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A systematic method for constructing tests of time-reversal invariance in nuclear forces by means of
gamma-ray angular correlations is described. The transition supplying the test consists of a mixed multipole;
it must be preceded by a polarizer to produce a nuclear orientation and (in all but one case) followed by a
second photon which serves as an analyzer of the final nuclear orientation. The exception is a test in which
one detects the linear polarization and direction of a quantum from a nucleus with initial orientation of

third degree.

A general formula for the direction of a single photon with arbitrary polarization and involving an arbi-
trary orientation of both the initial and final nuclear states is presented. Expressions of this type have the
advantage that individual ones can be combined together in a simple way to form an arbitrary correlation
formula. This is carried through numerically in one case for beta-gamma-gamma direction correlation, where
the first photon is mixed £2 and M1. It is shown that such measurements must be carried out to 1 or 29,
in order to better the present limit of our knowledge concerning time-reversal invariance.

I INTRODUCTION

N the preceding paper' we have shown that our

present knowledge of the validity of time-reversal
invariance in nuclear forces limits the fraction of time-
reversal-odd interaction to ~109, although the
corresponding number for the parity-odd force is
~3X107* The desirability of lowering the former
limit justifies the detailed discussion given here of one
method likely to accomplish this end for phenomena in
the 1-10 Mev range—e.g., angular correlations in-
volving gamma rays.

One consequence of time-reversal invariance that
was first pointed out by Lloyd? is the reality of certain
matrix elements which occur in the theory of angular
correlations of successive gamma rays. Should time-
reversal invariance not hold, then there could be a
nonvanishing sine of a phase 5 for each matrix element.
It is probably unnecessary to remind the reader that
these phases need not be connected with a breakdown
of time-reversal invariance in the basic electromagnetic
interaction, but could arise from a small imaginary
part (in a certain standard representation) of the
nuclear wave function. The difference between two
such phases, An, in principle can be detected from the
interference terms arising in a mixed transition. Certain
experiments measure cosAn and therefore detect only
terms of second order in A7 ; these have been discussed
in the preceding paper. This paper concerns itself with
those angular correlations which would detect the
first-order sinAn terms,® which are directly proportional
to the fraction § of time-reversal-odd nuclear inter-

action.

* Supported in part by the U. S. Atomic Energy Commission.

1 E. M. Henley and B. A. Jacobsohn, Phys. Rev. 113, 225 (1959),
preceding paper.

28S. P. Lloyd, Phys. Rev. 81, 161 (1951).

3The first suggestion of testing time-reversal invariance in
strong interactions by means of one such measurement appears
in T. D. Lee and C. N. Yang, Brookhaven National Laboratory
Report BNL-443, 1957 (unpublished).

Since we only discuss tests of time-reversal invariance
which make use of electromagnetic transitions between
bound states of nuclei, we avoid the troublesome
question of final-state interactions.* For gamma rays
of ~1 Mev, the phase shift for nonresonant elastic
scattering is expected to be ~5X 10 radians or less;
this then marks the lower limit of § which can be
reached by the methods given in the succeeding
sections.

We endeavor to present a systematic approach to
the problem of constructing experiments to measure
sinAn. Rather than attempting to list a series of such
experiments, we break the angular correlation problem
into steps; the first and last steps described in Sec. II
play the role of polarizer and analyzer of the nuclear
orientation which is needed to measure sinAn. The
middle step is the time-reversal invariance test itself
and is treated separately in Sec. III.

In Sec. IV, we present formulas for calculating the
coefficients of the various terms in the angular cor-
relation. These formulas are sufficiently general to
handle all polarizations of the radiation and all nuclear
orientations. They represent some improvement over
angular correlation treatments which we have found in
the published literature® inasmuch as with their aid
each radiation can be treated separately, and as a final
step successive ones can be put together. The results
given in Sec. IV may also prove helpful in the inter-
pretation of angular correlation experiments which
have nothing to do with testing time-reversal in-
variance.

In Sec. V we discuss several concrete experiments
and present a few numbers, and in the appendix we
sketch the proof of the formulas of Sec. IV.

* A misleading statement concerning alpha-gamma correlations
appears in B. A. Jacobsohn and E. M. Henley, Bull. Am. Phys.
Soc. Ser. II, 2, 393 (1957). This question is treated in a forth-
coming paper by B. A. Jacobsohn and L. W. Miller.

® However, there is some overlap between this work and that
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TaBLE L. Various methods of detecting the degree of orientation
() of a nucleus of spin 7, with the aid of a direction, k, and
polarization measurement of a photon emitted by b&; this is referred
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TaBLE II. Methods of producing an initial nuclear orientation.

to in the text as the analyzer. Method orig';‘g{f:;{m,
N Degree of Cryea e e feld BB
11
m:aglilrzea:nlg:t Quantity measured dletected A}IOWCd B. decay (Gamow-Teller) 1
- First-forbidden 8 decay 1,2,3
None L (kg . 0,2,4,.-- Magnetic field followed by long-lived
Circular (k-s) (k-3 )2t = (§p-5) (k-jo)" 1,3,5,--- unoriented radiation 1,2,3,.--
Linear (2352 (k-3)%" 2,4,6,---  ray, oriented , 4, -
v ray, oriented and circularly polarized L3

II. POLARIZERS AND ANALYZERS

In order to test time-reversal invariance, use shall
be made of a transition in which a nuclear state of spin
Ja, oriented to a degree Q,, emits a (mixed) radiation
with momentum k and arbitrary polarization, leaving
the nucleus in a state with spin js, oriented to a degree
Q. The ‘““degree of orientation” @ labels the repre-
sentation of the rotation group according to which the
statistical tensor transforms; in other words, @ is the
power of j which must be measured. Thus 2=0 refers
to a totally unoriented state, 2=1 to polarization,
Q=2 to alignment, etc.

We defer to the next section the consideration of
experiments that can be used to test time-reversal
invariance, and the role of nuclear orientations in these
tests. Here we discuss the detection (analyzer) and
production (polarizer) of the orientations, 2, and Q,,
in the final and initial states, respectively. A gamma ray
emitted by the state b is used as the analyzer, since this
function must be performed in a time that is short
relative to the relaxation time of the state. Table I
presents the various ways in which a photon can be
used as an analyzer, depending on the type of polari-
zation one wishes to measure. In the second column
under “Quantity measured” are listed of course only
quantities invariant under time reversal, since any
breakdown of time-reversal invariance is small and
therefore should not be used in the analyzer or polarizer;
the appearance of only even powers of k ensures parity
conservation. The third column simply counts the power
of j» appearing in the second. It is clear that one can
detect even orientations without a polarization meas-
urement, that odd orientations require a circular
polarization measurement, and there is nothing to be
gained in detecting the direction of linear polarization
in the analyzer.

Table II lists some ways of producing the initial
orientation ,, together with the degree of orientation
achievable by each method. While most entries in this
table are self-evident, a few points may be singled out
for special comment. First, although from angular
momentum considerations alone one might expect an
allowed B decay to be able to produce Q,=2, this is
missing because the transition probability is at most
linear in the electron momentum, p., and one finds no

of F. Coester, Argonne National Laboratory Report ANL-5316,
Chicago, 1954 (unpublished).

power of j, higher than that contained in p,-ja; an
analogous reason rules out Q=4 for first-forbidden
transitions.® Second, although a magnetic field can
produce arbitrary orientations, the lifetime of the state
a will in most instances be too short to allow the nuclei
to come to thermal equilibrium in the field; if this is
the case, then the test radiation can be preceded by a
long-lived radiation (such as an alpha particle, a beta
particle, or a strongly forbidden gamma quantum) the
direction of which is not measured and which plays the
role only of a delaying agent. Then whatever degrees
of orientation are present in the long-lived state can
also be present in the state @, although in general with
different coefficients. In fact, if R(Q) is the coefficient
of the term in the density matrix of the initial state ()
which corresponds to the orientation ©, an unoriented
2L-pole radiation will reduce this coefficient to the
following for the state a:

JJ
Ja ja}
X (=)t (27+1) 27+ 1T, (1)

where the symbol in brackets is a Wigner 6-5 coeffi-
cient,” equal except for sign to a Racah coefficient.

Q
R.(Q)=R(Q) X { .

III. TEST OF TIME-REVERSAL INVARIANCE

We turn our attention now to the transition involving
the mixed radiation which is to serve as the test of
time-reversal invariance. The possibilities are sum-
marized in Table ITI, the second column of which lists
the lowest-order quantities (even with respect to
parity and odd with respect to time reversal) which
one might attempt to measure. The failure of any one
of these quantities to vanish would unambiguously
demonstrate a violation of time-reversal invariance.
To understand the entries in this column, one must
remember that the operation of time reversal consists

6 We are grateful to Dr. R. R. Lewis for pointing this out to us.

"Many of the properties of the 3-j (essentially Clebsch-
Gordan), 6-5 (Racah), and 9-5 coefficients are summarized in
A. de-Shalit, Phys. Rev. 91, 1479 (1953); in M. E. Rose, Ele-
mentary Theory of Angular Momentum (John Wiley and Sons, Inc.,
New York, 1957); and in A. R. Edmonds, Angular Momentum in
Quantum Mechanics (Princeton University Press, Princeton,
1957). We refer to these in the appendix as (dS), (R) and (E),

respectively. The D matrices we use in Eq. (6) are those of (R),
and are the inverse of those given by (E).
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TaBLE III. Tests of time-reversal invariance using a
mixed y-ray transition.

Degree of

orientation
v-ray polarization Quantity measured Qa 973
None (k-35) (k-35Xa) 1 2
(k-3a)(k-3aXj5) 2 1
Circular k-o) gk-]?X .b) . 1 1
(k-0)(k-32X35)(Fa"30) 2 2
Linear (k-jXe)(k-3)(e-3), 3 0
with ¢ and b in various 2 1
arrangements 1 %

0

of changing the sign of all momenta and angular
momenta. Since the direction of linear polarization
possesses no positive or negative sense, the unit vector
¢ representing the direction of linear polarization must
occur an even number of times in any expression having
physical meaning, and is unaffected by time reversal.
In addition, time reversal interchanges incoming and
outgoing waves but, as explained in the Introduction,
this makes a negligible difference in the case of gamma
emission.

The last two columns give the degree of orientation
needed for the initial (¢) and final () states. We see
from the table that one and only one kind of measure-
ment can be used if the mixed radiation is not to be
followed by one of the analyzing gamma-rays listed in
Table I. This is the case in which one measures the
direction of emission as well as the linear polarization
of the gamma; the initial spin j, must be oriented to
the third degree.® (This requires 7,2 $.) Table II shows
that this initial orientation can be supplied by a first-
forbidden B decay or a strong magnetic field at suffi-
ciently low temperatures; it is conceivable that the
advantage of eliminating one radiation direction meas-
urement after the test of time-reversal invariance
might compensate for the difficulty of producing such
a high-order initial orientation and of simultaneously
detecting the linear polarization.

Other experiments can be devised by combining the
information of Table IIT with various methods of
analyzing and polarizing listed in Tables I and II. For
example, as suggested by Lee and Yang,* a triple
angular correlation experiment can be performed by
using a beta decay followed by two gamma rays, the
Jfirst of which is mixed. We give as an example the
explicit method of constructing this case from our
tables. The third line of Table II corresponds to pro-
ducing the initial orientation by measuring (p-j,); the
first line of Table ITI (ki gives the direction of this
gamma-ray) is the time-reversal invariance test used;
and finally, the detection of Qp is effected via the
measurement of (kg-j3)? (first line of Table I). Com-
bining the three terms leads to the expression for the
over-all quantity to be measured: (k;-ks)(k:-koXp).
One could, of course, have written down this expression

8 See also P. Stichel, Z. Physik 150, 264 (1958).
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without breaking the discussion into the separate steps;
it would then have been less clear that it is necessary
for ky rather than k, to be the mixed radiation.

By means of the three tables one is able to construct
an exhaustive list of all possible gamma-ray angular
correlation tests to first order in . The only way to
extend this list is to add to the methods of polarizing
and analyzing. For example, one can in principle
analyze odd orientations with a beta decay; we have
not listed such possibilities because of relaxation-time
limitations.

IV. PHOTON DISTRIBUTION FUNCTION

In order to be able to interpret the results of an
experiment, one needs quantitative expressions to
replace the qualitative ones of Tables I, II, and IIT.
Although formulas for angular correlations from
oriented nuclei exist in the literature,? to the best of
our knowledge they do not appear in a form which
possesses sufficient flexibility to be immediately useful
for our purposes. What is needed is a formula for the
angular distribution and polarization of a single tran-
sition which can be combined with arbitrary preceding
and succeeding transitions so as to allow one to con-
struct various correlation formulas at will. The final
formula is thus assembled in a manner completely
analogous to the construction in the discussion at the
end of the preceding section.

This is achieved in the following way for an electro-
magnetic transition. If (jumikP|R| jm,) denotes the
amplitude for going from a nuclear state ¢ with Je=m,
to a state in which the nucleus has quantum numbers
Ju, my and in which there is one quantum with mo-
mentum k and circular polarization P(= =1), we define
a ‘“probability” for emission from the nuclear state
initially oriented in the manner Q,, w, to that state
oriented by @, ws by multiplication with Clebsch-
Gordan coefficients as shown :

W (56Qsws; P'KP; joQuwa)
=202 2 2 (1)t (G fo—my'ms | Queor)

mb’ mp mq’ ma
X(Gomy' kP’ | R| jama Y jsmskP| R| jama)
X(=1) 100 ( Jaa—Ma'Ma|Quwa). (2)

The closure property for the Clebsch-Gordan coeffi-
cients allows one to obtain correlations between
successive transitions, if the intermediate states are
undisturbed by external influences, simply by multi-
plying the relevant W’s together and summing over all
intermediate orientations. For example, one obtains

Wcorr(jcﬂcwc; P2k2jbk1; jaQawa)
= Z Z Z W(jcgc(vc;P2k2P2; ijbOJb)

W wb P1=+l1

XW(ijWb; Plklpl; jaﬂawa); (3)

®H. A. Tolhoek and J. A. M. Cox, Physica 19, 101 (1953); F.
Mandl, Proc. Phys. Soc. (London) 71, 177 (1958).
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for the angular correlations between an unpolarized
gamma ray emitted in the direction k; and a polarized
gamma ray with momentum ks, the initial and final
nuclear orientations being as indicated. If ¢ is the final
state and is therefore unoriented, then Q,=0; otherwise
¢ can be combined with the next transition. The initial
transition of a series is to be multiplied by the density
matrix for the initial nuclear state in the following
manner.

As shown by Fano,” the density matrix for a state
with angular momentum j can always be decomposed
into a sum of statistical tensors

(jm’|p| jm)= Zﬂ 2 (=D (24-1)

J 7
X
—m' m
Then a direct substitution shows that the first transition
of the series must be written

% L W( -5 jw)pi(@w). ©)

¢ Y@ @

—w

The derivation of the formula for W is given in the
Appendix. The result is

W(ijbCUb; P,kP; jaﬂawa)
=N? 2 2 3 (2A+1)(»| DMo,6,) | 1)
N v

Q Qa A
X[t a3 )

XX X [QL+1)2LA1) 1 (allL'[1B) (all L]|2)*

L L'
ke (— Pyt L L A
X _P z, p' _P p( )
( P —P —u
jb ja LI
X(_._]_)L’+)\+9a.+wa+l{ jb ja L } (6)
Qp Qg A

In Eq. (6), Ns? is a positive normalization constant
depending only on the internal states ¢ and & and not
on their orientations. The rotation group matrices D?,
and the Wigner 3-; and 9-5 coefficients are defined as
in reference 7. P is +1 or —1 according to whether ¢-k
for the quantum is positive (now called right circular
polarization) or negative, respectively. The sign of the
reduced matrix element for a transition from a nuclear
state a to b, [(a|/L||6)], has been chosen to agree with
the final formulas in Biedenharn and Rose.! The
number p is zero if the radiation emitted has even
parity, one if odd. We have written Eq. (6) so that it
can be used to test parity conservation as well as time-
reversal invariance; with parity conserved, as we
assume it to be throughout this paper, p'=p.
10 U, Fano, Phys. Rev. 90, 577 (1953).

17, C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1953).
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The angles ¢, 8, a appearing as arguments in D* are
the Euler angles of a coordinate system the z axis of
which points along the direction of the photon. It is
then completely general to give the probability for light
linearly polarized in the x direction:

W(e)~ 2 X W(---PP--). ™

P’=41 P=41

The selection rules for each term can be read off
directly from the 9-j coefficient appearing in (6), for
each row and each column must satisfy the triangle
inequality. Furthermore, the symmetry properties of
the Wigner coefficients can be used to separate the
terms in cos[n(L)—n(L)], and sin[y(L)—y(L")],
where (a|L||d)=|(a||L||d)| exp[in(L)]. For example,
in the cases of unpolarized or linearly polarized radi-
ation, the interchange of L and L’ in any single term
of Eq. (6) multiplies the coefficients of the matrix
elements by (—1)%+%, Thus, if Q,+Q; is odd, the only
terms surviving in the sum are those involving
sin[n(L)—n(L')]; if even, those involving cos[n(L)
—n(L')] remain. It is readily seen that these results
agree with those found earlier in a simpler way and
listed in Tables I and III.

Equation (1) is found by integrating (6) over all
directions and summing over polarizations. The
normalization constant is determined by observing
that a (hypothetical) L=0 photon would not change
the nuclear orientation.

V. SPECIFIC EXPERIMENTS

By means of Egs. (3), (4), (5), (6) and existing
tables,’? in addition to a considerable amount of
diligence and care, the reader can construct formulas
for any gamma angular correlation he might wish.

As an example, and as an aid in estimating the pre-
cision required in a correlation test of time-reversal
invariance, we have carried out calculations for the
angular correlation of two successive gamma rays
emitted in a 2(E2+4M1)2(E2)0 cascade from an initial
polarized nucleus. The reasons for this particular choice
are given in the preceding paper. We find

W= (1+15]2)+[0.25040.732|8| cosn—0.0765]52]
X Py(k1- o) +0.327|6|2Py (k- k) —0.368p | 5| sing
XE(kl k2) (k1>< ]%2):3]7 (8)

in which %, and £, are unit vectors and the mixing
parameters 6 and 5 for the first photon are related to
the reduced matrix elements of Eq. (6) via

(IE21D/ (l1a1]) =b=[5] e*. (®)

The quantity p has a maximum absolute value of one
and appears in the density matrix of the initial state

12 Albert Simon, Oak Ridge National Laboratory Report,
ORNL-1718, 1954 (unpublished). Simon, Van der Sluis, and
Biedenharn, Oak Ridge National Laboratory Report, ORNL-
1679, 1954 (unpublished). Kenneth Smith and John W. Stevenson,
Argonne National Laboratory Report, ANL-5776, 1957 (un-
published).
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(| p| m)=8mr,m(0.2)[14(0.5) pm]. If the polarization
of this initial state with j=2 is produced by an allowed
Gamow-Teller ¢~ decay in the z direction, the quantity
p is +v.-/c if the beta transition is 1 — 2, whereas p is
—29,~/3¢cif itis 3— 2.

If one assumes the most favorable case with [§]=1
and n=w—1', one finds for both photons in the x-y
plane

W (po—p1=+45°)
W (pa—p1=—45°)

~1—0.213pn’". 9

Since from the existing angular correlation data! one
knows 9'=040.3, an experiment of the type discussed
here in which p=1 and in which the numerator and
denominator of (9) are each measured to 4%, accuracy
will equal the above precision. However, from the
nuclear reaction data discussed in the preceding paper,
one might estimate the error in 7’ to be % to 3 of the
above.

VI. CONCLUSIONS

We have analyzed gamma-ray correlations in detail
and have shown that experiments to detect time-
reversal-odd terms in the nuclear Hamiltonian can be
performed in several ways, if one starts with an arbi-
trarily aligned initial nuclear state. In order to demon-
strate this we first derived a relation for the emission
of an arbitrarily polarized gamma ray from an oriented
nucleus, and then showed how it can be used together
with connecting links, when several transitions are
involved, as in tests of time-reversal invariance. The
most useful of these are those which detect either
(a) the linear polarization-angular correlation function
in a mixed transition from a third-order oriented
nucleus, and (b) the angular correlation of two suc-
cessive gamma transitions (the first of which is mixed)
from a polarized initial state. As an example of the
latter, we have investigated the 2(E24-M1)2(E2)0
cascade and have shown that an accurate determination
of time-reversal invariance is feasible, but difficult.

APPENDIX. DERIVATION OF GENERALIZED
INTENSITY FORMULA

The derivation of Eq. (6) from the definition (2)
follows standard lines, but is considerably eased by
first deriving a property of the 9-7 symbol. From either
chapter six of Edmonds? or Egs. [dS: (12), (13), and
(14)7],7 one can find the following equality:

(ju J12 jls)(jm Jo2 jza)(ju Jot jsl)
A Az A3/ N\ Az Aez/ \An Az s
Ji2 Jor Jae 13 Jes  Jss
X
Az Az ma2 A1z ez pas

j11 ]:12 ]:13 Ja1 Ja2  Jas
= {121 Joz 123]( ) (A-1)
731 ]32‘]33 M31  M32  M33
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All repeated Greek letters (i.e., the A’s) are summed
over. (A-1) follows by substituting repeatedly into
de-Shalit’s Eqs. (12) and (13), and finally using his
Eq. (14) once. The latter equation can also be used as
a quick check on the above by multiplying both sides
of (A-1) with the 3-5 coefficient

( Jar Ja jaa)

)
M31 M3z M3s
and summing over the u’s.

The amplitude for the emission of a circularly
polarized quantum is

(jomikP|R| jom) =N £ £ £ (41]D%| py*
X (2LA4-1)}(—1)iwtma(— P)Lt»
ja L jb %
(0 )iz, @

in which =0 or 1 refer to radiation which carries off
even or odd parity, respectively. The nuclear matrix
element of the particle operator Q, defined by

Hip= % % 2 a(LMp)QM(p)+He., (A-3)

with a(LMp) the usual photon annihilation operator,
is related to the symbol in (A-2) by

(jamal Q1 (8) | jums) = (— 1)ietma(2 1)1
Ja
x(m“ )(auL,puw. (A-4)

If we insert this expression for the amplitude into
the definition of W [our Eq. (2)], then use (E:4.2.7)
or (R:4.22) to rid ourselves of the complex conjugation
of one D, and finally (E:4.3.2) or (R:4.25) to combine
the two D’s, we find

W=| N [2(= Dyirietorti{ (20,+1) (205+1) ]
XTLTTEEE @)

v u» L' L

Jb
—-—M mp

X (—1)"(alIL'p"(|6) (allL,p|b)*(— P")¥'+2’ (— P)L+»
X(L’ L A )( Ja L 7v )

P —P —pu ms — M —my

Jo L 7 ja o Qa
%( D)

mea —M —my) \—m,) m, —w,

L L A Tb s
x(,. )( ) @9
M -M —y —mb’ my —wp

After we make use of the symmetry properties of the
3-j coefficients with respect to the sign of the m’s, we
can compare the last five 3-§ coefficients with (A-1) and
immediately see that they give our Eq. (6), which is
what was to be proven.



