a few additional remarks concerning classification of spaces.

I. INTRODUCTION

HE general theory of relativity deals with the
metric tensor, g,q, and its first and second deriva-

tives with respect to space-time. It has long been
known! that fourteen independent differential invari-
ants can be constructed from the second derivative of
* This research was supported in part by a contract with the

U. S. Air Force, monitored by the Aeronautical Research Labora-

tory.
I'C. N. Haskins, Trans. Am. Math. Soc. 3, 71 (1902).

the metric tensor and that these invariants can be
expressed in terms of g,, and the Riemann curvature
tensor, R??7¢, The fourteen invariants have been con-
structed?; it is obvious by inspection of these invariants
that when the contracted curvature tensor R?? vanishes
(Einstein’s equations for empty space), ten of the
invariants also vanish leaving four of them which may

2 J. Geheniau and R. Debever, Bull. acad. roy. Belg. 42, 114
(1956).
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not be equal to zero. It becomes now pertinent to
consider the possible significance of the nonvanishing
invariants and the possible significance of there being
four of these invariants (the same number as the
dimensionality of space-time). Regarding the latter
point it becomes proper to ask how many independent
invariants do not vanish when space is not empty but
is rather filled with electromagnetic fields. We shall
show later that the number is nine for a non-null
electromagnetic field. For a null electromagnetic field
it will turn out that ten invariants vanish, the same
ten as for empty space-time. A null electromagnetic
field is one in which the two electromagnetic invariants
are both equal to zero. We also explicitly exhibit a
space where there may be at most five surviving inde-
pendent invariants. Further, one asks whether the
invariants can be usefully used in classifying geometric
spaces. From the above remark on null electromagnetic
fields and from our later analysis, it is clear that the
vanishing of ten invariants is not sufficient to guarantee
that R??=0; in fact all fourteen invariants can vanish
and still R?? may have nonzero components.

This paper is concerned with the above issues. In
Sec. I, we show how the curvature tensor R?97 can be
equivalently (uniquely) represented by means of two
spinors of special types. In Sec. III, we construct the
fourteen invariants from these two spinors; we then
show that at most four independent invariants are not
zero when space-time is empty and that at most nine
independent invariants are not zero when space-time
is filled with a non-null electromagnetic field and four
when it is filled with a null electromagnetic field. In
Sec. IV we show how the invariants can be used to
classify the geometry when R,,=0 and in Sec. V we
make one or two general remarks concerning classifi-
cation of spaces. The specific calculations in these last
four sections could, of course, be done without the use
of spinors but using only tensor algebra; however, we
thought it interesting to see how the matter went in
spinor language.

II. THE RIEMANN CURVATURE TENSOR AND
ITS EQUIVALENCE TO TWO SPINORS

Spinor fields®# have been treated in general relativity
from several points of view. It is known that to each
real tensor one can assign a spinor. In this section we
assign a spinor to the Riemann curvature tensor and
see what the symmetries of the tensor require of the
assigned spinor, which turns out to be a unique spinor.

Regarding notation, Latin tensor indices (as in g?9)
are given values 0, 1, 2, 3; the signature of the metric
tensor is +, —, —, — ; Greek spinor indices (as in g?4g)

3 W. L. Bade and H. Jehle, Revs. Modern Phys. 25, 714 (1953),
review spinor analysis and have references to the previous liter-
ature.

4 E, M. Corson, Introduction to Tensors, Spinors, and Relativistic
W ave-Equations (Hafner Publishing Company, New York, 1953).
Chapter 2 discusses spinor algebra and uses it in special relatlvxty
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are given two values (a¢=1, 2; a=1, 2, etc.). The spin
matrices, gPsp, transform like tensors for the index p
and like spinors of the proper type for each index &, 3.
We use a representation in which the g matrices are
Hermitean, §?.s=g?4, (bar denotes complex conjugate)
and define the spin matrices by
BP0 e+ g PGP 4y = 2G50, 1

The Latin index in gPas, gpap can be lowered or raised
by using the metric tensor g,, or g2 The Greek indices
&, 8 can be raised or lowered by using the antisymmetric
fundamental spinors €8, es4, €*#, e, which are equal to
0 when a=p and equal 41 if a=1, =2, and equal to
—1if =2, 8=1.

An Hermitean second-rank spinor ¢;g is determined
by four real numbers and can therefore be made to
correspond to a real world vector x? by the relation

Gap=gpas?, 2
which can be inverted by multiplying by g4 to give
2= dgtap . ®)

For the more complicated Riemann tensor,
Rpars=gpaxgairgrings iv¢&ﬁﬂ“)\w- 4)

The reality of R,q. requires ¢abirdso= gikpsapur The
antisymmetry relation Rpgrs==—Rypr, imposes the
relation ¢&birnhes = — pBawhms 5o that

Rpgrs= zgpaxgqm\grupgsw(d’aﬂ"”m*‘i’ﬁaw)‘“”) ®)

This can be rewritten as
Ropare= 8 pandafrBripGoso{ eNpePiivo cidymoaiiy - (6)
where we have defined
2¢aéﬁapa= ¢&ﬁﬂi’)\)\pu+¢ﬁ&ﬂi’)‘>\pa’. (7)

¥ is symmetric in the indices aB.

To verify (6), consider (5) in the cases a= B, k=X
=B, k#E\; a;éﬁ, k=\; and a;éﬁ, k#%\. The antl-
symmetry relatlon Rpgrs=—Ryqs, imposes the relation

exwaﬁp»po_i_ €a5¢xxp¢pi= _ [exxd,aﬁa,zap_l_ eaﬁel/,xxapapl (8)
so that
Rears=$8pta8airtrinosel e (bitno—ybvie)
et (peen—yReiy]. (9)
By considering the cases 4=7, p=0; a=v, p70; g7,

p=0; 157, p##a; and defining 2¢“ﬁ””=1lx“ﬂ“” ot by,
2¢p&bro=y s\ Mo yéb Mo one sees that

Ropars=18paxgairgringssol €W PHI - ebbehihoa

+ exxe,za¢aépa+ edﬁ'epv¢x)\fu’l]' (10)
YeBis is symmetric in &f and in 4y ; ¢###7 is symmetric
in @B and in pe.
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The symmetry requirement Ryqrs=R,;p, means that

e epa,/,af},zi_i_ edﬁeﬂ.i‘l/«xpv_l_ PN Eﬂit¢&ﬁpa’+ Eaéepa¢xx,1a
= exxepa,/,,zia,é+ eaﬁeﬁa¢xxpa
+ e&ﬁepad)ﬁix)\_l_ G}Zf'en)\¢p6&é (1 1)

Equation (11) is satisfied if x//"‘f"“‘ y#red and if Gadmwr
=¢#ef which conditions we now impose. There is still
one other restriction that the tensor R,,,, must satisfy
before it can be considered a curvature tensor. This is
the cyclic constraint

-qurs+Rprs q+Rpsqr= 0.

Tedious but very straightforward calculations starting
with (10) and using the symmetries of ¥ and ¢ will
show that (12) is satisfied if and only if

‘/’aﬁéaz‘paﬂﬁa-

Equation (10) thus represents the Riemann curvature
tensor by means of two independent spmors Y& and
¢%ee, These two spinors are symmetric in an inter-
change of their two first indices or of their two last
1ndlces, moreover y(/"‘ﬁ"”—l,b"”"‘ﬁ and ¢°"’P"—¢P”“ﬂ also
\Iz“ﬁ «=v%8,. Let us look at the number of 1ndependent
components of each spinor. First Y% : the palr aB
can take three independent values, and the pair v
can take three more, making nine altogether. y&f#
=y#4& impose three constraints; there are now six
complex or twelve real components left, which number
is reduced to eleven because of condition (13). Piboo
can have three choices for ¢ and three more for po,
making again nine choices. $#*#¢ can have so far nine
complex and eighteen real components. The Hermitean
requirement ¢“f’P"—¢'”’“ﬂ 1mposes one constraint for
each choice of indices, leaving nine independent real
parameters. Thus ¢¥*f» has eleven independent real
parameters and ¢#** has nine, for a total of twenty.
There are twenty independent components in R,qrs S0
that the results are compatible.

It is instructive to look at the contracted curvature
tensor R,=RP?,.,. Using the spinor relation gPs,gpés
=2¢€44€,0, ONE has

(12)

(13)

Ry= %gqﬁpgrﬂd[a”‘Pmﬂ&'l“ fﬂ’é‘//ap‘a‘*' 2¢(§,z,w]_ (14)
Using the spinor relation
gpﬁagqﬁ'#=gquan‘i‘%g_}qursgréagsﬁm (15)

and the fact that ¥%#4, is antisymmetric in 8 and f,
one finds

Rpo=gp*sPat gpﬁpgqﬂv‘i’ﬁ'ﬁp‘- (16)

Contracting again,
R=4ygh,. (17)
Let Spe=Rpq—goR/4 so that S,,=R,, if R=0.

Then

Spq=gpﬁpgqﬁv¢3ﬁw- (18)
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III. CURVATURE INVARIANTS

The fourteen invariants that can be derived from the
curvature tensor can now all be expressed in terms of
the two spinors gb"‘ﬂ"’ and ¢&#*, Any expressmn involv-
ing these two spinors can be re-expressed in terms of
geometric elements. Obviously, from (18),

pPier =1, Prg b7 (RP1—1gPeR). (19)

Now we must construct a geometric expression from
Yofrr, Define the double dual R,y of the Riemann
curvature tensor

qursE%gepqab ecdrxeRade- (20}
Now let Epgrs=Rpqrst+Rpqrs. Define the dual
qurs = %g%emabEabrs- (21>

E,qrs is purely imaginary if E,q,, is real. It can be
readily seen that

Yoo = %gpé"gqﬁ)‘grapgs&g[qu"‘l'qu”]' (22)

Epqrs and E,,,, are purely geometric tensors. Obviously
any scalar invariant which can be constructed from
Yoy and ¢4 can be written, by use of (19) and (22),
in terms of geometric tensors alone.
To list the invariants, there is first the scalar corre-
sponding to R:
Yo (23)
This is a real expression and corresponds to one invari-

ant. There are three independent real invariants which
can be constructed from ¢a4,, alone:

¢&ﬁpv¢&ﬁw; ¢&§Mv¢'ﬁhp¢f:&pﬁ, ¢&ﬁuv¢ﬂhp¢k5\p:f¢ )\ﬁ‘m-

There are two independent complex or four independent
real invariants which can be constructed from s
alone:

(24)

¢aﬁ”y¢aﬂuv’ "/’aﬁw‘pwncr‘!’pmﬂ' (25)

We have so far found eight real invariants. The con-
struction of the other invariants involves products of
¥’s with ¢’s. There are six real invariants or three
complex invariants of this type:

Goaafl PP, Vo b s ah BIG s
¢7§ &qupa&ﬂ'\bp GK)‘¢K7\[M‘I¢75M-

This completes the listing of the invariants. Suppose
now space is empty and R,,=0. By (17) and (18) this
requires Y%, and ¢%#* both to vanish. Hence all the
invariants vanish except those labeled (25). Thus in
empty space there are at most four nonzero curvature
invariants.

Suppose that space-time is not empty but is filled
with electromagnetic fields. In this case the stress-
energy-momentum tensor relation takes the form

Rpo=forfa = 18nafref™. (27)
foa=(2G)*F ./ ¢*; G is the gravitational constant, ¢ is

(26)
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the velocity of light, and F,, is the usual antisymmetric
electromagnetic tensor. In flat space and Cartesian
coordinates Fip=the Z component of the magnetic
field; Fi4=the X component of the electric field multi-
plied by ¢, etc. Define the dual tensor of f by

quE %‘ghéqu”frs: fre= %g%eraqupq- (28)

€??7? and €, are tensor densities which take the values
+1 when pgrs is an even permutation of 1230; —1
when pgrs is an odd permutation of 1230; and 0
otherwise. The second of relations (28) follows from
the first and from the properties of the ¢’s. Now define
the self-dual antisymmetric tensor,

‘*’Pqupq+.f:oq- (29)

It is well known’® that a self-dual antisymmetric tensor
of the second rank can be represented uniquely by a
symmetric second rank spinor:

Wpa=Ep*u8aard”’s P =%gr™ s’ (30)
Moreover, the equation (27) becomes
Rypy=wpr@dq" = gp*s8rang g 009", 31)

Rpo= —2gps88 0sud® 9.

Consequently consider the two spinors 8 and ¢
which represent the curvature tensor. It is clear that
in the case of space filled with electromagnetic energy
the spinors are constrained to satisfy the conditions

Peha=0, gt —2piige. (32)

For electromagnetic fields, invariant (23) thus vanishes.
Of the three invariants (24), the first one survives in
the form (neglecting in the following constant factors)

Paibud . (33)
Using relations such as
BT =319 Py, (34)

one sees that the second invariant of the series (24)
vanishes and that the third is expressed as the square
of (33). The four real invariants of (25) are unaffected
by the change in the controlling equation for R,,.
Consider the three expressions (26), the first two
remain independent and are expressed by

bapbil s:0°00%, G PP s P ppdis.  (35)
The third expression (26) becomes
PP H st P e ssbapd PO

This is not independent, being the product of (33) and
the complex conjugate of the first expression in (35).
Thus in the case of electromagnetic radiation there may in
general be nine independent nonvanishing invariants;
only one invariant must vanish; only nine of the remaining
thirteen are independens. From the electromagnetic

& See reference 4, p. 31.
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tensor one can construct the complex invariant, w,w??.
In case this vanishes we shall call the field a null field
and the tensor w,, a null tensor. It is easy to establish?
that for a null antisymmetric tensor, w,,, the corre-
sponding spinor, ¢, takes the form ¢2¢f. With ¢=#
=¢°pP one sees that all of the invariants (33) and (35)
vanish. Thus if space-time is filled with electromagnetic
radiation of the null-field type, the same ten invariants
vanish as vanish for empty space-time, leaving four
possible nonvanishing invariants.

Another interesting case to consider is one where the
field contains a fluid with no pressure or internal
stresses. In this case

TPQ: povvpv (1’

(36)

T7? is the stress-energy momentum tensor, po is the
proper density of the fluid, and v# is the proper velocity
(dx?/ds), v?, being a real tensor, can be represented
by a spinor ¢#8 with $&8=gbe,

D= grast®, 676u=2. (7

Since 7'?,=po, and R??—1gP?R=—T7?¢ we see that
[from _(16) and (17)] YsP.=21po and ¢p&ir=23p et er
—1pop®*¢i. Leaving out constant factors, the invariant
(23) thus equals po; the invariants (24) become pe?, pe?,
pot, respectively; the four real invariants (25) are still
free; the six real invariants (26) become

PPy b B = p,
PO B Bl b= ot
pot (€108 — p2198) (fanric)
X¢ﬂ?$€¢ﬁ£¢h (% €’ehd— o} ﬁ'y¢ &6) = p()5.

The equalities in (38) are true up to constant factors
because of the symmetries of ¥*#** and because ¢*fgps?
=ef. Thus in the case of a fluid with no pressure or
internal stresses there are at most five independent non-
vanishing invariants.

From the above analysis concerning null electro-
magnetic fields, it is obvious that one cannot tell
whether space is empty by counting the number of
invariants which are not equal to zero. To show this
more strikingly, we make the following remark: It s
possible that all fourteen invariants may vanish and still
Rre will not vanish.

An example of the vanishing of the fourteen invari-
ants with R,4520 is the case of the null field above with
the additional requirement that the spinor ¥*** vanish
or at least that ¥*## be so chosen that the invariants
(21) vanish. There are other choices of ¥*#= and ¢&h»
which will make the fourteen invariants vanish without
requiring ¢*** to vanish, or without requiring R,,50.
Suppose for example y*# is identically zero. Then only
the three invariants (24) will not be zero. These three
can be made equal to zero, leaving still many nonzero
components in the spinor ¢4 or correspondingly in
the tensor R,,.

vPy,=1.

(38)
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IV. CLASSIFICATION OF EINSTEIN SPACES

Calling a space for which R,,=0 an Einstein space,
we see that for an Einstein space the curvature tensor
R,4rs is completely determined by the spinor ¥ with
Y*f,5=0. Such a space allows the existence of four
nonzero differential invariants of the type we are con-
sidering. It becomes reasonable to attempt to classify
the space by the behavior of these invariants. Let us
define an eigenspinor ¢*# of ¢*#* by the following
equation:

Yo g =N, (39)

Here A is obviously an invariant and we ask whether
any eigenspinors exist. Obviously ¥#* is symmetric in u
and v if it exists. Expanding equation (39) into compo-
nents, recalling that Y11 =v% Ye=y", Y1o=—y?, and
that ¥ must be symmetric, one gets a set of three
algebraic linear homogeneous equations in ¥** which
permit a nontrivial solution if, and only if, the following
determinant, D, vanishes:

yRrI—)  — 2yt Pl
D= 1112212 — 2¢1212_ A lﬁlm =0. (40)
Y222 — 12z Pr2z—)\

This is a third order algebraic equation in A; however,
by virtue of Y*f,g=y11—2y1224y1122=0, the sum of
the three roots must equal zero. A;4-A24As=0. Thus
we can find three symmetric eigenspinors with the
properties

Yo gp= Ay,

P =Dt

Yo nag=Ngn®P.
A1, A2, and A; may all be complex; they represent by
virtue of the vanishing of their sum four independent
invariant quantities which may be represented by the
group (25). Each symmetric spinor can be made to

correspond to a self-dual antisymmetric tensor of the
second rank.

(41)

M po=go" g,
N pe=go" a8 ais €,
P o= gp"agaipn®®.

These self-dual tensors (each of which is complex and
hence contains two real tensors) are eigenbitensors of
the curvature tensor. That is, they satisfy relations like

Rpars}f, =\MPa, (43)

The eigenspinors for nondegenerate N’s are orthogonal
as can be proved easily; for degenerate N’s they can be
chosen orthogonal; moreover they can be normalized
so that

(42)

VoPap= £*BEag=n"Ppap=1,
‘Paﬂfaﬁ =¢aﬂ’7aﬁ = Eaﬂ"?aﬂ: 0.

The second equation defines orthogonality of the

(44)
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eigenspinors. There is the important possibility, which
we shall not investigate further here, that an eigenbi-
vector may be null, w,gw*®=0, and therefore not
normalizable.

Degenerate cases can now be considered. One of the
six real quantities represented by Ay, Ao, and A; may be
equal to zero, in which case one of them, say Ay, is
either purely real or purely imaginary. In this case
Yebuny b, =Py ol the positive sign  being
chosen for purely real \; and the negative for purely
imaginary A;. In either case there remain still three
independent eigenspinors. Suppose two of the six
quantities in the N’s are zero. Here we can still have
three independent eigenspinors if, for example, A; is
real and A, is purely imaginary. On the other hand,
it might be, for example, that one of the N’s, say Ay,
equals zero. In this case there are only two independent
eigenspinors, £% and 7%, which satisfy

Yo Eag=Na ",

There is, however, a ¥,p orthogonal to £2f and 5*f such
that

1//“"9’“'?7(13= — Ao, (45)

Yefinpag=0. (46)

Again we may have the case that A, is either purely
real or purely imaginary. This does not change the
remarks just made. If all four independent invariants
vanish so that Ai=XAs=A3;=0, Eq. (39) degenerates
completely to Eq. (46). There are thus three important
cases to consider.

Case 1. M50, A\35%0, A3=— (A\1+X\2)7%0. In this case
there are three eigenspinors or three self-dual tensors
(six real tensors) which satisfy (43). A\; may be purely
real or purely imaginary; so may As. There are thus
two, three, or four nonvanishing real invariants. If
there are fewer than four, additional constraints are
imposed on the eigenspinors.

Case 2. \1=0, A\27%0, \3=—\s. (The role of the \’s
can of course be interchanged). In this case there are
two eigenspinors or two self-dual eigenbitensors. One
can also find an eigenspinor, ¥.g, that satisfies (46).
It is important to see that one can require also the y#
that satisfies (46) to be null in the sense that ¢*f,s=0;
in this case % can be represented by a single component
spinor Y*f=y 48 such that

Yefyafp=0. (47)

The eigenbitensor constructed from ¢= by M,,
=g ages¥* is null in the sense that its complex
invariant M, M?9=0. (This requires two real invari-
ants to vanish.) A, may be purely real or purely imagi-
nary which will impose additional constraints on the
eigenbispinors.

Case 3. \1=0, A2=0, \;=0. Here there are no spinor
relations of the type (39). All eigenspinors satisfy (46).
It is probably true for this case where all invariants are
equal to zero that, if Y*#” has nonvanishing compo-
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nents, one can find a particular coordinate system where
a noncovariant relation that looks like (39) is satisfied.
It is probably true also in case 2 that in a particular
coordinate system under certain conditions one can
satisfy a noncovariant relation that looks like (39).

The cases we have enumerated would seem to corre-
spond to the “types” of Petrov and Pirani®: case 1 to
type 1, case 2 to type 2, and case 3 to type 3.

V. GENERAL REMARKS ON THE
CLASSIFICATION OF SPACES

In the previous section we have discussed the classi-
fication of spaces for which R,,=0. It is important to
see that this discussion actually concerns a much larger
variety of spaces. Suppose we require only that R=0,
or Yy*f,5=0. Call such a space a traceless space. Con-
struct from ¢*## the tensor G?9"3;

Gpare= 58 afngring s €€ d\b&ﬁm"}' € S O

When R,,=0 this tensor equals the Riemann curvature
tensor. However, it can be constructed even when
R,,;#0. In the case of a traceless space (R=0), the
classification of the previous section can be applied to
Gpers and there are three possible cases for Gpgr,. If
the energy-momentum tensor is built up of the electro-
magnetic field and the field of the two-component
neutrino and nothing else, the space is traceless; thus
this type of space is not without physical significance.
One may thus make remarks like the following: A
space being investigated is traceless, contains electro-
magnetic fields, and is represented by case 1; or it
contains the two-component neutrino field and is
represented by case 2.

For a traceless field R,,=.S,q where S,, has been
defined in Eq. (18), we have

qu:gp&ugqmd’&ﬁw- (49)

We wish to classify these fields by looking for eigen-
spinors defined by

B4Brd s, =NgP. (50)

Obviously @f*=¢"#, so the vector I, defined by 7,
=1g,:p0%F is real and is an eigenvector of R,

R,4,=Np. (51)
It can be shown easily that (50) can be satisfied if, and

6 A. Z. Petrov, Sci. Nat. Kazan State Univ. 114, 55 (1954);
F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).
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only if, the determinant D’ vanishes,

¢2121_)\ __.¢iiz1 _¢éiu ¢iiu
p=|%" Te-A —¢m e
¢?}22 ___4)1}22 ___¢2112_)\ ¢H12 .
P2 — ¢1222 — ¢2212 ¢1212_ A |
(52)

Because of the symmetries of ¢, the four N’s defined
by (52) are real; moreover A;+Ag+As+A=0.

There are thus in general four independent vectors
that satisfy (51). The space can now be additionally
classified by investigating the possibilities that one,
two, three, or four of the invariants vanish. If they do,
Eq. (51) takes the special form

R,,=0. (53)

Classification along these lines has been implicitly
discussed many times.?

One can of course classify spaces for which R,, is
completely arbitrary; this amounts to ‘“‘diagonalizing”
by the process of equations (37), (40), (50), and (52) the
“matrices” %8, ¢4 which will involve a classification
in terms of the behavior of the invariants (23), (24),
and (25). One should also define something resembling
a “simultaneous diagonalization” of both ¢*#” and
¢%# which would introduce the “mixed” invariants
(26). In this general case, instead of dealing with the
spinor Y¥*f** it might be convenient to deal with a new
spinor %+ defined by

R e AT (54)
Construct now the tensor Fqps:
Fpgre= %gr&"gmé)\grﬁpgsﬁv[e“ epﬂgdéﬁ"*‘ E&éeﬁgkm} (55)

The tensor F,q.s has the same symmetries as R4, It
is equal to R,q.s for the case of an Einstein field and
in general can be classified as was R,q.s for the Einstein
field.
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