
ELASTIC CONSTANTS OF InSb FROM 4. 2'K TO 300'K

obs.

SG
M
p

Temp.

300'K
298'K
300'K

Freq.

10 Mc/sec
50 Mc/sec
50 kc/sec

0.6669
0.6717
0.6472

0.3645
0.3665
0.3265

C44

0.3020
0.3018
0.3071

a See reference 2.
b See reference 1.

temperature the increased attenuation made the later
echoes difficult to range. The uncertainty in pU' for
this wave below 77.6'K is estimated at &1.5'%%uo. The
probable error in cii and ciz is about +1%.The various
checks on the internal consistency of the data are
satisfied to within 0.5% over the entire temperature
range.

TABLE II. The elastic constants of indium antimonide at room
temperature obtained from the present measurements (SG)
compared with values obtained by Potter' (P) and McSkimin,
Bond, Pearson, Hrostowskib (M). Results are in units of 10"
dynes/cms.

The results of this work are compared with other
determinations of the room temperature elastic con-
stants of indium antimonide in Table II. A Debye
characteristic temperature, 0, of 205'&2'K was
calculated from the O'K values of the elastic constants
with the aid of the tables given by de Launay. ' The
calorimetric value is 200'&6'K. '
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The Wailer-Hartree theory for the incoherent Compton scattering of x-rays is extended to include the
effects fo the inherent nonsphericity of atomic charge distributions. The dependence of the scattering on
atomic orientation is treated by a general formalism which depends on the use of the matrix elements of a
unitary representation of the group of three-dimensional rotations. Application is made to derive the one-
electron scattering matrix elements from atoms with s, p, and d electrons. It is shown that by a proper
averaging over all orientations of the scattering vector, "mean" scattering formulas result which may be
used directly for predicting the scattering from monatomic gases.

I. INTRODUCTION

QUANTUM-MECHANICAL theory of the

~

~ ~

scatter'ing of radiation by a free atom has been
given by several authors' ' to account for the observed
coherent and incoherent parts of the scattered inten-

sity. Since accurate crystal wave functions are not
available, a valuable first approximation to the inco-
herent Compton scattering function for a crystal may

be obtained by considering each atom in the crystal to
behave independently of its neighbors, and hence the

scattered intensity for the crystal will be given by that
determined for the free atoms. This then gives added

importance to the available formulas for the free-atom

Compton scattering. Of these the one most frequently

employed is the Compton-Raman-Wentzel' ' equation

' A. H. Compton, Phys. Rev. BB, 925 (1950).
' C. V. Raman, Indian J. Phys. B, 357 (1928).
' G. Wentzel, Z. Physik 4B, 1 (1927).
4 I. %aller and D. R. Hartree, Proc. Roy. Soc. (London) A124,

119 (1929).

for the intensity in electron units (e.u.):

(2)

where

f,s
~

P;*Pi, exp(zlrS r)dv, (3)

tr= 2sr/X; X is the wavelength of the incident radiation;
S= s—ss, where s, ss are unit vectors along the reflected
and incident directions; and the lt's are appropriate

where Z is the number of electrons. To date the most
accurate formula, which is based on a nonrelativistic
wave equation and on a total atomic wave function
expressed as a product of one-electron wave functions
which specifically includes the eGects of exchange, is
that due to Wailer and Hartree4:
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one-electron wave functions. Both Eqs. (1) and (2)
have been written (for convenience) without the Breit-
Dirac' ' correction factor (v'/v)', where v and v' are the
frequencies of the x-rays before and after scattering.

The extra negative terms in the Wailer-Hartree
equation arise from application of the Pauli exclusion
principle which forbids electronic transitions to an
occupied state, and so the summation is over one-elec-
tron wave functions of the same spin only.

For spherically symmetrical charge distributions, the
incoherent scattering may be calculated directly from

Eq. (2) in a rather straightforward way. When the
atomic charge distributions are no longer spherically
symmetrical, as is the case for many free atoms, the
scattering will be dependent on the orientation of the
scattering vector, S. The scattering can no longer be
calculated with S along the polar axis, but must be
calculated for an arbitrary orientation of S. The angular
dependence of the scattering intensity must then be
treated in a manner suitable for comparison with
experiment.

In this paper, a general formalism is presented for
calculating the Compton scattering of x-rays which
includes the effects of the inherent nonsphericity of the
atomic charge distributions in the Wailer-Hartree
theory. Formulas for all the matrix elements f,i, for
atoms with s, p, and d electrons are given. Using re-

cently determined Hartree-Fock wave functions, ~ the
predictions of the theory are compared with the experi-
mental results of Walker' for aluminum in the paper
which follows. '

IL CALCULATION OF f;r FOR SPHERICAL
CHARGE DISTRIBUTIONS

If the charge distribution is assnmed spherically sym-
metrical, the scattering is also angle independent and so
the matrix elements, f,i„may be calculated by taking the
vector S along the polar axis. Setting k=x

~
5~ =4~ sint)/)i

(20 is the angle of scattering, not to be confused with
the polar angle in what follows), and using the expansion

e'"" ""=P„i"(2m+1)P (cosff)j (kr),

where the j„are the spherical Bessel functions, we may
write

defined by Condon and Shortley"), and C(m;) the
ordinary normalized p eigenfunctions, and denoting

X O(lrmt) O(lsms) sin8d8,

we have upon substitution into Eq. (3) and its sub-
sequent integration

X P; (r)Pi, (r)j „(kr)dr. (5)

Denoting the radial integrals in Eq. (5) by (j„),we
see that the f, i, terms of Eq. (2) are simply linear com-
binations of (j„)with coefficients which depend only on
the angular dependence of the one-electron wave
functions. These coeKcients are listed in Table I for
the matrix elements, f,i„of s-like, p-like, and d-like one-
electron wave functions; the subscripts 0, +, and +2
denote the component of orbital angular momentum
along the axis of quantization. When the individual
charge density is spherically symmetrical, Eq. (5)
reduces to the familiar form

sinkr
P;(r)P, (r) dr =(js).

III. SCATTERING MATRIX ELEMENTS FOR
NONSPHERICAL CHARGE DISTRIBUTIONS

When the atomic charge distribution is no longer
spherically symmetrical, the scattering will be depend-
ent on the orientation of the scattering vector, S.
Hence, the scattering may not be calculated with $
along the polar axis, but must be calculated for an
arbitrary orientation of S.

In Sec. II we saw that there were a number of mathe-
matical simplifications associated with carrying out the
integrations of the f, i, in a coordinate system in which
S is chosen parallel to the s axis (such as selection rules

TABLE L Coefficients of (j„)in the expansion of f;~,

f,&
——P„i"(2ri+1) P;*(r)gi,(r)P„(cosg)j (kr)de. (4) Common

coe6. &i3& V4&

Writing P; in the separable form

iJ, = (P, (r)/r]O (l,m;) C (m, ),

where P, (r) is the normalized radial function, O(l,m, )
the normalized associated Legendre functions (as

~ G. Breit, Phys. Rev. 27, 362 (1926).
~ P. A. M. Dirac, Proc. Roy. Soc. (London) Alll, 405 (1926).
7 D. R. Hartree and A. J. Freeman (unpublished).

C. B. Walker, Phys. Rev. 103, 558 (1956}.
9 A. J. Freeman, Phys. Rev. 113, 176 (1959). following paper.

f8, 8

f~, po

f8, dp

fpo, po

f0+, I)+
fuo, do

f&+,"+
fdp, dp

fG+, alt+

fd+2, "+2

1
V3i
+5
1
1
3i/v'15
3i//5

1
1

—10/7—5/7
+10/7

18/7—12/7
3/7

' E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1953},p. 52.
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on the magnetic quantum number, stet). It therefore
seems wise, for calculating the scattering when S is not
along s, to transform the one-electron wave functions,
2/, , from the xyz coordinate system in which they are
defined, into a new coordinate frame, x'y Y, in which S
is parallel to s'. In this way, as will be shown later, the
matrix elements of Eq. (3) can be calculated as linear
combinations of the matrix elements of the spherical
Bessel functions, (j„),listed in Table I.

The problem, then, is to transform the one-electron
wave functions P, (r,g, &p) into the rotated coordinate
frame, 2, 8', q'. Since the f, have been written in the
separable form [P,(t)/r]O~tt i(cos8)Cm, (p), we need
only 6nd the transformation of the spherical harmonics
from the coordinates of one reference frame to another.
In general, this is a good deal more complicated than
for the usual cases encountered in that the well-known
spherical harmonic addition theorem does not suffice.
The general problem of the rotation of spherical har-
monics has been discussed by Wigner" and more re-
cently by Corbato, " who redefined some of Wigner's
factors, such as normalization, choice of Eulerian angles,
and use of a left-handed coordinate system. Corbato
then defines the rotation of spherical harmonics by

(t- [m )!
P t

" '(cost!')4' (tt ) = 2 F t™m'(p)
t=--. (t+ t~()!

i%i cue 2tBQ P [ts[ (cosa)@ ( ) (6)

where t has all values giving non-negative factorials.
Furthermore, the F function may also be expressed in
terms of the hypergeometric function, which in turn is
related to the Jacobi polynomial.

The behavior of the spherical harmonics under rota-
tions has also been investigated by group theoretical
methods. ""Representations of the rotation group in
three dimensions can be found as linear transformations
on the space of analytic functions defined on the surface
of a sphere, for which the spherical harmonics form
bases for their irreducible subspaces. "Under a rotation E.,
which transforms a coordinate system r, e, q into r, e', p',

l

Ht '(c»~')C' (tt')= Z Ht""'(&)Ht (c»0)c' (~) (8)

where the Op(cos8) represent the normalized associated
Legendre functions" (chosen as normalized because the
representations are to be unitary). The Ht '"', called
the Herglotz polynomials, "are the matrix elements of a
unitary irreducible representation of the group of three
dimensional rotations. If the rotation E. is described in
terms of the Euler angles, then the definitions in Eqs.
(6) and (7) are in complete accord with Eq. (8). In
either case we see that under a rotation spherical har-
monics transform linearly among themselves, which
proves our earlier statement that in the rotated system
the f,, may be written as linear combinations of the
integrals, (j ).

With the rotation E. described by the Euler angles,
n, p, y, we may also write

H mm'(rr p +)—e im'aH m—m'(p)e —imp

Hence a knowledge of the Ht™(p)matrix elements
completely specifies the total matrix elements H~
(cr,p,y). The matrix elements Ht '(p) have sym-
metry properties which are useful in simplifying the
calculations. These symmetries are found by use of the
matrix elements of the rotation with P=sr and further
successive applications of these rotations, remembering
that the Ht™(p)are real elements of a unitary matrix.
Some of the resulting relations are

where cr, p, y are the Eulerian angles of rotation of the
unprimed to the primed coordinate axes. See Fig. 1 for
an illustration of these angles. The particular rotation
formula given by Eq. (6) was chosen because for stt'=0,
Fts (P) =Pi~ ~(cosP), and the ordinary additiontheorem
of spherical harmonics results. The F functions are
dehned by

Ft '(P)=(—1)2& +~ ~+ '+~ '~'(t+[222(!)!(t+)m'[!)!

( 1) [ ic(po/s2)]2 (+m' —m—2 t[sin(p/2) ]2 t+m m,'—
xp , (7)

(t—m —t)!(t+stt' —t)!(t+m —ttt')!t!

Hp-'(~) = (—1) +™~...,
H mm'( ~) —( 1)t—m'g

(10)

FIG. 1. Definition
of the Euler angles,
Ot, P, y.

0 =~/2

"E. P. signer, Gruppentheorie und ihre Anzvendung uuf Cke

guuntenmechunQ der AtomsPektren (F. Vieweg und Sohn, Berlin,
1931)."F. J. Corbat6, Ph.D. thesis, Physics Department, Massa-
chusetts Institute of Technology, 1956 (unpublished).

H mm'(p) —H m'm( p) ( 1)m—m'H —m' —
m(p)—( 1)m—m'H m'm(p)

These symmetry relations may of course be extended
to include the complete matrix elements Ht™(cr,p,y)
by use of Eq. (9).

'3 McIntosh, Kleppner, and Minner, Memorandum Report No.
1097, July, 1957, Ballistic Research Laboratories, Aberdeen
Proving Ground, Maryland (unpublished).

Magnus, Appendix to R. Courant and D. Hilbert,
Methods of Mathematicat Physics (Interscience Publishers, Inc. ,
New York, 1953), Vol. I.
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fr, ,r, lt
——p,*exp(ixS r)Pr de= (cos'P) f~~+(sin'P)f, ,

and

where
= s (sin'P) f„+s (1+cos'P) fr r

f( ) )Pye (r)[Q is (cos0)jse4 k r cos8 sin s0 de ydr' (12a)

A. Scattering from P Electrons

Application of the formulas in Eqs. (6) and (7) to
the normalized spherical harmonics for p electrons,
/= 1, results in the matrix H4 ~'(p) listed in Table II.

From the H4 '(p) we readily find the scattering
matrix elements of Eq. (3) for p electrons:

in Eq. (6) (since they both give the same result),
weighted by the element of solid angle 2rr sinpdp. Since
(cos'p)A„= s, we find that

(14)

which states that the scattering from three p electrons
is just three times the average value for one p electron.

These results are all that are needed for calculating
the atomic scattering factors which contribute to the
coherent scattering. For the incoherent scattering inten-
sities we require the

~ f,, ~' terms. These are calculated
in a similar way to that outlined above, but since the
squares of the matrix elements are involved there are
certain other complications which enter, especially con-
cerning the angular averages.

Using the expressions in Table II for the rotation of
the spherical harmonics, we find that

fr s'= (cos'P) f~P+ (sin'P) f,'+2(sin'P cos'P) f„fi r (15)

and
is the scattering for a p orbital directed parallel to S, and

f,= I' '(r)$0i'(cos8)$'e"" -"sin'ed8dydr (12b)

2 fu'= fii+2fi,
i 1

(13)

and is angle independent. This was to be expected
since a half-closed shell has a spherically symmetrical
charge distribution and hence the scattering must also
be spherically symmetric. This also follows from the
unitary nature of the matrix II& ', as will be shown
later.

We may obtain an "average" scattering factor by
averaging over all values of p in either of the equations

is the scattering for a p orbital directed perpendicular
to S."

From Eq. (11) we see that the scattering from a p
orbital is completely described by two principal scat-
tering factors and the angle between the scattering
vector and the polar axis. Furthermore, for a group of
three p electrons forming a half-closed shell in the 4g

state we find from Eq. (6) that the coherent scattering
factor is

I
f;;I'=3&jo)'+6&js)',

i=1
(19)

and is angle independent. But the results of Eqs. (11)
and (12) state that when S has an arbitrary orientation,

f~~'=-'(»n'P) fi2+-'(1+cos'P)' fi'
+-', sin'P(1+cos'P) f„f,, (16)

which upon averaging in the way already outlined gives

(fuo')A = s fiP+ (&/15)f'+ (4/15) f»f.
=(jo)'+ s(js)', (»)

(fey )4 = (2/15) fi t + (7/15)f4 + s fi tfi
=(j.)'+l(j.)', (lg)

where the (j„)are the matrix elements listed in Table I.
The results of Eqs. (17) and (18) are in contrast with
those of Eq. (14) in that whereas the average scattering
factor for different p electrons is the same, the average
of the squared scattering factor is not.

From Table I, we have the result that the Compton
scattering from a half-closed shell of p electrons, calcu-
lated when S~~z, is

mmmm'

+1
0—1

& (1+cosp)—~v2 sinp
—,
' (1—cosp)

W2 sinp
cosp—~%2 sinp

—,
' (1—cosp)
~42 sinp
& (1+cosp)

"These results are equivalent to those of R. McWeeny, Acta.
Cryst. 4, 513 (1951). McWeeny's method is however not easily
generalized for electrons with angular momentum greater than
one (p electrons).

TABLE II. The matrix elements HI '(p) for p electrons, where
for convenience we have listed the matrix elements H„&~(p)
instead of the complete matrix elements HP '(a,P,y).

~

f;;~'=(cos4P+ —', sin4P) f '
i~1

+LSin'P+sr (1+COS'P) s$fir

+L2 sin'P cos'P+-,' sin'P (1+cos'P)7f„f,, (20)

which is certainly not angle independent.
The apparent contradiction is resolved by recognizing

that the selection rules prohibiting relatrix elements
between electrons of different m& quantum numbers
when S~~s no longer holds for a rotated system. This is
so because the orbit@is are not eigenfunctions of the
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TAnLz jIj. The matrix elements Hs~~'(p) for d electrons.

+2

cos4(p/2)

—2 sin(P/2) cos'(P/2)

+2
+1

—2 sin4(P/2)

+1 0

2 cos'(P/2) sin(P/2) 6i cos'(P/2) sin'(P/2)

cos4 (p/2) —3 cos'(p/2) —
6& Leos (p/2) sin' (p/2)

Xsin' (p/2) —sin(p/2) cos'(p/2) j
6i coss(p/2) sin2(p/2) —6iLcos'(p/2) sin(p/2) cos4(p/2)+sin'(p/2)—sin'(P/2) cos(P/2)g —4 cos'(P/2) sin'(P/2)

—2 cos(p/2) sin'(p/2) 3 cos'(p/2) sin'(p/2) 6iLcos(p/2) sin'(p/2)—sin'(p/2) —sin(p/2) cos'(p/2) j
—2 cos(P/2) sin'(P/2) 6t cos'(P/2) sins(P/2)

2 cos(P/2) sin'(P/2) sin4(P/2)

3 coss(P/2) sin'(P/2) 2 cos(P/2) sin'(P/2)—sin4(p/2)

6tLcos'(P/2) sin(P/2) 6i cos'(P/2) sin'(P/2)—sin'(P/2) cos (P/2) g

cos4(p/2) 3co—s'(p/2) 2 cos'(p/2) sin(p/2)
Xsin' (P/2)

—2 cos'(P/2) sin(P/2) cos4(P/2)

which upon averaging gives

orbital angular momentum in the rotated system, as and hence the sum of all possible transition terms is
shown in Table II. We must therefore add to Eq. (20)
the contributions from all the o8-diagonal matrix P; PtI f~iI

'= 2(cos'P)f»'+2(sin'P)fi',
elements. For p electrons these are

I fp, , p~ I
'= rs cos'P sin'P(f P+fir —2f„f,), (21) (&'» I f'~ I

')"=s (f~~'+2f') =2(js&'+4&js&'. (25)

Similarly, for a 3P+ orbital outside a closed shell of 2p+2 sin'P(1+cosP)(cosP —1)f„f~. (22)

Therefore, P= P;P;I f;; I

'=
3&j &0' +&6j &s', in agree-

ment with the result in Eq. (19), showing that the
Compton scattering from a half-closed shell of p elec-
trons is, as expected, spherically symmetric. LAs will
be shown later, this result follows from the unitary
nature of the matrix Hi '(E).j

We now also see how to explain the results of Eqs.
(17) and (18). The "average" scattering from a single

p electron cannot simply be s of the scattering from a
half-closed shell of p electrons Las is the case for
coherent scattering, see Kqs. (13) and (14)), because
there are "transition" terms,

I f;, I', which contribute
whenever the number of electrons exceeds unity. As
these "transition" terms are also dependent on atomic
orientation, we may define an average transition scat-
tering contribution in the same way as before. From
Eqs. (21) and (22) we find that

P; P; I f;; I

'= (sin'tl) f„'+~(1+ cs'oP) fis, (26)

&&' &, If'~ I')A = s (f ~'+2f') =2&jo)'+4&js&' (27)

s—p Trartsi ti orts

These are the contributions to Kq. (2) due to
"transitions" between electrons in s and p shells.
Denoting the scattering contribution in the rotated
system by a prime, we have for these matrix elements

8, yP =COS s, y0

a, y+ = a, y =
2 SlI1 8,y0

Averaging either of the equations above results in

&If "'I'&A =&If"+'I')s = s I f ~o I'=&jt)' (29)

and
&I f" i+ I'&A =

s&j )',

(I f.-,. I
')"= (6/5)(j )'.

These formulas allow us to calculate the scattering for
(23) different cases, e.g. , atoms with p electrons outside

closed s shells or an s electron outside a closed p shell,
according to the rules outlined above.

These "mean" formulas, as will be shown later, are
useful for making comparisons between theory and
experiment.

p—p Trartsi ti orts

These transition matrix elements occur between p
electrons in different shells in the atom. Consider a 3ps
orbital outside a closed shell of 2p electrons. The
required matrix elements are

3+0,2$)0 = COS [ l Sin J.

+2(sin'P cos'P) f~ifi,
(24)

I fspo, 2@+I =—', cos'P sin'P(f P+fP —2f„f,),

B. Scattering from d Electrons

The transf ormation properties of d electrons are
found by applying the formulas in Eqs. (6) and (I) with
t= 2. The matrix elements Hs

'
(P) are listed in

Table III.
In terms of these matrix elements and with the

follovnng definition,

f (d) = I &a'(r) LOs (cosg))'o'""'" sin'8 dM q dr (30)

for the scattering factor of a d orbital with nz=
I mi I,

we may write the relation between the scattering factors
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in the primed and unprimed coordinate system as

fs'(d) = —,'(1+6 cos'P+cos'P) fs(d)+ ', (1-c—os4P) fi(d)
+-,'(1—2 cos'P+cos4P) fo(d),

f '(d) =-'(1— 'P)f (d)+ (-' —-' co 'P+2 o 'P)

Xfi(d)+-;(.o"p—.o"p)fo(d), (»)
f,'(d) = 4(1—2 cos'P+cos'P) fs(d)

+3(cos P—cos P)fi(d)
+ I

-'.—l cos'0+ (9/4) c»'P]fo(d)

Equations (31) give the variation of the scattering from
a particular d orbital as a function of the angle of
orientation of the scattering vector. Only for p=0, in
which case f '(d) =f (d), may we speak of a unique
scattering factor, i.e., f (d). For p/0, the symmetry
of the orbitals, represented by their momentum quan-
tization, no longer exists and now the scattering factors

f '(d) are mixtures of the f (d). Thus we see that the
scattering from d electrons of arbitrary orientation may
be completely described by stating the three principal
scattering terms and a function of the angle p between
the s axis (the polar direction) and the s' axis (the
direction of the scattering vector, S). The geometrical
relation which existed for the principal scattering
factors for p electrons Lsee Eq. (11)] is entirely lost
since d electrons transform as tensors while p electrons
transform as vectors.

Again, for a half-closed shell of d electrons, i.e., all
orbitals with diferent 5$z occupied, the coherent scat-
tering factor is

p fmi(d) =2fs (d)+2fi (d)+ fo (d)

=2fs(d)+2fi(d)+ fo(d), (32)

which is of course angle-independent and is the same
result obtained if the calculation is made for p=0. For
calculating the Compton scattering intensities, accord-
ing to the Wailer-Hartree expression, Eq. (2), we require
the matrix elements

I f;, I'. These may be calculated
directly from the matrix H2

' of Table III in the way
already outlined. Since there are 15 independent terms,
consisting of linear combinations of products of the

f (d) with coeKcients which are quite complicated
trigonometric functions of the angle p, we shall not
list them here.

However, as our work strictly applies to the scat-
tering from a monatomic gas only, what we really need,
for any actual comparison with experiment, are the
"mean" values of these matrix elements. These mean
values are defined by averaging over all orientations of the
scattering vector, S,weighted by the element of solid angle
22r sinPdP. This follows from the fact that in such a gas
the atomic orientation is completely at random, and so
the angle P between the polar axis of the atom and the
scattering vector, S, takes on all values. In Table IV
we list these matrix elements as linear combinations of

the (j„)' integrals defined earlier in Table I. It is an
interesting consequence of the averaging procedure
that the matrix elements do not involve any cross
terms involving the (j„) integrals. This feature con-
tributes to simplifying the mathematical calculations in
the actual numerical work.

and so
f'2'=RA HA'Ha, *fAA, (33)

&'2 If*'I'=2'Z I:ZA H. 'Hs *f.A]

XL+4 Hi;Hi;*fig*] (34)

=Z~Zvf ZAZi Hs'H»*HitHi'*fAA fu*].

For terms in which l= k, Eq. (34), reduces to

ZALZ, Z, HA, HA, *HA;HA, *]
I as I'

=Z.L(Z'H"H. .*)(Z, H.;H.;*)]If-I' (»)
Since the matrix Hi(R) is unitary, each of the sums in
parentheses in Eq. (35) is equal to one. For the terms
leak, Eq. (34) becomes

2 Z Z Z LH.,HA;*Hi, Hi,*]f»fii*
i j k $gk

=Q P I (P HA, Hi;*)(P Hi;HA;*)]fAAfii*. (36)
k Zgk i

Again, from the unitary property of Hi(R) each sum
in parentheses is zero. Upon combining these results,
we see that for any half-closed shell of electrons

(37)

a result which is certainly angle independent.

TABLE IV. Mean values of the matrix elements
If,; I'

for d electrons.

(t &'7'I')AV

& I fo, 2'I'&Av

&If1, i'I'&Av

& Ifo, o'
I

'&Av

& Ifa -2'I'&A.

&If2, 1 I )Av=&lf-2, -1 1)Av

&If2, -1 I )Av —&If-2, 1I )Av

&I fo, D I )Av=&l f—2, 2 I )Av

& I f1. -1'I'&A.

&Ifv, o'I &Av=&lf 1, 2 I )Av-

(i2)'

20/49
5/49

20/49
0

30/49
0

20/49
30/49
5/49

04)'

1/49
16/49
36/49
70/49
5/49

35/49
15/49
40/49
30/49

Scattering from a Half Closed-Shell

The unitary properties of the matrix Hi(R) may be
used to simplify some of the calculations and to provide
some useful general results. As an example, we shall
calculate the Compton scattering from any half-closed
shell and shall show that it is indeed angle independent.
For this we must calculate 5'=g;P,

f f,;I' for an
arbitrary orientation of the scattering direction.

In terms of the matrix elements H;k, it follows that
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For a half-closed shell of d electrons, we have from
Table I and Eq. (37) that the scattering is 5(jo)'
+(350/49)(j2)'+(630/49)(j4)'. This is also the result
obtained by summing all the contributions of the
"mean" scattering contributions in Table IV.

Similarly, for the coherent scattering factor, we have
that

and therefore

&t f.7'I'&aV

& I f~+ d+' I'&A~

& I f~+ d+''I '&A.

& I f~+ &+'I'&A

& I fr+,~~'I'&A.

(I f~+ &o'I')A,

& f fx a,diam'J'&Au

& I f~o &+' I'&A~

(If&o ~0'I )A~

126/105
0

63/105
0

21/105
0

63/105
84/105

(2'8)'

9/105
135/105
2'7/105

90/105
54/105
45/105
72/105
81/105

TAszz V. Mean values of the p-tg transition matrix elements.

'4 sb g Jg7 (39) The total contribution to 5' from these s-d terms for
half-closed shells of s and d electrons is 10(j2)'.

which is also invariant.
These results may be shown more simply from the

following considerations. For a half-closed shell, the
integrals f;; form a matrix F of which f=P;f,; is its
trace. Since the trace of a matrix is invariant under a
unitary transformation, the coherent scattering factor,
f, is thus seen to be independent of orientation (in-
variant under rotations in three dimensions).

Now P=P,P, I f;, I' is the trace of the square of
the matrix F. By a familiar theorem in matrix theory,
we know that if the trace of a matrix is invariant then
so is the trace of any power of the matrix. "Therefore,
it follows that P as well as f is independent of orienta-
tion. These results show us that for any closed or half-
closed shells, both the coherent and incoherent scattering
functions may be calculated for any orientation of the
scattering vector, S (usually conveniently chosen par-
allel to the polar axis) . In all other ca,ses this invariance is
lost and so we must proceed according to the methods
already outlined.

s—d Transitions

These are matrix elements of scattering which are
due to transitions between s- and d-shell electrons.
Again, we shall not write down the complete angular
dependence of these terms but shall give only their
"mean" values. In each case the averaging procedure
gives the same result,

' I am grateful to Professor G. .F. Koster for initially pointing
out the possible use of this theorem.

p dTr ansi'—ious

These are contributions to F due to electronic transi-
tions between p and d shells. The "mean" matrix ele-
ments are listed in Table V. From half-closed shells of

p and d electrons, the total contribution to the scat-
tering is just 12(j&)'+18(js)'.

These are all the matrix elements one needs to cal-
culate the Compton scattering of x-rays from atoms
with incomplete d shells. For atoms with f electrons,
similar results are obtained by following the methods
given earlier in this paper.

IV. CONCLUSION

The effects of the inherent nonsphericity of atomic
charge distributions on the Compton scattering may
formally be included in a practical way into the Waller-
Hartree theory according to the methods outlined in
this paper. As illustration, all the matrix elements for
the single-electron scattering terms for atoms with s, p,
and d electrons have been speci6cally worked out in-
cluding their dependence on atomic orientation. By a
proper averaging over all orientations of the scattering
vector, these matrix elements may be used directly for
predicting the scattering from monatomic gases. In the
absence of a theory for crystalline scattering, this theory
offers the best available means for theoretically deter-
mining the Compton scattering from polyatomic
systems.

In the paper which follows, a direct comparison
between the predictions of theory and experiment is
presented for the scattering from aluminum.


