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Maxwell's equations for 6elds with sources in media in which the dielectric constant and permeability are
unity are written in terms of a spinor notation which resembles the one used for Dirac's equation for the
electron. One can introduce Green's functions and expansions in terms of complete sets of orthogonal
functions, analogous to those used in the quantum theory of the electron, to solve Maxwell's equations in
more compact form than in terms of the conventional vector notation.

In addition, the new notation enables us to solve in a simple way an "inverse radiation problem" which
we describe as follows:

Consider at time t&0 the electromagnetic 6eld to be zero. At time t=0 sources are turned on and then
later turned oB. The electromagnetic 6eld, which results after this process has been completed, will be a
radiation 6eld. We can solve the problem of 6nding the nature of the sources which will lead to a prescribed
6nal radiation 6eld. It is shown that, in general, the sources are not unique but additional conditions can be
given which will make them so.

1. INTRODUCTIO¹ THE SPINOR FORM OF
MAXWELL'S EQUATIONS

"AXWELL'8 equations in free space with sources
-- are:

Maxwell's equations have the form

8——Q ct' f=—42rc',
8$'

(1.4)

curlE+ BH/Bt =0, curlH —BE/Bt= 42rj,
(1 1)

diVH= 0, diVE=42rp.

(In (1.1) we have used Gaussian units with c= 1.$
As in a previous paper, ' we introduce two 4-com-

ponent column vectors lt and C:

'go

.lksJ

go=—0,

4'o

C1
C2 '

.C'3J

(1.2)

lkl Hl 2+1 C 1 jl
42 H2 2+2 C2 j2
lt's=Hs —s~s, C's=j s,

(H1=H„H2=H„, Hs H„etc.), ——

and 4&&4 matrices cs' (i=O, 1, 2, 3):

(1.2a)

1

n' —=I= 0
0
.0

0 0 0
1 0 0
0 1 0
0 0

0 —10
1 0 0

0 0 0
. 0 0 i

0
0

~ 7

Og
(1.3)'0 0 —10

0 0 0
0 0 0

. 0 —i 0 0.

0 0 0 —1

0 0 —i 0
0 i 0 0

—10 0 0.
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where, in (1.4), and later
xo= xo=t x'= -xt=x, xs= -xs=y, x'= -xs=s. (1.5)

Equations essentially identical with (1.4) have also
been given in by Ohmura' and an analogous but more
cumbersome set has been given by Oppenheimer. '
Moliere4 and Good' give sets of equations similar to
(1.4) for the truncated set of Maxwell's equations in
which the divergence equations have been omitted.

In reference 1, it was shown that the usual trans-
formation properties for the fields and sources are
obtained. In particular, it was shown that the 6eld
function lt transformed like the wave function for a spin
1 particle.

The Hermitian operators n' (i=1, 2, 3) satisfy the
following multiplication laws:

(~1)2 —(~2) 2 —(~2) 2 —I
nn =zn = nn
n'n'= zn'= —n'n'

7

n'n'= zn'= —n'n'.

As a consequence of these multiplication rules one
obtains the following important identity:

1 2 Byt 1 2 B~
n~ n

2 =o Bx, j E zs=o Bx")

1 2 B) ( 1 2 B)
nk

i &=o Bx") 4 i i=o Bx, J

V=( v' ——ff.
( (1.7)

Bts)
2 T. Ohmura, Progr. Theoret. Phys. (Kyoto) 16, 684 (1956).
3 J. R. Oppenheimer, Phys. Rev. 38, 725 (1931}.
4 G. Moliere, Ann. Physik 6, 146 (1949).' R. H. Good, Jr., Phys. Rev. 105, 1914 (1957).
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4X 3 8
&V=—.2

~'=p 8$;
(1.8)

On applying —(1/i) p;=ppu'(8/Bx;) to both sides of
(1.4), we obtain

t, '& * 1 —(rt,g, i—prt„)
x(xlp, p) =

(2~) *' ~~(n*'+op')' —(npn.

+ipse*)

rt, +gp2 2

r0&

e'i"

«gZ»

We see that when there are no source terms, P and
hence the components of the electromagnetic field
satisfy the wave equation. If there are sources, on
taking the top component of the vectors on both sides
of the equation (1.8) and using fp—=0, we obtain as a x(xl y 0) =
necessary condition for the solution of (1.4), the equa- (27r)i g„
tion of continuity:

for 6=~1)

(2.1)

3 BC; Bp=—+dlv3 =0.
j=p Bx~ Bt

We can also write

f 1 8
l

————Hp lP= —4prc,
i at

e'I" 0
x(xl p, r) =

(27r)'* 0

.0.
(1.10) In (2.1), p3 is the unit vector in the direction of p, i.e.,

where Hp is given by
n= p/P, (2.1a)

8
Hp= Qn'—

Z i=1 Qg&

The operator Hp is analogous to Dirac's Hamiltonian.
We can now state our primary objective: we solve (1.10)
by working in the spectral representation of the operator
Bp instead of using the usual Iourier transformations
in terms of wave numbers. This approach is used in
references 4 and 5, but the treatment there is incomplete
and also somewhat cumbersome because the equations
analogous to (1.10) are not the complete set of
Maxwell's equations.

In the Appendix we shall show how the energy
conservation laws may be derived simply in terms of
these definitions.

"x,'(xl y,p)x;(x l
p', p')dx= 8(y —y') 5„, (2.2)

i=p

where
8egi=0) 6 Q6

8„=1, (2.2a)

and the asterisk means complex conjugate. This set also
satisfies the completeness relation:

x;*(xly)p)x;(x'ly, p)dp=b(x —x')8g. (2.3)

where p= lpl. Also p x is the usual three-dimensional
scalar product of p and x.

It is easily verified that the basic vectors are ortho-
normal to each other:

2. THE "EIGENFUNCTIONS" OF IIp', THE x REPRE-
SENTATIO¹, THE P REPRESENTATION

As a consequence we can expand any four-component
column vector A (x)

We shall work essentially in the spectral representa-
tion of the operator Hp. We shall introduce four column
vectors (which we term basic vectors) which form a
complete, orthonormal set which give the spectral
representation of Hp. Rather than give a detailed
motivation for this set of vectors, we shall instead give
them explicitly. We shall designate the four basic
vectors by x(xlp, p) where p is a three-dimensional
vector and where e has the values ~1,0, r. That is, the
four values of e label the four basic vectors. Explicitly,
the set of basic vectors which we use is

where

A, (x) =p t x;(xl p,p)A (p,p)dp,

3
I

A (p,p) =p x;*(x
l p,p)A;(x)dx.

~p4

'Ap(x)

A( )
Ag(x)
Ap(x).A p(x).

in the following way:

(2.4)

(2.5)
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If we choose, we may regard A, (x) and A(p, ») as
representing an abstract vector A in Hilbert space in
two different representations, which we may call the
x-representation and the p-representation, respectively,
where the norm of A is

3

A;*(x)A;(x)dx=P
i

A*(p,»)A(p, »)dp.
i=0 4

The basic vectors x(x l p, &1) are true eigenfunctions
of H0 which have their top components zero. They
satisfy

II»(xlp, ») =»px(xly, »), (»=&1), where p= lpl. (2.6)

Also

II»(xly, O) = —px(xly, r), (p= I pl)
and

II»(xl p,.) =—px(xi p,o). (2.8)

Another relation that will prove very useful is the
divergence property

3

x;(xlp, w1) =0,
~~ 8$'

We now consider the sources. The equation of
continuity which is a necessary condition for the
solution of Maxwell's equations,

BC i
=0,

i=0 gg
(2.13)

i Be(p, 7. ;t)
C (p,0;t) =— (2.14)

The condition that C, (x; t) is real leads to necessary
and sufficient symmetry conditions on C (p,»; t), namely

e*(p, ~1; t) =c (—p, ~1; t),

e*(y,r; t) =e(—p, r; t), (2.15)

C *(p,O; t) = —C (—y, 0; t)

3. THE SOLUTION OF THE INITIAL VALUE PROBLEM.
SEPARATION OF THE LONGITUDINAL AND

TRANSVERSE FIELDS

lead, on using (2.9) and (2.10), to a restriction on
C (p,»; t), namely

jp3 ()
x;(xlp, 0) = e'& *.

'=i »jx' (2m.)&

(2.9) We shall now use the expansion of iP and C in terms of
the complete set of basic vectors to solve Maxwell's
equations with sources. As in Sec. 2, let us write

The relations (2.9) enable us to separate the longitudinal
from the transverse Geld in a simple fashion.

We are now able to expand our time-dependent
electromagnetic field vector |t (x; t) sources C(x; t) in
terms of the basic vectors x(xl p,»):

P(x; t) =2 x(xl p, »)iP(p, »; t)dp,

c (x; t) =Q x(xl y,»)e(y, »; t)dy.

(3.1)

4(;t)=Z
i

x(xly, )4(y, ;t)dy,

e(x; t) =p X(x I »')C'(p ' t)dp
1 t BP(p,»; t)

x(xl p, »)
i ~ ~ 8tSince we require ip»(x; t) =—0, we see from (2.1) that in

the p-representation we must have

On substituting iP(x; t) and C(x; t) as given by (3.1)

(2 10) into Maxwell's equations (1.10) and using (2.6)—(2.8),
we obtain

Hence we may write

iP(p r' t)=0. (2.11) + x(xl p,O)p4(y, r; t)dp

where
ip(x; t) =p~(x; t)+ip~(x; t),

f
&'(x t)= » (xl»»)&(y»'t)dp,

iP~(x; t) = x(xlp, O)iP(p, O; t)dp.

(2.12) +) x(xiy, ~)pk(y, O; t)dp

"»px(x
I »»)&(»" t)dp

e=y1 aJ

= —4~2 "x(xlp»)C'(p» t)dp (32)
Now iP~ is the transverse field, since from (2.9) we have

By identifying coefficients of x (x l p, »), we obtain
equations for ip(p, »; t) in terms of C (p,»; t) The equa-.8 Bx',r=0, which lea s to iv ~=div ~=0.

Likewise iP~ is the longitudinal part of the field. tions for the transverse part of the 6eld are obtained by
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identifying the coeKcients of X(xlp, &1), and we ffnd magnetic field is zero,

1 8 and
p—(P,e; t) ep(p, e; t) = —4vrC (P,e; t), (e= a1). (3.3)

i Bt

As before, we require

H~=—0,

«p(x'; t)
E~(x; t) = —grad ' dx'.

lx—x'l

(3.10)

(3.11)

P(p, r, t)=—0.

Hence, by identifying the coefficients of X(x l p, r),

4Ã
g (P,O; t) =——4 (P, r", t),

(3.4)

(3.5)

Having disposed of the longitudinal field, we shall
now discuss the initial value problem for the transverse
field.

The general solution of the differential equation
(3.3) is

IP(p, e t)=e ""&' "&lP(p,e; te)+4zrze ""'
and by identifying the coefficients of X(xl P,O) pt

C (p,e; t')e""'dt', (e=&1). (3.12)
1 a———$(P,O; t) =—4zrC'(P, O; t).
i Bt

(3.6)
The first term on the right represents a solution of
Maxwell's equation without sources, while the second
term shows the effects of sources. It should be noted
that Ce(x, t)—=p(x; t) has no effect whatsoever on the
transverse field. We can also write the solution (3.12) in
terms of the x-representation:

In order that P(p,O; t) be given both by (3.5) and (3.6),
we obtain a relation that C must satisfy:

1 1 BC (p,r; t)= —C'(P 0' t)
ip Bt

(3.7)
f

~t F(x; t) = 2 X*(xlp,e)4'(p, e; «)dp
&=+i J

)&X;*(x'lp, e)e "z'&' '»f, (x', te)dx'dp

pt
+4zri dt' Q X;(xlp, e)

~to

&(X;*(x'lp, )e "&&' '&4 (x'; t')dx'dp. (3.13)

which is just Eq. (2.14); this was seen to be equivalent
to the equation of continuity.

In our notation (as in the usual treatment) the X'(xl p, e)
transverse and longitudinal Gelds uncouple. The trans- '=+1 J J
verse field in the p-representation is given by (3.3).
Because of the first derivatives in time, one can consider
an initial value problem which this poses.

On the other hand, the longitudinal field itself,
rather than its derivative, depends on the sources and is
therefore simpler to obtain than the transverse Geld. No
initial value problem is involved. Hence

On using the expressions for the eigenfunction (2.1),

p X'(x I p, O)
f,i(x; t) = —4zr C (p, r; t)dp , f

+4zri dt' dx'G(x; tlx'; t')C(x'; t') (3.14)
to 4

= —4zrg )g

~ r X,(xlp, 0)
X;*(x'

l p, r)

&(C;(x'; t)dx'dp

where G(x; tlx', t') is the matrix Green's function
given by

G;;(x; tlx'; t')= P x;(xlp, e)
e=+1 ~

(2~)'~ J
dp i«,4e(x', t)dx', )&X,*(x'l p&e)e "&&' '&dp. (3.15)

/ ~

The matrix elements are easily evaluated:

where rt, =rt, etc. Since C e(x; t) =p(x; t), we see that

p e'j'. &
—")

It;z(x; t) = ——
ax'» dpp(x'; t)dx'

pz

8 «p(x', t)
=z dx.

elm' ~ lx —x'l
(3.9)

We thus obtain the familiar result that the longitudinal

Ge, (x,tlx', t')=0, (j=0, 1, 2, 3)

82 82

G,,(x,t l
x', t') = — + B(x,t

l
x', t'),

Bt2 BX'2

(3.16)
(i=1, 2, 3)

Giz(x, t
l
x', t') = —z + B(x,t l

x', t'),
BtBX BX'BX2



1674 H. E. MOSES

and cyclically,

G;;(x,t l
x', t') =G;, (x,t l

x', t');

where

q(fx —x'f' —ft —t'f')
B(x,t fx', t') =

4)r fx—x'f
where

)t(x) =1 for x)0,

)t(x) =0 for x(0.

(3.1/)

(3.18)

If there were no sources, one would obtain only the
first term of (3.14) which would represent a radiation
Geld in terms of its value at time t=to. This radiation
field could also be written

We can also solve the "inverse" problem which may
be described in the following way: We prescribe the
initial Geld and the final 6eld. We are required to 6nd
the sources which lead from the initial field to the final
field. A particular case is that which occurs when the
initial field is zero. We shall then want to find the
sources which give a prescribed radiation pattern.

Let us now assume that there are no sources for
t &to. At t= to the sources are switched on, permitted to
vary in time in any desired fashion, and then switched
off again at t)ti. From (3.12) it is clear that for t(to we
have a solution of Maxwell's equations without sources
which is a purely transverse field and which we may
write as

P(x; t) =—)I ~(x; t)

x(xlp, )e-"""-"V(y, ; to)du.
e=yl 4

(3.19) x(xl p,e)e '"«-)oiP(-p, e; t,)dy
~pi 4

It is useful to note that the radiation field (3.19)
represents a superposition of solutions x(x fy, e)e ")"of
Maxwell's equations without sources. Such solutions
represent circularly polarized radiation of frequency

l pl travelling in the direction y for a=1 and —p for
e= —1. To show this, one sets g =1, q„=g,=0, and
obtains from (2.1)

E =0,

1 (e+1)
Z„= cos[p(x—et) 7,

42(2~)t 2

G(x; t
l
x', to))P (x', to)dx', (t(to). (4.1)

J

In the time interval to&t&ti, the transverse field is
given by (3.12) or (3.14).

The longitudinal field is given by (3.9).
For times t&t~ corresponding to the switching off

again of the sources, we have another solution of
Maxwell's equations without sources which is a pure
transverse 6eld:

)p(x; t) —=ipr(x; t)

&2(2)r) & 2

B,=O,

(e—1)
sin[p(x —et) 7,Hg

v2(2x)& 2

(e—1)
sin[p(x —et) 7,

(3.20)

x(x I p, e)e-'""-"V(y,e; ti)

G(x; t
f
x'; ti))pr(x'; ti)dx', t) ti (4.2)

4
where

)p(y) e ) ti) = e " " 'o ))t'(p) e; to)

1 (e+1)

v2(2~)& 2
cos[p(x —et) 7,

which are just the usual forms for circularly polarized
electromagnetic waves.

pt1

+4+ie """
~ C'(y e' t')e""'dt'

J ) )
to

(e=+1). (4.3)

It will be useful to introduce the notation

4. THE PROBLEM OF FINDING SOURCES WHICH WILL
GIVE A PRESCRIBED RADIATION FIELD

Let us consider a particular situation where C (x; t) =—0
for t&to and for t&t~. At time t&to and t&t~ we shall
have radiation fields which we call initial and 6nal fields.

A physically interesting problem is to obtain the final
Geld from the initial field and sources. The problem is
analogous to the scattering problem in quantum
mechanics. Since we have given the general solution of
Maxwell's equations in the previous section, we can
easily solve this problem.

pt1

F(p, e) = —
~ C (y,e; t') e")'"dt'

(2)r)& J),

I rtj
"x;*(x

f y,e)C;(x; t') e")'"dxdt',
(2)r)& ' J),

(e= W1). (4.4)

Equation (4.3) can be written

4(p, e ti)=e ""'" "V(y e to)+2(2~)'ie '""~(p,~)

(e= &1). (4.5)
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In terms of the y-representation, the initial electro-
magnetic Geld is P(y, e; te), while the 6nal one is

f(y,e; ti), both Gelds being given. We are required to
find the sources 4 (x; t). We shall show that the solution
is not unique, but that we can obtain essentially unique
results by imposing additi. onal conditions.

From (4.5) we can find F(p, e) from the initial and
final fields:

any arbitrary charge distribution p(x; I) for to&t(Ii
which would give rise to the longitudinal 6eld given
by (3.9).

When this charge distribution is switched off, it will
not affect the final transverse field in any way whatever.
Thus the 6nal radiation 6eld is given by the sources

4 (x; t) = P x(x
~ p, e)4 (y,e; t)dp

P(y e) = Le"""4'(p e' Ii) —e""'V(p e ~o)3
2(2n) &

e=+1. (4.6)
only. To this source we may add C~'b) where

Ab
H we can find C(y&e; t) and hence 4(x; t) from P(y, e),
our problem is solved.

Let us de6ne the function F(p,e; k) as being the
Fourier transform of 4(y,e; t) with respect to time,
fol &=~1.

+J &(xlp0)4'(p0; &)dp

P(y e; k) = 4(y e' 't)8 d't

(2m)& "i,

which, when expressed in terms of the arbitrary charge
density p is

(4.7) Ce"'(x; t) =p(x' t),

4(y,e; t)= P(y, e; k)e '"dk.
(2s.)'*~ „

The condition that 4 (x; t) be real leads to Eqs. (2.15)
and hence also

8 1
CP'b(x I)=

elx'4~ ~ (x—x'(

Bp(x'; t)
dx ) (4.10)

F*(y,e; k)=F(—p, e; —k). (4.7a) LIt is clear that 4"'b satis6es the equation of continuity

P(y e; eP)—=P(y e), (4.8)

and obtain C(p,e; I) for e=&1 using the second of
Eqs. (4.7).

We can Gnd a suitable real source 4 (x; 3) from

Also the condition that 4(x; 3) vanish for t) 3, and I(te
leads to the requirement that F(y, e; k) be an entire
function in the complex k+plane and that e '"'&F (y, e; k)
and e—'e'OF(p, e k) ~0(1/~k~) as ~k~~ ~ in the upper
and lower half planes, respectively.

It is clear that if we are given the initial and final
fields and hence F(p,e), we can take ugly function

F(y, e; k) which satisfies (4.7a) and the analyticity con-
ditions such that

gy .A.rb

=0,
8$'

since V'(1/4s. ~x~) =—h(x).j
The choice of p(x; I) and hence also 4"'b is not an

essential lack of uniqueness in the inverse problem
because this source does not give rise to transverse
fields at uey time.

The second lack of uniqueness in the inverse problem
is far more important. It concerns the choice of function

F(y,e; k) for e=&1. Except for the requirement that
this function satisfy (4.7a) and (4.8) and the analyticity
conditions, it is arbitrary. We shall therefore impose ad-
ditional conditions which will make the problem unique.

4(x; t)—=P „x(xip,e)4(y, e; t)dy, (4.9) 5. THE STATEMENT OF THE INVERSE PROBLEM
WHICH LEADS TO UNIQUE SOLUTIONS

where 4(y, &I; t) is given by (4.7), 4(y, r; t) is any
arbitrary function which satisfies (2.15) and which
vanishes identically when t(to or t) t&, and

4 (P,O; t) = (i/P) 84 (y,r , t)/e7I.
We note that there are two types of lack of uniqueness

in 4 (x; 3). One type consists in the arbitrary choice of
function 4'(y, r, t) which satis6es (2.15), but vanishes
identically for times t&to and for times t)t&. This
arbitrariness corresponds to the possibility of having

It will be convenient to choose the origin of time so
that to= —T and t&= T where T&0. This can always be
done by taking T=-', (ti—te) and introducing a new time
coordinate t'=t —~(/i+le). We shall assume the new

time coordinate is always used in what follows and drop
the prime. We shall prescribe the initial and final fields
in the p-representation which are now f(y, e; —T) and

f(p,e; T), respectively. Henceforth, whenever e appears
it will be restricted to the values e= ~1.

The Ansatz which will lead to unique sources for any
choice of initial and final Gelds is the requirement that
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the source vector C (x; t) be represented by

C (x t) =Ce(x)he(t)+C (x)h (t) (5.1)

tee+ T

ge(k) = h e(t)e'"dt
(2 )'~-.

+T
h'(t) e'"dt.g (k)=

(2m)* " r

It is easily seen that

where he(t) is a prescribed real even function of t and
h~(t) is a prescribed real odd function of t (the super-
script U stands for "uneven" and is used instead of 0
to prevent confusion). Neither he(t) nor hu(t) is allowed
to be identically zero. Our statement of the inverse
problem is that we shall be able to find unique real
4-component column vectors C~(x) and C~(x) which
are functions of x only for any initial and final fields.

Let us erst introduce the Fourier transforms of
he(t) and h~(t)

Therefore, using (5.3) and (5.7), we have

F (p,«) =C"(p,«)g'(P),

F'(y, e) =«C"(y,e)g (P).
(5.11)

Furthermore, on using (4.6), we find the following
solutions for Ce ~(p,e) in terms of the initial and final
fields:

C (p,e) = [e"'& ip(p, e; t)
«2-):g (p)

+e i&9&T$8(y—e ~ T) e k»P(p —
e ' T)—

—""'4*(—p, ; T)j (512 )

C"(p,e) = [e' »g (y,«; t)
4(2~)'*g'(P)

e kyTP—
( p e. T) e ieyTtp(y —e. T)

+eiapTQ@( p e ~ T)$ (5 12)

g'*(k) =g'(k),
g'(- k) =g'(k),
g'*(k) =—g'(k),

g'( —k) —-g'(k).
From (4.7) and the relation

C'(p, e; t) =C (y,e)h (t)+C~(p, e)h~(t)

we see that

~(y,e; k) =C"(p e)g'(k)+C'(y, e)g'(k)
where

C» ii(p e) =P I X,*(x~p,e)C,» ~(x)dx,
i

C '(x)= 2 ' x(xly, e)C"'(ye)dy
&=+1 J

Finally, we have the sources

(5 3) C (x; t) = g x(x~p, e)C»(p, e)dphe(t)
,=~i J

+ p x(xip)e)Cu(p, e)dph~(t) (5.13).
@=+1

(5.4) %e shall now consider two examples of the inverse
problem.

Exarripte 1.—We shall take the 6eld before the sources
are switched on to be zero. After the sources are
switched oR' the field is to consist of a circularly polar-
ized wave travelling in the positive x direction with
frequency v. Hence

(5.6)
ip(p, e; —T)—=0,

4'(p' T)=E&(p &)ti(p )ti(p*)&.+i
(5.14)

C' '(- p, «) =C' '*(p «). (5 7)

The reality conditions on C e(x) and CU(x) lead to the
requirement that

Furthermore, we shall take

he (t) =Aa(t),

hi'(t) =Bb'(t).
(5.15)

Equation (4.8), together with (5.3) yields, finally,

F(y,e) =C"(y,e)g'(P)+ C"(p,e)g'(P) (5.8)

Now it will be convenient to introduce Fe(p, e) and
F~(p,e) defined by

F'(P, e) = 2[F(P,e)+~*(—P, «)3,
(5.9)

~'(y, e) =k[F(y,e) —F*(—p «)j.

All suKciently short, time he(t) and h~(t) functions can
be approximated by the functions given in (5.15).
Furthermore, we may take T to be arbitrarily small. In
fact we shall take T to be zero after the various integra-
tions over time have been performed.

Then, in terms of the x-representation, the field is
identically zero for t(0 and for t&0 is given by
[see (3.20)g

It is clear that
F(y, e) =~ (y,e)+~'(y;),

~ (—p, «)=F'*(y,e),

J"'(—p, e) =—F'*(y,e)

E,=O, II,=O,

E„= cos[i (x—t)], II„= sin[i (x—t)],~5.)o~

%2(2') '* V2 (2~)'*
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L~', = sin[v(x- t)], H.= cosLv(x-t)].
v2(2m)-: K2(2~)'

(5.16)

The calculations for the sources are quite straight-
forward and one obtains

The longitudinal field is

0

a/ax 1
p(x')

P~(x; t) =i — dx'B(t). (5.21)
a/ay ~ Ix—x'I

0 0 .a/as.

E 0
Cs(x) =

A 16m' —cosvx

K 0
C~(x) =

816m'v sins x

sin vx. .Cosvg

E 0
C(x; t)=

16ir' —COSvXa(t)+ v ' SinvX8'(t)

(5.17)

(5.18)

Example Z.—In the present example we shall study
the case in which the time dependence of the sources is
the same as before and where we again require the
initial field to be identically zero. In contrast to the
previous example, however, we shall require the final
transverse field to be highly concentrated in space
immediately after the sources are switched o6. We
shall then see that as long as the sources are on, they
will also be highly concentrated in space.

It would be nice to consider the field immediately
after the switchoG to be

sinvxa(t)+ v ' cosvxa'(t). It" (x) =Ra(x), (5.22)

One can add to this source the arbitrary charge dis-
tribution p(x; t) which we may choose, if we wish, to
take the form

p (x; t) =p (x)8 (t),

where p(x) is arbitrary. This gives rise to the arbitrary
additional sources

p(x)a(t)

1 a r p(x')
dx'a'(t)

4 ax ~ Ix—x'I

where E. is the four-component vector

0

E='
E2 '

.E3.

(5.22a)

R; being any complex number R,=L;+iM;. However,
It" is not suitable for a final field because it is not purely
transverse. Hence we shall subtract the part whose
divergence is not zero.

We may expand P"(x) as

C"' (x; t) = 1 a t' p(x') . (5.19) p&(x) = p x(xl p &)g&(p &)dy
dx'8'(t) e=y1 0

4~ay ~

p(x')
dx'8'(t).4~ as ~ lx —x'I

Having obtained the sources, we can now obtain the
fields for all time using techniques given in Sec. 3. The
transverse field is given by

+ x(x I y, 0)~t "(y,0)dy (5»)

0"'(x)= x(xly, 0)~t "(y,0)dy. (5.24)

Now, the part for which the divergence does not
vanish is

fr(x; t) =
42(2m)&

r 0 0

Moreover, since

It "(y,0)=2 x'*(x
I y,0)4'"(x)dx (5.25)

X~ ~(t)eiv(z —t) +&v 'a(t) ~, (5 20) we have, on using the explicit form of x, (xly, 0),
s111vX

where g(t) is the Heaviside function:

.cosvx It'"'(x) =2 ' dx'0 '(x') x'(xly 0)x*(x'Iy 0)dy

iI(t) =0 for t(0
= 1 for t&0. (5.20a)

1 3 8' 1=——P R, , (i=i, 2, 3).
47r i=i ax'axe Ixl

(5.26)
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Hence, we shall take as the field immediately after the dimensional vector space.
sources are switched off,

8 1
p, =S,S(x)+—P R, , (i=1, 2, 3) (5.27)

=i '»'» IXI'

which is still highly localized near the origin and is now
a purely transverse wave.

The sources which give rise to (5.27) are easily
calculated:

A(x) B(x)=P A;*(x)B,(x),
i 0

(2)

(A,B)=g A;*(x)B;(x)dx=
J A(x) B(x)dx. (3)

j=p

where the asterisk means the complex conjugate. The
second inner product is the Herrnitian inner product
used in Hilbert space:

C px(x) =—0,

CP(x) =0,
(i=1, 2, 3)

8 8
C P(x) = Lp Lp—

(4 )pB»p a.p lxl'

3 82

CP(x) = 3I;8(x)+ gM—,
krA 4m i=~ »'»'

I
x

I

(5.28)
Z

A (x) =—P(x),
Sm

B(x)=
3 8

z ~o 8$'

Because of Maxwell's equations (1.4), we have

The operators e' are Hermitian with respect to both
inner products.

Let us write

8 8
C po(x) = Lg Lp-

(4g)'B»' »" lxl

1 p
I

8
(5.28a) (A,B)= Z I P(x) a—~ P(x)dx

8m g=o J t9$~'

8 8
CP(x) = L2 —L1(4~)'B»' Bx' lxl Also

', i "P(-x).C (x)dx. (5)

In addition to these sources, one can add the arbitrary
sources given by (5.19).

For t&0, it is easy to show that the field is given by

iP, (x; t) =P; G,, (x; t
l 0; 0)R;, (5.29)

where G is Green's function given by (3.16).

APPENDIX'. DERIVATION OF THE ENERGY
CONSERVATION LAW FROM THE

SPINOR FORM

One can derive the energy conservation law for
Maxwell's equations in a manner similar to the deriva-
tion of the equation of continuity in Dirac's equations.

Let us de6ne two different types of inner products of
column vectors. Consider two vectors A(x) and B(x)
which are given by

(B,A) =—Q n&' P(x) P(x)dx
Sm. ~=o 4 Bx&

= —-', i C (x) .P(x)dx. (6)

Since the operators n' are Hermitian, Fq. (6) becomes

1 p f' l9

P(x) n'P( x) d. x= ',i C —(x)-f(x)dx. (7)
8~ t=p J ax~

On adding (5) and (7), we obtain

S'(x)dx
axi

S'(x)dx+ P S'(x)dx = P(x)dx, (8)
8 I' p

I
8

i=1 gg'

Ap(x)
A] (x)
Ap(x) '

.Ap(x).

Bp(x)
Bg (x)
Bp(x).Bp(x).

where

1
S'(x) =—f(x) n'P(x), (i=0, 1, 2, 3)

Sm

In (1) and later, x represents collectively the three-
dimensional space coordinates. The 6rst type of inner
product is the Hermitian inner product in finite-

P(x) =Reig(x) C(x) =P E;j;

(9)
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where Re means "real part. " It is easy to see that
P(x) is the time rate of change at which the electric
field does work per unit volume on the sources. Hence
S'= (1/Ssr) g;lb;*lb; is the energy density and the
components S' (a=1, 2, 3) are the components of the
Poynting vector. Since the field P is arbitrary, we can

strip off the integrals in (9) and obtain the familiar
diGerential form of the conservation of energy:

c)So/ett+divS =E.j. (10)

Various other conservation laws can be obtained in an
analogous way.
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An attempt is made to explore the possible connection between
symmetry laws in internal space (e.g. , isospin space) and symmetry
laws in Lorentz space with special attention to the question: Why
are the strong interactions parity-conservingP For direct (non-
derivative-type) pion-nucleon interactions, CP invariance and
charge independence are su%,cient to guarantee the separate con-
servation of P and C, as previously pointed out. For derivative-
type pion-nucleon interactions, charge independence and G
invariance (rotational and inversion invariance in three-dimen-
sional isospin space) require that parity (and CP) be conserved;
in addition we can also show that the charge-triplet pion must be
pseudoscalar, provided that the virtual Yukawa process m' ~~ p+p
is allowed or, equivalently, the m can be regarded as a bound state
of a proton and an antiproton as far as symmetry laws are con-
cerned. For the K couplings, analogous conditions cannot be
obtained from the usual assumption of charge independence alone.
However, if the E couplings (rather than the m couplings) exhibit
a higher internal symmetry in the sense that the E couplings are
universal, the high E symmetry plus charge independence in the
usual sense imply parity conservation both in the case of CP-
invariant nonderivative-type E interactions and in the case of

G-invariant derivative-type E interactions. The high E symmetry
also implies that the relative S parity as well as the relative
AZ parity is even. It is conjectured that, if the E couplings must
be of a derivative type, only ps-pv coupling is allowed, which
means that the E particle is pseudoscalar. The global symmetry
model which cannot be reconciled with our assumption of the
high K symmetry is re-examined. The high K symmetry is
destroyed in a specific and definite manner by the ~ couplings,
and relations among the various coupling constants are inferred
from the baryon mass spectrum. Some empirical implications of
our model are discussed. Whereas G invariance requires the sym-
metric appearance of the two chiral spinors —', (1+ye)|t and
—',(1—ye)p for strangeness-conserving processes, for strangeness-
nonconserving processes G conjugation carries charge-conserving
interactions into inadmissible interactions that do not conserve
electric charge. Hence, if we take the point of view that parity-
conserving interactions are generated by G conjugation, we have
some understanding of the puzzling fact that strangeness con-
servation and parity conservation have the same domain of
validity. Further theoretical speculations are made.

ECENTLV some progress has been made in our
understanding of weak interactions. Kith the

empirical observation of a statistically well-established
asymmetry in the decay of h. particles' and with the
advent of the universal t/A theory which accounts for
parity nonconservation in weak processes regardless of
whether or not neutrinos are involved, ' ' the original
"puzzle" that arose from the curious behavior of the
pionic decay modes of E particles has largely dis-

appeared. Yet there remain deeper (and perhaps more

dificult) questions unanswered: Why do baryons and
mesons interact sometimes strongly and sometimes

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

$ On leave of absence from the University of Chicago.' Crawford, Cresti, Good, Gottstein, Lyman, Solmitz, Stevenson,
and Ticho, Phys. Rev. 108, 1102 (1957);F.Eisler et aL. , Phys. Rev.
108, 1353 (1957).'E. C. G. Sudarshan and R. E. Marshak, Suppl. Nuovo
cimento (to be published).' R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).' J. J. Sakurai, Nuovo cimento 7, 649 (1958).

weakly? "Why are the strong interactions parity-
symmetric, " or, more specifically, why can't we insert
1+y; for the strangeness-conserving [p,ho,E+j inter-
actions Why are the parity-conserving interactions 10"
to 10' times stronger than the parity-nonconserving
interactions'

It is not at all evident to us now whether the present
(unsatisfactory) quantum field theory of elementary
particles is capable of coping with these formidable
questions. Yet we cannot help but be struck by the
empirical facts that strongly interacting particles possess
internal degrees of freedom such as isospin and strange-
ness that leptons do not seem to possess; that sym-
metry laws concerning these internal degrees of freedom
are approximate, just as the "law" of the conservation
of parity is approximate; and that the conservation of
strangeness (or equivalently the conservation of Is)
seems to have the same domain of validity as the con-
servation of parity for those interactions that involve
only strongly interacting particles. From these empirical

W. Pauli (private communication to V. Weisskopf, January,
1957).


