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Representations of the Dirac Equation
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A representation of the Dirac equation which displays its extreme relativistic properties is discussed.
The "spin" appears naturally related to the "position. "

~'T is well known that the usual form of the Dirac
~ ~ equation for a particle of spin —,

' does not lend itself
easily to a simple interpretation in terms of physical
quantities. For example, the velocity operator has
only &c as eigenvalues and the usual relation between
velocity and momentum is lost.

It was shown by Foldy and Wouthuysen' that, by
means of a canonical transformation, the Dirac equation
can be written in a form which can be more easily
interpreted in terms of classical quantities. The simplest
operators in this C (for classical) representation are
immediately related to significant classical quantities.
To distinguish these new operators from those having
the same names in the usual D (for Dirac) representa-
tion, Foldy and Wouthuysen call their observables
"mean, " leaving the usual name to the D operators.
We shall refer to the various quantities simply as
D or C and use the same letter as an index, whenever
ambiguity could arise.

The C representation is very convenient in discussing
the nonrelativistic limit, when the momentum p is small
compared to the mass rrt of the particle (limit towards
Pauli equation).

The purpose of this paper is to investigate an E
(for extreme relativistic) representation, which is
convenient in discussing the extreme relativistic
approximation, i.e., when the mass m is small compared
to the momentum p of the particle (limit towards
Weyl equation). The most simple E operators will be
shown to possess a direct physical meaning.

The Dirac Hamiltonian,

HD=n p+Prrt,

is transformed into the following:

(1D)

C-representation
Hamiltonian

E-representation
Hamiltonian'

(1c)
0. pH~= E, (1E)
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where E'= p'+srt', by means of the following canonical
transformation:

g C ~iSIID~—iS
7 (2C) H~= e'rHDe 'r- (2E)

zo. pS=——p
2 p

zep
T= p—

2 p

E+srt+Pn p
g+iS (4C) e+'r =

i2E(E+srt) }'
E+pWP(n p/p)srt

(2E(E+p) }
(4E)

In both C and E representations the positive- and
negative-energy states are kept separate. The projection
operator

A~ = s (1+H'/E), (A+')'=A+ (5D)

for positive- (and negative-) energy states in D rep-
resentation, is correspondingly transformed by the
same canonical transformation into the projection
operator

Ago=-', (1+P), (5C) Ag~ ———',(1an p/P). (5E)

The similarity of the two representations is apparent:
the quantity which multiplies E in the transformed
Hamiltonians is constructed in a similar way from the
surviving term of the original D representation when
going to the appropriate C or E limit.

Other similarities of the two transformations will

appear later. At this point we would like, instead, to
stress the differences. First of all the two transforma-
tions, starting from D representation, are going in
opposite directions, to diferent limits. D representation
is, so to speak, somewhat in between C and E representa-
tions, as suggested by the alphabetic order of the
letters used to denote them.

Secondly, by simply looking at Eqs. (1C), (1D) one
easily realizes that C representation is isotropic in the
ordinary 3-dimensional space, where E representation,
containing explicitly the momentum p, establishes a
kind of polarity in space. This is to be expected, since
at the extreme relativistic limit the momentum still
determines a privileged direction in space, whereas
the extreme classical limit goes over to the particle at
rest.

given by M. Cini and 3. Touschek PNuovo cimento 7, 422
(1958)).
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TABLE I. Relevant It operators in both It and D representations.

B dynamical variables

E position

E momentum

E velocity

E orbital angular momentum

B representation expressionsa

(rr u)n
x+ =A+@xA+@= x~——e— — — A+@

2ip p'

p+ =A~@pA+~ =pA+~

dx, /dt= eTas, rr, q= +p, /Z= p,/Z„
where E+=~E

1
I. =a~&xXp~~+= x~—~ Xp

2'

D representation expressions&

n p nsP
x— ~——p A+~

2ip' E

~ (t/~)~+o

t (o p)nxXp+-e—
2 2 p'

E spin angular momentum
0!Xc p+

0'g =Ay@ Ap@=~ysp-
2i p

(&t)v
-Ap~

p p

a The upper (lower) sign has to be taken for positive- (negative-) energy states.

The third difference arises in the following connection
If one wishes to keep positive- and negative-energy
states separate, the only expectation values of an
operator A, which may occur, are

1 ( Pn p)U+'= —
I

1&
v2& p ) (10)

(6)

where the + (—) sign denotes positive- (negative-)
energy states. Since

8+ 1
~ 14+)= 8 I ~+»+ 14)= 8 I ~+I tt), (7)

instead of discussing a general operator A and then
considering the consequences of the fact that only
terms of type (6) do occur, one may alternatively and
more simply drop restriction (6) and discuss instead
the operator

Since nothing new is to be obtained by such a trans-
formation, which is not yet apparent in D representa-
tion, the explicit C expressions are not given.

The following comments to Table I are in order:

(1) The E position operator x~ satisfies the usual
commutation relation with the E momentum operator
p~. However the diferent components of x~ do not
commute. The commutator for the x and y components
is the following:

( ~P*
I:~+, x+j= I

~2P ~ Z repres.

However, all the relevant C operators (xo, dxo/dt, po,
xo)&po, sro) commute with the operator A+a, so that in
every relation involving such C operators (commutation
relations, etc.), one can simply shift the h~o on one
side of each expression, and the discussion of the A~
operators becomes trivially related to the similar
relation for the original A operators. This is why the
difference between A+ and A operators is not even
mentioned in the F.-W. paper. However, the significant
operators in E representation do not all commute with
A+~ and we have to take into account such a distinction
and use the & operators consistently.

A table of important C and D operators is already
available in the F.-W. paper. Therefore, we shall

simply give a table of the relevant E operators,
with their expressions in D representation. Their C-
representation expressions could be easily derived by
means of the following canonical transformation, which
holds for an arbitrary operator A:

Ac repres. UAE repres. U p

(11)
2'tP ~ D repres.

(2) The time derivative of the Z position operator
(the E velocity) is related to the 8 momentum by the
relation to be expected from relatively, as in the case
of the homonominous C operators.

(3) Both the 8 orbital angular momentum and
E spin angular momentum are constants of motion.
They are orthogonal and parallel to the E momenta,
respectively. Their moduli have a simple physical
meaning, being simply the to/al angular momentum
along the two directions. This is most easily shown by
looking to their D-representation expressions. Even the
factor —,

' (1=L+-',e), which creeps in both in C and D
representations, is automatically obtained in the
E representation. There is no need for adding the
quantity -', e to the orbital angular momentum. Simply
by properly defining the orbital angular momentum as
x~&&p~, one finds the total angular momentum (still a
vector orthogonal to p+), i.e., a quantity which auto-
matically incorporates the relativistic (spin) effects.
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(4) The E spin operator, o~, is also simply related to
the E chirality operator ps+ which in the conventional
D representation is in turn simply related to the
longitudinal polarization (helicity) of the particle.
The relation is not an identity because of the sign ~
(see Table I).This shows most clearly why any chirality
invariance requirement, such as has been used in the
theory of weak interaction, ' results in opposite helicities
for particles and antiparticles.

'P. C. G. Sudarshan and R. E. Marshak, Proceedings of the
Padua-Venice Conference on Mesons and Newly Discovered

The discussion of the 8 representation for Dirac
particles in interaction with external fields will be
dealt with in a subsequent communication.
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The Lee model is modified by addition of a new field 8' and a weak coupling X+8 -+ S+8', which leads to
instability of the V particle: V ~X+8~ S+tII'. The decay amplitude is calculated to lowest order in the
weak coupling by dispersion relation methods. In eBect we are required to study a set of simultaneous
dispersion relations. The problem is completely soluble and serves to clarify the essential structure of
dispersion methods. The results agree with what one obtains, more easily in the present case, by direct
methods.

I. INTRODUCTION

HE Lee model" of a soluble Geld theory has come
to play a role similar to that of, say, the harmonic

oscillator in classical mechanics. Once a model is known
to be soluble by simple and straightforward methods,
it is not dificult to Gnd indirect and not-so-simple
methods of solution which may nevertheless be relevant
and useful in other contexts. In this essentially peda-
gogical spirit we discuss here the dispersion relation
approach to the Lee model. The original model is
slightly altered however, by addition of a weak coupling
which leads to instability of one of the particles of the
theory. This modification provides a physical moti-
vation for studying matrix elements which are un-.

interesting in the original model and thus, as is desirable,
forces us to study a set of simultaneous dispersion
relations.

A second reason for enlarging the Lee dynamics in
this way has to do with a dispersion relation treatment
of s ~p+ v decay which we undertook previously. ' In
the present case we deal again with a decay process,
and it is possible to test for errors of principle in the
dispersion relation approach. This is worth while, for

*Work supported in part by the Once of Scientific Research,
Air Research and Development Command.' T. D. Lee, Phys. Rev. 95, 1329 (1954).

2 G. Kallen and W. Pauli, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 30, No. 7 (1955).

'M. L. Goldberger and--S. B.- Treiman, Phys. Rev. 110, 1178
(1958).

when applied to particle decay the dispersion methods
treat renormalization questions in a way which has
disturbed some of our colleagues. 4 What we 6nd in the
present model is that the dispersion approach leads to
the correct solution. A practical attack on more
realistic particle decay problems of course requires
many approximations and assumptions beyond a
commitment to dispersion relations. But granted the
basic analyticity assumptions, it appears that no errors
of principle enter into the application of the dispersion
relation methods.

The Lee model deals with X, 8, and V fields which
are coupled. according to the interaction V~~X+8.
The corresponding particles S and 8 are stable; and
with a suitable choice of parameters a stable V particle
also exists. ' Let the respective masses be m~, p, and

mv, where mv &ms+ @.We now introduce an additional
field 0', corresponding to a particle of mass p', where

mN+p, '&mv&tn~+p. We also introduce a direct weak

interaction E+8+~S+8', which we always treat to
lowest order. As a consequence of this interaction the
V particle becomes unstable, decaying into %+0'
through the sequence V -+ X+8~X+0'. Our problem

is to calculate the decay amplitud"- -to Grst order in
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