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Nuclear Structure Correction to the Hyyerfine Structure in Hydrogen
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In previous papers, corrections to the hyperfine structure (hfs) in hydrogen of relative order nm/M have
been calculated by treating the proton as a point particle with an anomalous magnetic moment in addition to
its Dirac moment. In this paper the proton is treated as a particle with structure by making use of the high-
energy electron-proton-scattering data. Corrections of the previous work in which only a point particle was
considered are calculated by using the Feynman formulation of quantum electrodynamics. It is also shown
that exactly the same terms may be obtained by using the covariant Bethe-Salpeter equation.

The calculated shift of —35 parts per million (including the "recoil corrections") is not in agreement with
the combined results of several experiments (—1.4&18parts per million). A possible source of this difference
is meson corrections to a two-photon form-factor which is taken here as the product of two (Hofstadter)
single-photon form-factors.

INTRODUCTION between the electron and the proton. The terms in-
volving two Pauli interactions are logarithmically di-
vergent; this accounts for the appearance of the rather
arbitrary sharp cutoG, Ao in the results of N.S. and of
Arnowitt. The cutoff, of course, corresponds crudely to a
spreading of the proton of order h.o '. We propose to
treat the cutoG empirically by using an experimental
form factor for the charge and for the magnetic moment
of the proton, obtained from the data on high-energy
electron-proton scattering. 5

Unfortunately, a study of the corrections due to the
structure of the nucleon indicates that what is essential
is the amplitude for the rapid exchange between the
electron and nucleon of two photons (of high but nearly
opposite momenta). The Hofstadter results give only
the coupling for a single photon.

In the present paper we have made the crude ap-
proximation that the two-photon amplitude is given by
the product of two single photons acting alone. The
amplitude which is really needed is the forward-
scattering amplitude of virtual photons on nucleons at
high momenta; at present we are investigating other
contributions to this amplitude by dispersion-theory
techniques. Although the results of this paper are only
approximate, they do indicate explicitly how one might
find the corrections to the hfs if the exact scattering
amplitude were known.

We assume, in accord with the Hofstadter results, '
that the absorption of a virtual photon of four-mo-
mentum k„and polarization i is characterized by the
proton interaction operator

LTHOUGH the hyperhne structure splitting of

~

~

atomic hydrogen has been measured precisely' to
one part in 107, the theoretical value is not as accurately
known. However, within the past ten years a relatively
extensive series of calculations have been performed
which correct the Fermi formula for the hyper6ne
structure, hereafter called hfs:

2x'el@ p
hfs= (tr. .trs) iy(0) i',

3mM

where n is the fine structure constant and is equal to e'
in units in which A and c are each equal to 1; p~ is the
proton moment in nuclear magnetons, and m and M are
the electron and proton masses, respectively;

~
P(0)

~

' is
the magnitude of the nonrelativistic Schrodinger wave
function at the origin. The hfs is corrected by higher
order terms in n and in ttt/M. Most recently, Arnowitt, '
used the Schwinger-Tomonaga formulation of quantum
electrodynamics, and Newcomb and Salpeter, ' hereafter
referred to as N.S., using the covariant Bethe-Salpeter
equation, ' have calculated corrections up to and in-
cluding terms of order nttt/M(hfs). The corrections
involving powers of ttt/M may be considered to be recoil
corrections. These calculations, which would be exact to
the required order of magnitude, are complicated be-
cause of the anomalous moment and the 6nite size of the
proton. The only presently available method for in-
cluding the interaction of the proton with the electro-
magnetic fjLeld is to treat the proton as a point Dirac
particle and to introduce a Pauli interaction for the
anomalous part of the magnetic moment. All the correc-
tions for mass are produced by processes which involve
the interchange of two intermediate virtual photoos

eA4 p,

p,+ (ky, —y,k) =eF4(k') A;(k), (2)
(A' —k')'-4M

where h. =0.91M, t4, =tto —1=1.79, k= k„y„, 6;(k) is the-
term in brackets on the left-hand side of (2), k„'=k4'
—k1'—k2' —k3'-, and the poles of Ii4 are handled in the
usual way.

We shall compute only the difference between the

s R. Hofstadter, Revs. Modern Phys. 28, 214 (195&)

*National Science Foundation Predoctoral Fellow.
t Howard Hughes Fellow.' A. G. Prodell and P. Kusch, Phys. Rev. 79, 1009 (1950).' R. Arnowitt, Phys. Rev. 92, 1002 (1953).
'W. A. Newcomb and E. E. Salpeter, Phys. Rev. 97, 1146

(1955).
4 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

192



NUCLEAR STRUCTURE CORRECTION TO hfs I N H

corrections to the hfs that results from using the form
factor F4(k') times h, (k) [as in (2)] as opposed to using
6; alone with a sharp cutoff on the logarithmically
divergent terms. That is, we compute all terms AE' of
order nm/M(hfs) by using "(F4 1)A—," as a perturba-
tion. In the second section we obtain this shift in terms
of a set of four-dimensional integrals. In the third
section, these integrals are tabulated, and in the fourth
section these same results are calculated using the
Bethe-Salpeter equation. The fifth section contains a
numerical evaluation of the results for various values of
A./M and some remarks on the validity of this method.

e 'a~+=(1 iDFt+—. .)f (3)

in the same manner as given in Secs. 3 and 4 of
Feynman's paper. ' For the diagram in Fig. 1(a) we find'
that

ihEg=4e' '

[F4 (k') F4 (k")—1]
~ (2e)'k"ks

EXPRESSION FOR LLE'

We consider the corrections arising from the processes
indicated by the three graphs of Fig. 1. The change of
energy caused by the process shown in Fig. 1(a) is given
by associating the change of amplitude of the wave
function with a series expansion of an exponential,

may be dropped. That these terms should not contribute
is quite reasonable since only high-momentum photons
can "see" the difference between the form factor and
one. However, such high-energy single scatterings leave
the final state approximately orthogonal to the hydro-
gen wave function. In the case of Figs. 1(a) and 1(b), if
the high-momentum photons are to contribute, they
must leave the final state in approximately the same
condition as the initial state (both particles nearly at
rest); that is, they must have nearly equal and opposite
momenta. It can also be shown that, to the required
order, the motion of the proton and electron may be
neglected. Thus, k' is taken as —k, p as (m, 0,0,0), and
m/M and m/~ k~ are neglected compared with one.

The hyperfine splitting is the difference in the ex-
pectation values of hE~ in the triplet and singlet states.
Inserting the spin projection operators for 3S and 1S,

35=-', (3+e. es),

15=-', (1—e. es),

and summing over all polarizations of the electron and
proton (three triplet states and one singlet state) we
obtain

(M„„S„„) ss (M„„X„„), s Q(rsM„——„N„„e'e'). (8)
spins

where
X[u sM„,(kk') e s][u.X„,(kk') I,], (4)

M„,=&„(k')(ps+0—M) 'A. (k), (5)

Since the final matrix element is to be a scalar under
rotations, we may equate the terms involving different
Cartesian components, taking

1V„,=y„(P.—k—m) 'y„. (6) (M„,A„,a o')=(M„„E.„„ov o„')=(M„,iV. ,„o,'o, ').

{a) (b) (c)

The terms [F4(k')F4(k")—1] arise because we want
to find the difference between the result obtained with
the form factor and that obtained by N.S. (F4= 1) for a
point proton. Using (F4 l)=ks/A' —for ks«A', the
single-photon exchange, which would ordinarily give the
hfs, will now give a contribution of the order of
ns(m'/M') (hfs) (if

~

k
~

is taken to be of the order of the
Bohr momentum). Since this is of higher order than the
corrections due to Fig. 1(a), the single-photon terms

If we insert positive-energy projection operators and
sum over a complete set of states, the matrix element
becomes a trace and we obtain

(M„,S„,)ss —(M„„1V„„)is

(1+v~')= Tr M,. (iy, 'p„')
2

(1+v~ )
XTr 1V„„(iy,yo')

2

—Sg

(k'+2to) k'M'
4

Pb '~ww ~ P& Pb
Pb ====== gg

where

ri = co'——,'X'——',p (2k'~+-'X')
——'p'(2tok'+4s J 'Cv —2to' —stosk' —sk4), (10)

FIG. 1. Feynman diagrams for corrections to hfs splitting.
Fermions are denoted by solid lines, bosons by wavy ones. (The
slashed syinbols p and k represent p=—p»„and k=—k„p„.)

s R. P. Feynman, Phys. Rev. 76, 769 (1949).' We have used the notation of reference 6 throughout, except
that d4k =dk1dkmdk3dk4.

in which k is a dimensionless momentum, k/M, X is the
three-dimensional part of k, and we have replaced the
squares of Cartesian components by their averages in
solid angle, e.g., k ""=—,X'.

In the approximation k„'= —k» m/M«1, ks=M
Fig. 1(b) shows a contribution equal to that in Fig.
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g4$2

Op —8
3II' ~l

1(a), as is obvious upon writing out the matrix element. 5E'(3S) A—E'(1S)
The energy shift in hydrogen is then equal to that due to
Figs. 1(a) and 1(b), multiplied by

~
p(0) ~', the density

of the electron at the proton in the atom. The 6nal
expression for the energy now becomes

v 2D(1+x)—C(1—x')
dx

(1—x)'+a'x

16qPe' t d4kg

+i(dE)ps is= —
~~ LF (k )—1$. (11)

M'n' & kP(2pp+k')

EVALUATION OF ch E'

where

8 17 9 ( Apl "1
+—Jtip ——+—in( 2—

~
(17)

3 16 4 ( A)

C= p(1+~)—p (1+~)'

If we write

where

in which

and if we write g as

F4'(k') —1)=OpLk'/{k' —a') 7

Op = P—1+a'8 —-,'a48'+-p'aP8' j,
a'=A'/MP, 8=8/B—a',

D= ', (1+@-).

The integrations with respect to x and the differentia-
tions with respect to a' are straightforward:

(13) AE'(3S) AE'(1S)—

8~2y2
I=+ —C+4D OpI+2 (D+C)

M'

g= {jip(1, +p) —pi(1+/) $(pk'+P (iyp)k'
—-'p, '(2(o+k') (-'X' —ppP)

+(p —p~) (p~) (»+k')), (14)

d'k(pi, 1)

(2s)'(k' —a') (k') (k'+2co)

1 ~' dxL —(1—x'), +2(1+x))
(15)8;J, (1—x)'+a'x

The third term is integrated 6rst by taking residues in
the plane and then integrating over solid angles. The
remaining integral,

(-',X'—pi') d4k

k4(k'- a') (2s)'

1 p~&(~ X' 5X
dX —+

3$$ ~p 8 2

3E'
(16)

c'(E'+a') l (It +a') &

is logarithmically infinite because the interaction (2) is
finite while that of N.S. (F4=1) is infinite. Thus the
difference is in6nite, but this in6nity will cancel against
a similar term in the work of N.S. and give a 6nite
answer for the over-all energy shift. Since the N.S.
term was integrated up to Ap in (three-dimensional)
momentum space in the center-of-mass Lorentz frame,
we must also impose such a cuto8 on our three-mo-
mentum vector in order to make the cancellation
unambiguous.

then the integral for AE' may be split up into four
integrals. The last term yields zero since it is odd in co,

and the first two terms may be integrated by the method
given in reference 6:

11 8
X —1na+——I'"

12 12

p,
' 9 240 9———1——ln +- lnu, (18)

3 4 M 4

4—ap) *

I(a') = tan-'
(

(4a' —a4) '* ( a'

Primes indicate differentiations with respect to a'.

COMPARISON WITH THE BETHE-
SALPETER EQUATION

As an alternative to the preceding perturbation
theory, we have considered the correction to the hfs due
to the finite size of the proton by means of the covariant
Bethe-Salpeter equation.

We follow the procedure of N.S. exactly and attempt
to make all notation used in this section agree with
theirs.

The starting point is the Bethe-Salpeter equation,
which is Lafter we separate out the center-of-mass
motion and adopt a coordinate system where the mo-
mentum of the center-of-mass E„ is (0,0,0,E)j

1

. i

d'k G'(4)4(p.+4), (2o)
2~i ~

where

F(p.)= L~.E H. (P)+P4Jr»E —Hp(p) P43, (21—)—
in which

H (p)=(mP +p n'),

Hp(p)=(MP' —p a'). (22)

Superscripts on the Dirac matrices indicate that they
operate only on the components of P corresponding to a
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d'Pd'k 4(p.)G~'(ks)4'(P. +ks) (23)

N.S. consider the expression

e' y;6 (k)
Gr'(k. ) =V4 V4'

2~2 k2

where

o. 'o, ' n,'Ae2 1 A4'

2m.2 ~2 ~2 g 2 P2
+ (24)

k2

as the fundamental interaction between the electron and
proton. lt (P„) is found by iteration of the Schrodinger,
nonrelativistic wave functions, as explained by Salpeter.

We modify the interaction by placing an F4 in front
of (24) and then proceed to calculate the effects of the
small perturbation, (F4 1)Gi' ——G4,—'(k„), on the hfs.
The first two terms of (F4 1)Gi'(k„) w—ill be called C'
and Q' interactions and the last two T' and F'. In N. S.
D is used in place of T. Thus P' is

or b, respectively. P is a 16-component spinor whose
variable is the relative momentum of the two particles.

G'(k„) is a slightly modified, complete interaction
function representing a sum over all possible irreducible
diagrams. ~ A G~', whose effect is small, produces a
perturbation in the energy given by

To the same order, when (27) is used in (23), tP may be
taken as f~+, that is, only P or f need be iterated, not
both. For every diagram considered by N.S. we must
consider three separate ones. For example, the diagram
labeled CT in N.S. means that we should iterate with
the Coulomb kernel and treat the single exchange of a
transverse photon as a perturbation. In addition to this
term, we must consider the effect of (1) iterating with
the modified Coulomb potential and treating T as a
perturbation (AEq r), (2) iterating with the unmodified
Coulomb potential and treating the modified transverse
interaction as a, perturbation (AEcz ), and (3) using the
modified Coulomb and modified transverse parts
(~E").

For example, we give the results for AE~ z ..

where

n;n
' 4++*(P.) Z 4 r(p')d'Pd'P' (28)

jp

P' =P.+ks'

and
P" =P'+ks'

and to the required order

1 ~e'q

2miF(p„') &2s')

I
d4k'

„LF4(k")—1j4++(Ps"), (29)

where

e' n; A,'(k„)
G~ '(k.) = LF4—13

2%2 y, 2 P2
(25) )F4(k') —1j= 1+4'

BA.2 A2 —k2
(30)

where
(26)

As in N.S~, all corrections of the mass that arise from
single-photon exchanges contribute at high values of the
momentum of one of the wave functions in (23). Thus
all single-photon terms such as T' must be iterated, and
give rise to the so-called uncrossed diagrams, which, of
course, correspond exactly to the uncrossed diagrams
discussed in the second section.

It is convenient to express P in terms of positive and
negative energy components:

k„'= —p„' —k„.
(31)

The integral for DER ~ contributes to the required
order of magnitude only when lp'l=M and lpl and

l
p"

l
=nm (Bohr momentum). It may also be shown

that the integral has its major contributions when
p4= lpl, p4'= lp'l, p4"= lp" l. Similarly, it may be
shown that no corrections of the required order arise
unless the intermediate momentum k„" is the order of
the cutoff (as in the second section). Therefore, in all
integrals in which p„, p„', and p„"appear together we set

p.=o=p"

~,.(p) =
2E, (p)

With these approximations our integrals may be con-
siderably simplified. We write

Then it may be shown that to the required order of
accuracy (first order in n) for all values of the mo-
mentum p„up to p„=nm exp(137),

4(P.)= r&~iF(PP) j '—
d'k[Gi'(k„)+Gs'(k„)]4'++(p„+k„). (27)

4 E. E. Salpeter, Phys. Rev. 87, 328 (1952).

8 1 el

~Ec ~=I l I

— . I l
1+~'

I 24r'3 E 2~i ) & BA')

r d4p
4'++*(p.)d'p„

1
Xg n; n

i

d'p" 0++(p") (32)
F(P') "
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After interposing projection operators to remove the
Dirac matrices (A '+A )(h+s+A s)=1 and after
using the approximations (31), we may integrate over
p" and p and obtain'

(~Eu ~+'=
I ~(0) I'(2~)'I I I

&+A'
&2a) & aA)

ZsdX
TTT= —2 '

I
(x2+a') '+x](K2+b')

XdX

(Ks+b')

where

m
AE p

——n—
M xp„.

(hfs)T 2,

~ p=op~ p )

(—1 d4P~ ~e. o, s

xI
I.2~i " (A' p„")—F+„(p„')6E.E,)

where (tr'tr p„"/6E,Eq) is the expectation value of a
product of Dirac matrices and projection operators. The
expectation value is taken between completely N.R..
spinors. After summing up the contributions from all
diagrams of a given type, that is to say, the contribution
from the four energy states of the system, the contribu-
tion from the three diagrams for the uncrossed terms,
and that for the crossed terms, we may write our results
in the notation of X.S. as

TPI2 = 2PTZ'Z' )

2' ~ Ap/M

~II =P ~rr—
40

where

E X2
dK ——

2 i+ (K2+a') &

u=h. /M,

b= u' —-', u4.

Now if (10) and (12) are substituted in formula (11),
it separates naturally into three types of terms corre-
sponding to a term without p, in front, one with p, and
one with p'. If we now proceed to integrate out the
fourth component of the momentum for the term with-
out p, we obtain

and Op is given by (13).The values of T ft' are tabulated
AE'(f2') = — (hfs) 8,

below.

dE
4

I
(%2+1)'+X](X2+b')

(4—u')dX

LZ'+ (1+F2)-:](X2+b2)

r XdX
2'

J (+2+a2)2~I ++ (g'2+a2) l](g2+b2)

XdX ( 2E2
+2 I

1—
+2+b2 I, (+2+us) ILIA+ (+2+u2)-',]j

~ca' =P~cr )

+ Top', (34)—
2

f EdE
TcT'=+4as

(&2+as) R+ (X2+a2)-'*](X2+bs)

(a'—2)dZ'
—2

(%2+1)l (is+a')

6 Op
t

d4k(3ot2 —2%2)
8=

i2r' 4 k (2ot+k') (k' —a')

p E'dX 1 —3g—E'
= —160p ~i +

u' 8E 8(X2+b') (%2+as)*'

E2(-'a4+su —')+4b'
I (36)

SX'(X'+b') (X'+1)*
I

and Op is the same operator which appears above. If, in

addition, we add up T~T and T~z and 6nd their related
energy, with the aid of algebra, we get the integral (36).
It is easily shown that the other terms also agree.

l.8

l.6

m I.2
O

N [ 0
0.8

0.6

04
0.2

L (%2+u') l+X](X2+a') '*
0
og I.O l.2 l.4 t.6 i8 2D

AyM
2 For terms of the O'T' type, factors of the form (E4 1)'appear-

in the integrals. These may be written as DLk'/(k' —h2) j, where D Fro. 2. Correction due to the finite size of the nucleus as a function
js g de|:rential operator, operating on P.'„ of t;he form factor parametep g.
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DISCUSSION

When the value 0.91M is given to A, the calculated
correction becomes ( (crsss/sr' „M)(hfs) ['—73+ (9is'/4)
Xln(2Xs/M) j). Combining this result with the results
of N.S., we 6ndM

(a)

4/
I

AVw ww ~

(b) (c)

I WW 'w WW

z&
\

W W

AE'= hfs [—76],
xp„3f

(37)

b a

or a total shift of —35 parts per million. The exact
expression for the hfs then becomes"

FIG. 3. Single-virtual meson corrections to the two-photon
form factor.

16n (pp) (p, $ s m1+—
3 (pJ Ep) M

urements give the value

n '= (137.0390)&0.0006, (41)

X(1+a s~L1 (s l 2) s~X~ (38) which can be used to give the "experimental" value
2 2

of I:

or
n '= (137.0391&0.0001 jP'*,

cr '= L137.0367+0.0001$,

(39)

where the quoted limits are the roots of the sums of the
squares of the uncertainties of c, R„, rrs/M, and isp/is„
and no allowance has been made for uncertainties in the
theoretical corrections. Figure 2 shows the variation in
the corrections with changes in A. Fine-structure meas-

' The form of the "Hofstadler Form Factor" used in this article
is open to a good deal of theoretical questioning. If one assumes
that the form factors have a mass spectral representation, that
is to say

where E is equal to (1—35X10 '), the correction
calculated here plus that of N.S. The precision with
which the terms of (39) are known is discussed in
reference j.0. We use the values and probable errors
quoted there for c, R„, and rrs/M. The term (is./po) has
recently been recalculated" and is (1.0011596). The
term is,/ic„ is subject to some uncertainty because of the
polarizability of the oil used for the proton sample. We
take the value 658.2087 quoted by Koening, Prodell,
and Kusch" and assume a rather arbitrary uncertainty
of &0.001. The results may then be written

P=L1—1.4X10 ')&18X10 '. (42)

As was pointed out in the Introduction, this disagree-
ment might be due to the virtual absorption and emis-
sion of mesons as shown in Fig. 3. The two-photon form
factor, M„„, is expected to differ from the product of
single-photon form factors assumed in (5). The single-
photon form factor, measured by high-energy electron-
proton scattering, will contain only diagrams like those
shown in Fig. 3(b). If the factor M„„were accurately
known, our result would be much more definite. The
intermediate state may be thought of as any one of a
complete set, and then the calculations in this paper
give the contribution from 7*+X +)V to the f—orward-
scattering amplitude of one virtual photon (M„„).We
are undertaking a crude estimate of the one-meson con-
tribution; see Fig. 3(c). However, because of the
strength of the x—E interaction, we do not expect that
3E„, would accurately be given by the one- and zero-
meson terms.
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)Note added il proof While this article.—was in press, it
was brought to our attention that a nonrelativistic calculation
of the nuclear structure eGect has appeared LA. C. Zemach,
Phys. Rev. 104, 1721 (1956)g. Our result of approximately—8.7am/M is somewhat smaller than the nonrelativistic correc-
tion, —11am/M, using the equivalent nonrelativistic form fac-
tor and neglecting entirely the eGect of the cutoff-dependent term.
While we agree with Zemach's conclusion that the major contri-
bution to the hfs does indeed come from low momentum photons,
the nuclear structure corrections to the hfs come from the exchange
of two rather high momentum virtual photons, as is indicated in
our paper. The results depend, in principle, upon the specific form
of the proton interactions, especially those with the electromag-
netic and m fields, and no simple description in terms of rms radius
(obtained from electron-proton scattering data) is a priori correct.

F4(g') =f, ,dm'.

Then our choice corresponds to the use of a p(ms)~b'(As m') A— .
more natural choice for p(m') might be p(m')=Z a;b(A;s —m').
We have repeated our calculation choosing a simple p(m') with
ai ———a& ——A"A'"/A" —A'". With A"=.52, A'"=2.06. The root
mean square radius in coordinate space for this distribution agrees
with the original "Hofstadler Form Factor." The result of the
calculation is nE'=hfs nm/sppM( —74) in extremely close agree-
ment with the number quoted above."Cohen, Crowe, and DuMond, The Fundamental Constants of
Physscs (Interscience Publishers, Inc. , New York, 1957)."A. Petermann, Helv. Phys. Acta 30, 407 (1957). C. M.
Sommeraeld, Phys. Rev. 107, 328 (1957).

"Koening, Prodeli, and Kusch, Phys. Rev. 88, 191 (1952).


