
REPRESENTATIONS OF DIRAC EQUATION

(4) The E spin operator, o~, is also simply related to
the E chirality operator ps+ which in the conventional
D representation is in turn simply related to the
longitudinal polarization (helicity) of the particle.
The relation is not an identity because of the sign ~
(see Table I).This shows most clearly why any chirality
invariance requirement, such as has been used in the
theory of weak interaction, ' results in opposite helicities
for particles and antiparticles.

'P. C. G. Sudarshan and R. E. Marshak, Proceedings of the
Padua-Venice Conference on Mesons and Newly Discovered

The discussion of the 8 representation for Dirac
particles in interaction with external fields will be
dealt with in a subsequent communication.
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The Lee model is modified by addition of a new field 8' and a weak coupling X+8 -+ S+8', which leads to
instability of the V particle: V ~X+8~ S+tII'. The decay amplitude is calculated to lowest order in the
weak coupling by dispersion relation methods. In eBect we are required to study a set of simultaneous
dispersion relations. The problem is completely soluble and serves to clarify the essential structure of
dispersion methods. The results agree with what one obtains, more easily in the present case, by direct
methods.

I. INTRODUCTION

HE Lee model" of a soluble Geld theory has come
to play a role similar to that of, say, the harmonic

oscillator in classical mechanics. Once a model is known
to be soluble by simple and straightforward methods,
it is not dificult to Gnd indirect and not-so-simple
methods of solution which may nevertheless be relevant
and useful in other contexts. In this essentially peda-
gogical spirit we discuss here the dispersion relation
approach to the Lee model. The original model is
slightly altered however, by addition of a weak coupling
which leads to instability of one of the particles of the
theory. This modification provides a physical moti-
vation for studying matrix elements which are un-.

interesting in the original model and thus, as is desirable,
forces us to study a set of simultaneous dispersion
relations.

A second reason for enlarging the Lee dynamics in
this way has to do with a dispersion relation treatment
of s ~p+ v decay which we undertook previously. ' In
the present case we deal again with a decay process,
and it is possible to test for errors of principle in the
dispersion relation approach. This is worth while, for

*Work supported in part by the Once of Scientific Research,
Air Research and Development Command.' T. D. Lee, Phys. Rev. 95, 1329 (1954).

2 G. Kallen and W. Pauli, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 30, No. 7 (1955).

'M. L. Goldberger and--S. B.- Treiman, Phys. Rev. 110, 1178
(1958).

when applied to particle decay the dispersion methods
treat renormalization questions in a way which has
disturbed some of our colleagues. 4 What we 6nd in the
present model is that the dispersion approach leads to
the correct solution. A practical attack on more
realistic particle decay problems of course requires
many approximations and assumptions beyond a
commitment to dispersion relations. But granted the
basic analyticity assumptions, it appears that no errors
of principle enter into the application of the dispersion
relation methods.

The Lee model deals with X, 8, and V fields which
are coupled. according to the interaction V~~X+8.
The corresponding particles S and 8 are stable; and
with a suitable choice of parameters a stable V particle
also exists. ' Let the respective masses be m~, p, and

mv, where mv &ms+ @.We now introduce an additional
field 0', corresponding to a particle of mass p', where

mN+p, '&mv&tn~+p. We also introduce a direct weak

interaction E+8+~S+8', which we always treat to
lowest order. As a consequence of this interaction the
V particle becomes unstable, decaying into %+0'
through the sequence V -+ X+8~X+0'. Our problem

is to calculate the decay amplitud"- -to Grst order in

4 We want to thank especially S. Barshay, ¹ Kroll, A. Pais,
M. Ruderman, and J. C. Taylor for discussions and communi-
cations. We also thank R. Haag for informative discussions on
the Lee model.

s V. Glaser and G. Kallen, Nuclear Phys. 2, 706 (1957).
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the weak coupling but to all orders in the strong
coupling. The calculation is a trivial one when direct
methods are employed. Our purpose, however, is to
approach the problem with the elaborate machinery
of the dispersion relations.

Notice that the model we deal with has been con-
structed in analogy with charged pion decay, which
we suppose proceeds mainly through the sequence:
pion —& baryon pairs —+ leptons.

e 8'
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V N V N

8 8'
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V N N
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Fro. 1. Diagrams for the process V-+ X+8'. Diagrams like (b)
are absorbed in (u) by wave-function renormalization.

II. MODEL

The Lee model has been extensively studied and
there is no need here to repeat any of the discussion.
We shall merely rewrite the expression for the total
Hamiltonian, including the additional terms describing
the 8' particle and the weak interaction 1V+8~~1V+8'
which we are appending to the standard Lee model.
We suppose that the interaction V ~~ 1V+8 contains a
source function (u(a&) below] with properties such that
all integrals which we encounter converge and such
that the Lee model contains no ghost V-particle state.
For simplicity we neglect recoil of the E and V particles.
The Hamiltonian is

G
Hs =—Pa tea (A t 8+CLtA);

M
(4)

where
u(&v)

A=+ aa,
a (2(oQ)&

co= (u'+k') &,

U(W)e=P rra, W= (u"+k')&.
(2WQ)'*

and the commutation and anticommutation relations
are

Lttaya t]=4a, L~a,~a']=Ra,
(P~,g») = 1; g v,g«t) = 1/Z,

with

[&a,~a ]=)~a,rra ]={fxpPv)= g v,fv) =o

In Eq. (4), G is the weak coupling constant and M is
a mass, inserted for dimensional reasons. We are quan-
tizing in a box of volume 0, where later 0 —+ ~. The
factor Z is a renormalization constant; g is the strong,
renormalized coupling constant; and Pv is the renor-
malized V-particle Geld. In the absence of H2 there is a
stable V-particle state

~ V), and Z has been chosen so
that

(0)fv) V)=1,

H =Ps+Et+Ha,

&o=mvZgvV v+mx4n'4x+Qa ~a&at&a

+Ra Warra'rra, (2)

Ht=yf ~tfvAt+ggvtP~A+8mvZfvtfv,

where ~0) is the vacuum state. Finally 8mv is a V-
particle mass renormalization.

From (8) and the eigenvalue problem (Ps+at)
~
V)

=mv~ V), one 6nds

g' u'(te) 1
bmv

Z ~ 2coQ mv —mx —co

u'((o) 1
Z=1—g' P

2(uQ (mv —mar —co)'
(10)

One also finds readily the various states of (Hs+H&);
in particular, we are concerned with the V-particle
state

~
V) and the 1V+8 scattering states, denoted by

~1V8„), where s& is the energy of the 8 particle. As a
convention, we shall always imply by this symbol an
"in"-scattering state. The state

~
V) plus the "in"-

scattering states form a complete set (we have chosen
the source function u(co) such that 0(Z(1, and thus
there are no ghost states].

As for the 1V+8' scattering states, to lowest order in
G they are the same as the bare-particle states. Ke
denote these by ~1V8s'), where W is the energy of the
0' particle. To lowest order in G, the amplitude for
V —& 1V+8' decay is proportional to the matrix element
(1V8s '~Hs~ V), where W=mv —m~. More precisely, let
us define the decay amplitude F according to

(2WQ) &

U(W)

Z 6= ———amv. (12)
g M

so that Ii does not depend explicitly on 8".This is now
the quantity that we want to evaluate; and in com-
puting it by dispersion methods, we will be led to con-
sider amplitudes also for various other processes. Of
course the matrix element F can be computed directly
from the known solution

~
V); or, what is the same

thing, from use of "Feynman" diagrams. The sole
diagram in question is in fact the lowest order one
shown in Fig. 1(a), where the renormalized coupling
constant g and physical V-particle mass m& are to be
used. The bubble diagrams in Fig. 1(b) are absorbed
in Fig. 1(a) by wave-function renormalization. One
finds the simple result
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Before proceeding further, let us recall what is meant
by the lifetime of the V particle. As is well known, one
satisfactory way of dealing with unstable states is to
regard them as resonances in scattering processes
involving the decay products. One looks for a conven-
tional resonance structure whose location and width
provide a meaningful definition of both the energy and
lifetime of the intermediate entity which we then
describe as a decaying particle. In the present case a
calculation of elastic %+8' scattering can be carried
out rigorously, and one finds a standard resonance
structure in the immediate neighborhood of the energy
m~+W=mv (as expected, the precise location of the
resonance is shifted from this point by terms of order
G' and higher —this is the level shift associated with
the decay process). The width of the resonance corre-
sponds precisely to the V-particle lifetime defined by
the amplitude (11).We shall not present this calculation
but there is one amusing point about it worth noting:
Both the elastic scattering amplitude (%+8' —+ X+8')
and the absorption amplitude (X+8'~ X+8) vanish
when the energy m&+W is equal to the bare V-particle
mass.

A.

Recalling that the state I1V8t«'} in Eq. (11) is meant
to be a bare state, we have from (4) and (11)

F= (G/M)(OIPI V), (13)

P=tt~A. (13')

We may then write, following the prescription of
Lehmann, Symanzik, and Zimmermann, '

F=i ~e ' «'I i +mv—l—(OI T(PiP«t(t))IO)dt, (14)
M „(dt )

III. DISPERSION RELATION APPROACH

In the present approach we pretend that the state
functions

I
V) and I1tt'8„} are not known. But we are

permitted, of course, to look at the Hamiltonian and
make use of its properties, which in the present model
are of course very simple. In contrast to more realistic
situations, the required analyticity for dispersion
relations can be established for all the amplitudes we
deal with; and we know that all our dispersion integrals
converge without subtractions.

on the right side of (15) obviously vanishes, since P
is a destruction and iP«t a creation operator. Further-
more, the equal-time anticommutator (PpP«t(0)) is
equal to 0. Thus, setting

f(t)= I i +—mv—lgv(t),
E dt

we define a function F(g) according to

G
F(k)=i— e '"(oI{Pf t(t)) 8(—t)I0)dt' (17)

M

and F(g=mv) is our required amplitude. From the
Heisenberg equations of motion

we have

f= —~mvg v —(g/Z)4 ~A

The function defined in (17) is evidently analytic in
the upper half of the complex P plane. It is real, as we
shall see, for real $(m~+p, and can therefore be
continued also to the lower half-plane in the usual
manner. We then obtain the dispersion relation

1 t ImF($)
F(mv) =— d(.

~ g
—m, —i. (19)

G
ImF(g) =~—& (0IPls}(slftl0»(5 —&) (2o)

s

where F., is the energy of the state ls) and where we
have used

ft(t) = eider'ft(0)e ~ir'

Since (VI ftl0) vanishes, the only states which con-
tribute are the X+8 scattering states

I
%8 ); so that

G
ImF(~) = —P (0IPIX8„}

M ~

X(0 I f I N8„}*8($ mx (u). (21)— —

ImF is obtained from the first term in 8 ( t)—
=~+2e(—t); and introducing a sum over a complete
set of physical states Is), we obtain

where fvt(t) is the Heisenberg field operator which
coincides with the Schrodinger operator gvt at t=0;
and 2'( ) denotes a Wick time-ordered product:

T(PP«t(t))=(P, P«t(t) )8( t) fvt(t)P, (15—)—
where 8 is the step function: 8(7)= 1, r) 0; 8(r) =0,
T+0. The vacuum expectation value of the second term

BLehInann, Symanzik, and Zimmermann, Nuovo cimento 1,
205 (1955).

We are thus led to consider two new matrix elements.
Let us start with the V+~ X+8 "vertex function"
E(&u) defined by

(22)

Proceeding as before, and recalling that I1lt'8„) is an
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"in"-scattering state, we 6nd

(2o)Q) *'

E(~)= i
(

e-'"'I i—+~
I

tt(ot) J „&dt )
X(0 I T(fak'(t)) IN&«, (23)

g
I

1 i." 3 (ot')
E (ot) = ——exp —

~( dcd' .
. Z K ~p CO GO Z6

(33)

This is a standard equation; and since the integral
above vanishes as co —+ ~, we have the solution~

Then

(2otQ)1 ( d
j(t) =

I
i —+—ot lak= gfzrV—'v.

N(cd) E dt ) (24)

where akt(t) is the Heisenberg creation operator at time
$ (t)—ecH ta„$e iH t-

(2cdQ)1
m(~) = (Nl q INtl. ).

N(ot)
(34)

To obtain the phase shift 5, we study N+0 scattering
via dispersion methods. Berne

E( ) = i e '"'(0
I T(fJ'l(t)) IN&dt

(2otQ)1
(o IL .t(0),f) IN&; (25)

tc(ot)

E(ot) = +—i —e '"'(ol Lf,jt(t))e(—t) I N&«(26)
Z

Then, proceeding in the standard way we Qnd

BR(ot)=iJ dte '"'(NII g jt(t))tl( t)IN» (35)

which again defines a function analytic in the upper
Pnce again, this defines a function analytic in the upper complex co plane. We have the dispersion relation
~ plane, and we are led to the dispersion relation

1 t ImE(ot') g
E(ctt) =-

7l ~ M —M —$6 Z
(27)

and

1 t
" ImOR(ot')

Dlt(ot) =-
'Ã' ~

oo CO GO $Q

(36)

Proceeding as before, we have Im~( ) = &Nl jll')&Nl jl ~&*~(mv-m. —)
+~ &k &N I

g'INS„.&(N I i I
Ne„,&*o(~'—~). (37)

ImBR(ot) =m.g'7't (mv mzr ot)— —
I'(ot')

+ P lm( ')
I s( '—).

2o)'0
The new matrix element to which we are here led is

in turn related to the process of elastic N+0 scattering.
More precisely, the 5 matrix element for N+tt„-+
N+8„ is given by or, carrying out the summation (integration) over h',

we have
(Ne„"out"

I
Ne„"in")

ImE(ot) =m. Q (0I fl Ng &(EH„ I
jtlN&b(ot —ot')

19'

From (8), (24), and (34) it follows that
k' (2ot'Q) 1

and

N(ot)
dt e'-'(Nl q(t) I

Ne„.)
(2otQ)1

N(ot)=3„+2 3„. (NIqINO„. &; (29)
(2otQ)1

8kk'+S

tt(co)
rr P 5(ot' —ot) (N lj I

Ne„.&
=e't sin8,

k' (2otQ)l

Im5K (ot) = trg'3 (m v —
mdiv

—co)

+—I'(~)(ot' —t ')*lmt(~) I'e(ot —tc) (38)
4

When this result is substituted into the dispersion
equation (36), we obtain a Low-type equation, ' whose
solution is obtainable in a standard way. Namely,
introduce

where t5 is the (S-wave) phase shift for N+8 scattering.
Inserting this result into (28), we find

ImE(ot) = tanb(c0) ReE(ot) 8(cd—tt), (31)

and hence (27) becomes the integral equation

g 1 |" tanb(ot') ReE(ot')
E(ot) =——y— I dctt', (32)

Z tr tt ctt ctt se

h(ot) =g'(mv —mtv —ot)
—'I m(ot)) —'.

Clearly h(ot) is the boundary value of a function
analytic in the ot plane cut from tc to eo, just as is BR(ot);
but the singularity of the latter at co=m& —mN is now
removed: h(mv m~) =1. If OR(ot) has no —zeros, then

t See, for example, R. Omnes, Nnovo cimento 8, 316 (1958).' F. E. Low, Phys. Rev. 97, 1392 (1955).
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h(&o) has no singularities in the cut plane and

(mv —miv —co)
h(c0) =1+

(W=~). Proceeding in the now familiar way, we find

I

R(~) =1+i e '"&Ol Q&A,j t(t) jl N&8( &)d—&, (48)

Imk((o) =
g2

my —m~ —(d

t'1)
Iml —

I(m)

g' +'(~) (~'—~')*'8(~—u)
(41)

4n. my —mg —07

Imh(co')
X

j

der
((o' a—& i—e) (mv m—iv (o—')

But from (38) and (39) we see that

and

1 t
" ImR(c0')

R(Gl) = 1+ dG7 i
'r ~ —ao 4) G) 'c6

(49)

ImR(~) =~&0IW~A I V)&NI jl V)*8(mv m~ —~)

+~ P, (014~A IN8. &&Nl jlN8„&*8(~'—~). (50)

But

where the 6rst term on the right-hand side comes from
an equal time commutator. We again have the dis-
persion equation

Thus, we find from (40)

h(c0) =1—P((o);

P (c0) =g'(mv —miv —(u)
kr2

&Nl jlv&= —g,

(42)
&0IP~A I V&= (M/G)P(mv).

Using these, and (30), we find

ImR(M) = —~ (gM/G) F(mv) 8 (mv —m~ —(o)

+tanb(a)) ReR(a))8(co —p); (51)

X do)

M 1
R(o)) =1—

g
—F(mv)
6 my —m~ —(o

&)'cc (c0) and thus, from (49),
(43)

(mv miv &o'—)2(co' —c0 ie)——

mv —miv —
&u 1—P (co)

Finally, from (30) and (34) we see that

g' (co'—p,')4P(&o) 1
e"sinb=-

kn mv —m~ —c0 1—P(o))

1
t

" tan5(&v') ReR(cd' )
des'. (52)

CO Gl $6

The solution is again obtained by standard methods.
(45) We find

which is the result obtained by direct methods. ' '
The integral of Eq. (33) can now be readily evaluated

(see Appendix) and we find for the vertex function
. Z(co) the expression

R'(~) = -g/I:1-P(~)3. (46)

Notice that P(mv —
mdiv) =0, so that at co= mv —miv tbe

vertex function E is just equal in magnitude to the
renormalized coupling constant g.

D.

M P(mv) g q Z
R(o))=l 1—— . (53)

G Z mv —miv —co) 1—P((v)

In our attempt to compute the amplitude F for
V ~N+8' decay, we have been forced to consider the
V ~+—N+8 vertex function X(&o), the amplitude R(co)
for N+8-+N+8' processes, and the amplitude for
N+8 elastic scattering. Collecting all results, Eqs. (19),
(21), (22), (46), (47), and (53), we obtain finally

P(mv) = (G/M) gZIO —g'F(mv)Ii, (54)

Notice that

(2(aQ)&
R(~) = (0ly&A I N8„&

u(a))

G U(W) u((o)
R(&o)

M (2WQ)& (2cdQ)&

(4') he-

In connection with Eq. (21), there remains to con-
sider the amplitude

JpG
P(mv) =—gz

M 1+g'Ii
(55)

QO

(56)
4~' ". l1 P(~) I'(m—, m~ ~)'—

Ip=

(~'-~')'&'(~)
Ij= dG0 (57)

4n' "
I
1—P(&o) I'(mv —miv —ru)'is just the amplitude for the process N+8„+N+8vv'—
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These integrals are evaluated in the Appendix, where
it is shown that

Ep=-
g2Z

(56')

(57')

~e thus find. that

(58)

which is the correct answer.

IV. DISCUSSION

One of the motivations for this investigation concerns
the doubts raised in the minds of several physicists by
our dispersion relation treatment of m. -+II,+v decay.
Insofar as matters of principle are concerned, we feel
that the present calculation demonstrates the validity
of the dispersion approach. The disturbing feature of
our earlier work was that the pion decay amplitude
turned out to be a product of two factors: one of them,
a more or less recognizable term resembling what one
might expect from a cutoG perturbation theory; and.
a factor Z3, the pion wave function renormalization
constant. It was feared that this second factor arose
from our having summed a string of pion propagation
bubbles [analgous to those in Fig. 1(b)$, which from
the standpoint of perturbation theory would have been
absorbed in a wave-function renormalization factor.
But this fear is unfounded. In the first place, the wave
function renormalization removes only a factor Z&& (in
our m. —& @+v discussion, the coupling constants which
appear are all renormalized). Secondly, the present
model exhibits the same behavior; the factor Z in Eq.
(58) has the same (and correct) origin as the corre-
sponding factor in pion decay.

Let us recall the mechanism envisaged for the pion
problem: The pion forms a virtual nucleon-antinucleon
pair (via a strong interaction operator, J), and the pair
annihilates to produce the lepton pair (via the p,-capture
interaction which involves strongly interacting nucleon
6elds as well as the essentially noninteracting lepton
fields; the nucleon fields form an operator I'). Now a
strict perturbation treatment would yield an answer
proportional to the unrenormalized strong-coupling
constant and to the unrenorrnalized weak-coupling
constant; there would also appear a divergent integral,
which we imagine to have a cutoG.

As for the dispersion treatment, it breaks the problem
into two parts. I'irst the pair is created by the pion
operator J; then the nucleon operator P eGects the
annihilation of the pair (into leptons). In analyzing the
first step, we never allow the pair to re-form virtually
into a pion. Such terms would correspond to the string

of bubbles discussed above and are not admissible;
they do not in fact occur in the dispersion analysis.
However, and this is the critical point, when the pair
annihilates via the operator P this may take place via
a x meson. Thus, the unfamiliar Z factor arises from
the weak vertex and appears eGectively as a renormali-
zation of the latter. The way in which this comes about,
roughly speaking, is that instead of the perturbation
theory value for the weak vertex, one Qnds in addition
a term proportional to the decay amplitude itself. This
may be seen in Eq. (53) of the present paper, where
the second term has come from precisely such a discrete
intermediate state. Furthermore, Eqs. (55) and (57')
show quite explicitly the 1/Z factor in the denominator
of the expression for the decay amplitude, just as in the
pion decay problem. It is not diTicult to see that the
damping denominator (factor like 1/Z) is a quite general
characteristic of decay problems.

APPENDIX

In connection with Eq. (33), we want to evaluate the
integral

(A-1)

where, according to (43) and (45),

tan5(~) = —Im[1 —P(~)j/Re[1 —P(&o)$; (A-2)

hence

(A-3)

Consider the contour in the complex ~ plane shown in
Fig. 2, where the curve C~ runs from ~ to p just below
the real axis and then back to ~ just above the axis.
Since P*(~+i&)=P(cv ie), it i—s clear that

(A-4)

FIG. 2. Contour in
complex co plane.
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I,et C2 be the contour along the infinite circle. Then

1I= — in[1 —P (pp')] —da)'
27ri CO CO

in[1—P (p~') J d(o' . (A-5)
~C2 GO CO

Now 1—p(p~) has no zeros or poles in the cut plane; and
from (10) and (43) we see that

1(1
Ii———

I

—1!,
g'EZ i (A-12)

which is the result stated in (57').

3.

Once again, these integrals are readily evaluated.
Recalling (A-6) and the fact that P(mv —m~)=0, we

find

Thus
1—p(&g) ~ Z, To evaluate the integral Ip, defined by Eq. (56), we

proceed in a similar manner, finding

I= — (2mi in[1—P(p~) j—2mi lnZ)
27ri

=ln
1—P(p&)

which is the result that led to (46) and (53).

2.

1 t." ) 1
!Ip=

~g' ~„&1—P(&o) J
(A-7)

Again, this can be written

1
2vzg Ip=

I !dpp
~ cp2 1—P(p~)

(A-13)

(A-14)

I1—p(~) I'

and that

we find

I'(pi) (p~' —p,') &

Im(1 —p) =—g'
4x' mv —m~ —co

(A-9)

Next, consider the integral Ii defined by Eq. (57).
Noting that

1 1 / 1
Zm! !, (A-g)

Im(1 —P) (1—Pi

Since the integrand has no poles in the cut plane, the
first integral vanishes. To evaluate the integral around
the semicircle, we must imagine the circle to have a
hnite radius 8', which we later allow to go to inhnity.
That is, we replace the integrand by its asymptotic
expansion about the point at infinity:

1 r" ( 1 y 1

mg2 ~„ (1—p(pp) J mv —mN —p~

(A-10) 1 8mv 1
~ ~ ~

Z Z ct)

(A-15)

Refer now to the contour of Fig. 2. Since 1 P(pi+i—p)
= 1—P*(pi—ip), it is clear that

f 1 1
2~ig21z=

~ ci 1 P(co) mv —m~ —co

(
(A-11)

"c,) 1—P(~) mi —m~ —~

1 bmv
Ip= ——

g2 Z

which is the result stated in (56').

(A-16)

where bmv is defined in Eq. (9).The integral around the
circle is now readily evaluated and we find


