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Revised Weizsacker Semiempirical Foiiiiula for Diffuse Nuclear Surfaces*
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An attempt is made to modify the Weizsacker semiempirical mass formula to include effects of the diffuse
nuclear surface indicated by recent electron scattering experiments. Volume and surface e8ects are combined
by integrating over an assumed trapezoidal density function similar to that found experimentally. Good
fits to the experimental nuclear masses are achieved with ro (a radius parameter) and o (half the surface
depth) equal to 1.081X10 "cm and 1.202X10 "cm, respectively. These are in reasonably good agreement
with the experimental values (1.07+0.02) X10 "cm and (1.50+0.20) X10 "cm found by Hahn, Ravenhall,
and Hofstadter.

'N its original form, ' the VVeizsacker mass formula
~ - attempts to reproduce the general trend of nuclear
masses by assuming a uniform density throughout the
nucleus and using a spherical drop model to calculate
the various contributions to the binding energy. Recent
experiments in electron scattering indicate that the
nuclear surface is somewhat diffuse. ' This study at-
tempts to demonstrate the possibility of 6tting a
Weizsacker formula to nuclear masses when this
diffuseness is considered.

In recent literature on this subject, a reference surface
was used to calculate the surface energy terms in the
mass formula. ' In this paper we have attempted to
replace the volume, surface, and Coulomb energy terms

by integrals over the nuclear volume assuming a
trapezoidal distribution of charge and mass density.
This method divers from previous Weizsacker fits

mainly in that it allows a single expression for both the
volume and surface contributions to the binding energy.

The parameters used in describing the trapezoidal
model are defined below and shown in Fig. 1. The
parameter c is the radius to the point where the nuclear

density drops to half of its original value. The parameter

e is one-half the distance between the point where the
density starts to drop oG and the point where it is zero.

Since internucleon forces drop o6 rapidly with
distance, one may say with plausibility, though without
certainty, that the energy due to these forces should be
proportional to p'.4 Of course this cannot be completely
correct since otherwise there would be no saturation
eAect. Nevertheless, this type of dependence has been
used before and permits simple calculations. Hence we
postulate that the total volume energyincluding surface
energy is proportional to an integral
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The calculation of the Coulomb energy is more
straightforward but slightly more dificult. For a
spherically symmetric charge distribution with density
p(r'), it is easily verified that the potential at any field

point r' is

~ao 1 ~r'
oo(r') =)' —dr')~ 4mr'p(r)dr,

f/2
p
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FIG. 1. Trapezoidal density showing meaning of
parameters e, c, pp, and rp.
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whereas the electrostatic energy is
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By an integration over the nuclear volume, this
yields the result

8m'pp' 2 1 1 1
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4 W. A. Fowler (unpublished notes on Nuclear Physics, Cali-
fornia Institute of Technology),
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An obvious constraint on the values of pp for both
the electrostatic and mass densities is

.090

These yield
3Z8

OBO

or
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An additional exchange correction term of the form
Z(Z —1) (1—0.767/Zl) was inserted in the foregoing in

place of Z' as suggested by Cooper and Henley. '
Thus the complete functional form of the revised

Weizsacker formula which we shall use is
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TABLE I. af= f.,&, f,„s (in units of 10 '—amu).

e/ro 1.065 1.094 1.103 1.112 1.121 1.130 1.159

Co»
S1.87

Sn»8
Sm149
p8189

0.152
0.092
0.104
0.026
0.185

0.153
0.005
0.080
0.052
0.150

0.147
0.035
0.076
0.065
0.137

0.144
0.063
0.069
0.076
0.125

0.136
0.095
0.065
0.090
0.111

0.132
0.124
0.053
0.102
0.106

0.141
0.223
0.029
0.139
0.060

Z (5f)9 0.0776 0.0550 0.0516 0.0509 0.0522 0.0572 0.0921

' L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801 (1953).

where a„a, and u, are constants which represent the
relative strength of the Coulomb, asymmetry, and
volume-surface contributions to the packing fraction
of a given nucleus. Henceforth this expression will be
referred to as the "f"function.

In this "f"function, we have assumed that the basic
nuclear half-maximum radius c goes as the cube root of
the mass number (c=rsA'*), and that the width of the
disuse surface 2e is considered to be a constant with
respect to changes in nuclear mass number as indicated
by Hahn, Ravenhall, and Hofstadter. ' Furthermore,
we have assumed that the factor of proportionality rp

is the same for both the mass and electromagnetic size
of the nucleus.

If we consider only odd-A nuclei, the pairing energy

Fro. 2. Least-squares 6t of the arameter e/rs
[Z(hf)s in units of 10 s amu)s].

coefficient 8 may be eliminated, and thus the "fri
function contains only three unknowns —a„a„and a, .
The packing fraction function was thus fitted to the
masses of three separate nuclei which were picked to be
representative of the range in which the formula was
expected to be valid. These were CP, Mo'5, and U"'.

The main problem in accomplishing a ht is, of course,
to solve three equations in three unknowns (a„a„and
a„) such that for particular values of the parameters e

and rs the "f"function passes through the points listed
(CP', Mo", U"'). For ease of calculation, it was noticed
that except for the terms rJ,/rs and a„/rs', "f" is a
function of the ratio e/c or essentially of the ratio e/rs.
Thus we lumped a,/rs and u„/(rs)s into new constants
which would be determined when we fit the function to
the three listed nuclei for a particular value of the
ratio e/rs.

To determine the best fit, we defined a function &f
to be the difference between the predicted value of f
and the actual value observed for a particular nucleus.
The value of Af was calculated for different nuclei as a
function of the ratio e/rs for different fits. The best fit
was considered to be the particular ratio which gave a
minimum to the sum of the squares of Af The values.
of Z(hf)' are given for the five representative nuclei
used in this calculation in Table I and are also plotted
in Fig. 2. As indicated on the graph, a best 6t seems to
occur for the ratio e/rs 1.111. ——

To 6nd the actual values of e and rp for a particular
fit, we noticed that if a, is given some prescribed value,
then from the value of a./rs determined from that fit
we may determine the value of rp. Since the expression
for Coulomb energy in the "f"function is an essentially
classical calculation for the assumed charge distribution,
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FIG. 3. The family of its for various values of c/ro, showing the effect of various values of o, and
including the line of best 6t and the point of best fit.

a reasonable value of a, should be nearly unity. This is
in agreement with many previous Weizsacker fits which
have essentially classical Coulomb energy terms. '

Figure 3 shows the actual values of e and rp which
occur for differing ratios of e/rs and differing values of
a, near unity. The line of best fit is indicated on this
graph. This is a line of e/rs 1.111 and, as s——hown on
the graph, the actual values of the parameters are
somewhat sensitive to changes in the assumed value of
a,. Assuming that a, equals unity, the best fit occurs for

rp=1.081)&10 "cm, &=1.202)(10 "cm.

In comparison, the values obtained by scattering
experiments (reference 1) are

rp= 1.07~0.02)&10 "cm e= 1.5~0.20)&10—' cm.

In Figs. 4 and 5, the "f"function is plotted for the
value of s/rs which gives the best fit and two extreme
values on either side of the best fit. Also included are

' R. D. Evans, The Atomic fIt'ttcleNs (McGraw-Hill Book Com-
pany, inc. , New York, 1955).

experimental points as given by Wapstra and Huizenga. '
As is evident, our best fit follows the trend of experi-
mental points better than either of the two extreme
cases, although all three lie very close together.

We do not try to be too definite in giving probable
error to the values of e and rp since we required that all
our solutions pass through the three listed points.
Even though we have found the best fit subject to this
constraint, it is possible that better fits might be
obtained with solutions which do not pass through
these particular points. Furthermore, as shown in Fig.
3, our best fit is sensitive to changes in u, . A complete
analysis of the data using our model might indicate a
better fit at an a, not exactly unity. This might give
somewhat diferent results for the values of the nuclear
parameters. Finally, it is obvious that the volume

energy of the nucleus cannot be exactly dependent on
p' because of saturation. Taking this e8ect into account

' A. H. Wapstra, Physica 21, 367 and 385 (1955); J. R. Hui-
zenga, Physics 21, 410 (1955).
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would be very diKcult, but as above, it might lead to
a different set of parameter values for the best fit.

We have attempted in this paper to show phenomen-
logically that good fits can be obtained with a trape-
zoidal nuclear model using a single expression for
volume and surface-energy contributions. Furthermore
we have attempted to show that a reasonable fit can
occur at the values of e and ro which agree with electron

scattering data on the disuse nuclear surface (reference
1). We have, however, not attempted a complete and
detailed analysis of the trapezoidal model.
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