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must be applied to discover just what happens in this
case, and how the extension is to be made into the
unphysical region.

Because of the small numerical value of the constant
coefficients of higher order terms in the Heisenberg-
Kuler Lagrangian density, these efI'ects are too small
to be susceptible to experimental test. 4 The primary
importance of our investigation is to point out theo-
retical methods for the investigation of these nonlinear
effects, and to give an example of the kind of phenome-
non which may occur. It is hoped that such examples
will provide some insight into more realistic situations,
and be of some suggestive value in the consideration of
the nonlinear aspects of quantum field theories.
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iVofe added As Proof T.
—he question has been raised

as to whether the singularities which occur in the solu-
tion of the equation we have treated are due to special
properties of the equation, or whether any nonlinear
hyperbolic equation possesses singular solutions. We
have been unable to determine whether there exists a
nonlinear hyperbolic equation having the property that
for eo initial conditions does the solution exhibit
singularities. Therefore we regard this investigation as
merely demonstrating how, for a particular physical
situation, singularities may occur, and bow they are
formed in this case. In this connection, we note that
an investigation of the singularities occurring in the
solution of another type of nonlinear wave equation
has been made by J. B. Keller, Comm. Pure Appl.
Math. 10, 523 (1957).
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The radiative correction to the decay spectrum of polarized
muons is recalculated taking into account a mistake in our previ-
ous work which was recently pointed out by Herman. The revised
values for the radiative correction to f), (, and integrated asym-
metries for the high- as well as low-energy decay electrons have
turned out to be practically identical with the old values. The p
value determined from experiments, on the other hand, has to be
increased by about 1% because of the new correction. Thus the
over-all effect of the radiative correction to the p value is now an
increase of the order of 5.6/o when the experimental and theo-
retical spectral distributions are compared in the region 0(p/p
&0.95. The radiative corrections to the spectrum and lifetime of
the nuclear p decay arising from the charge interactions of the
electron and proton are also studied. Use of this expression gives a
correction of —1.7'Po for the lifetime of 0". The corrected

Feynman —Gell-Mann coupling constant is G= {1.40+0.01)X10 "
erg/cm'. In the universal U —A theory of weak interactions, the
calculated muon mean life becomes ~„=(2.31&0.05))&10 ' sec.
(These three values depend logarithmically on the ultraviolet
cuto8 ) and the corrections to r„ increase for increasing values of
X.) It is found that the corrections to the spectral shape of P decay
are rather large in the case in which the end-point energy 8 »m.c'.
The radiative corrections to the lifetime and the total asymmetry
for muon decay are found to be well de6ned and 6nite for ns, —+ 0
in spite of the fact that the differential spectrum itself diverges
logarithrnically in the same limit. The same situation is en-
countered in the case of radiative corrections to the nuclear P
decay. A physical explanation for such behavior of the radiative
corrections is attempted. In Appendix A, a simpli6ed expression is
given for the determination of the Michel parameter.

l. INTRODUCTION

'HE lowest order radiative correction to the decay
of polarized muons have been studied in previous

papers. ' ' In the present work, the functions which de-

* Supported in part by the joint program of the Once of Naval
Research and the U. S. Atomic Energy Commission.

~ Behrends, Finkelstein, and Sirlin, Phys. Rev. 101, 866 (1956).
This paper will be quoted as I.

T. Kinoshita and A. Sirlin, Phys. Rev. 107, 593 (1957). This
paper will be quoted as II.

T. Kinoshita and A. Sirlin, Phys. Rev. 107, 638 I'1957). This
paper will be quoted as III.

termine the various corrections are reconsidered, taking
into account a mistake in the treatment of the low-

energy quanta, recently pointed out by Herman. 4 In
Sec. 2, the results of this calculation and their e8ects on
the parameters 5, p, $, the lifetime, and the integrated
asymmetries for high- as well as low-energy electrons
are discussed.

As a consequence of this recalculation, the p value is

increased by an additional amount of about 1%, the

4 S. M. Herman, Phys. Rev. 112, 267 I;1958).
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over-all effect of the radiative corrections on the p value
being now of the order of 5.6% in the spectral region
0&p/p, &0.95. It is found that the effect of this
further correction on the parameters $, 5, and the
momentum dependence of the asymmetry is small. On
the other hand, the corrections to the lifetime are
affected considerably.

It is observed that the lowest order radiative correc-
tions to the lifetime and the total integrated asymmetry
for muon decay are 6nite and well-defined in the limit
of vanishing electron mass m, in spite of the fact that the
diQ'erential spectrum itself diverges in the same limit,
since it involves terms proportional to n ln(m„/tn, ).The
same situation is found in the case of the nuclear P decay
as is discussed in Sec. 4. This behavior of the differential
and integrated spectra is examined in Sec. 3. In Sec. 4
the corrections to the lifetime and spectrum of nuclear P
decay arising from the charge interactions of the elec-
tron and proton are studied.

A simplified theoretical expression for the corrected
Michel spectrum is given in Appendix A which may
serve to facilitate the comparison of theory and ex-
periment. In Appendix 8, the contribution of that part
of the radiative corrections that can be interpreted as
caused by an acceleration of a classical charge-current is
discussed.

2. RADIATIVE CORRECTIONS TO THE DECAY
SPECTRUM OF POLARIZED MUON

I.et us consider the effect of radiative corrections to
the decay spectrum of completely polarized muons. We
shall restrict ourselves to the case of the two-component
neutrino theory, ' where only the V and 2 interactions
are present in charge retention order Li.e., in the order
(ep) (vv) j. According to (II.3.3), the decay spectrum of
completely polarized muons is given, to order o., by

tX fm, $ 1—x
dX(x,e) =-',~ 3—2x+—y(x)+6f I

—
~2' (m) x

1,+$ cos8 1—2x+—g(x) x'dxdQ, (2.1)
2'

where x= 2p,/m„and 0 is the angle between the electron
and muon momenta. ' The constants A, P, and f are
defined by (II.2.5), (II.2.33), and (II.3.4), respectively.
The term proportional to m, /m„ is comparatively small
and will be neglected in most of the following considera-
tions (see reference 11).It vanishes exactly in the case
of the V&A interactions. The effect of the radiative
correction is represented by the functions f(x) and g (x).

As was pointed out in reference 4, the previous calcu-
lation of f(x) suffered from a mistake in the treatment

~ T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957); A.
Salam, Nuovo cimento 5, 299 (1957);L. Landau, Nuclear Phys. 3,
127 (1957).' With this de6nition of 8, (2.1) is valid for both the x+-p+-e+ and
m -p, -e sequences.

of the inner bremsstrahlung accompanying the muon
decay. The same is true of the function g(x). This may
be traced back to the evaluation of the integral

I=
4~ '4o

" ~*d'k (p, .e,) (p, e,) '
(2.2)

where pr, ps, and a are the four-momenta of muon,
electron, and photon, respectively, and the e s are the
polarization vectors of the photon.

This integral was evaluated before in a manner that
was inconsistent with the treatment of the virtual
quanta. A consistent procedure is to regard a as the four-
momentum of a vector meson of mass );„and energy
c, and sum over all directions of polarization of the
vector mesons. ' In Appendix C, the integral I is
evaluated in the rest system of particle 1 and the result
is shown to be equal to the previous one plus a correction
term which is independent of k, . From this one readily
finds that the corrected result for any of the 6ve Fermi
interactions is obtained if one replaces V of (I.25b) by
V+C, where

f(x) = (6—4x)R(x)+ (6—6x) lnx+ 3'
XL (5+17x—34x') ((a+lnx) —22x+34x'$, (2.4)

and

g(x) = (2—4x)R(x)+ (2—6x) lnx

1—g
(1+x+34x') (co+lnx)

3S2

4(1—x)'
+3—7x—32x'+ ln(1 —x), (2.5)

g

in the case of the two-component theory where

co x" I'1 —x)
R(x) =2 P —-',s' —2+to —',+2 ln

~(x i
1y—lnx(21nx —1)+

~

3lnx —1——
~
ln(1 —x). (2.6)

xP

7 An alternative way is to treat the real and virtual photons as
exactly massless. However, extreme care must then be taken in
order to avoid improper cancellation of the infrared divergences.' See, for example, F. Coester, Phys. Rev. 83, 798 (1951), and
J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons
(Addison-Wesley Press, Cambridge, 1956) (especially Secs. 6—5
and 15—2).' We have heard recently that Herman's result for the spectrum
agrees exactly with our formula (2.4) LS. M. Herman (private
communication)g. This fact was temporarily obscured hy the
presence of a spurious term in Eq. (4) of the initial version of
reference 4. We are grateful to Mr. Herman for his private
communication.

C=C(x) =1—ss' —(to+lux —1)(cu+lnx —2 ln2), (2.3)

with re=in(m„/m, ) =5.332. Adding the virtual photon
term to the inner bremsstrahlung term, one thus arrives
at the results'
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TABLE I. Radiative corrections to the isotropic and cos8 terms of the muon decay spectrum and related functions.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95
0.99
1.0

102(u/27r) f(x)

~ ~ ~

69.177
25.219
13.301
7.564
4.027
1.540—0.368—1.981—3.681—5.009—8.012
~ ~ ~

1o2( /2 )z(x)
—0.417—0.505—0.678 '

—0.900—1.145—1.370—1.531—1.573—1.436—1.027—0.659—0.198
0

102(e/27r) g(x)

~ ~ ~

—7.727—3.677—3.116—2.965—2.746—2.310—1.555—0.327
1.799
3.748
7.623
~ ~ ~

102(~/2 )G(~)

—0.681—0.709—0.773—0.897—1.121—1.470—1.931—2.426—2.751—2.463—1.769—0.580
0

102hz, g (x)

~ ~ ~

24.706
9.700
5.542
3.438
2.014
0.856—0,230—1.415—3.067—4.554—7.855
~ ~ ~

0.(~)/0 (~)

0.9974
0.9980
0.9992
1.0007
1.0021
1.0031
1.0035
1.0034
1.0027
1.0016
1.0009
1.0003

a, (x, -1, 0)

0
0.170
0.201
0.181
0.142
0.092
0.033—0.038

The new function E(x) differs from the old function
I(x) defined in II by C(x) of (2.3).It is to be noted that
the function R(x) depends on co only linearly whereas

N(x) depends on it quadratically.
For later use, we shall dehne the functions

Si(x). If one applies the method described in II, one
obtains p.ti= 0.71s as the best fit for the range
0.3&x&0.95. As an alternative, however, let us deter-
mine p, «here by fitting x'S(x) with x'Si(x) by means of
the method of least squares. In the range 0&x&0.95,
the best least-squares 6t is then obtained for

F(x)=2) f(x)x'dx, p.rr ——0.70s, (2.11)

Pl
G(x) = —6 g(x)x'-dx.

(2.7)

The functions f(x), g(x), F(x), and G(x) are tabulated
in Table I for several values of x.

We shall now proceed to discuss some aspects of the
revised spectrum (2.1).

(
S(x)=

I
3 2x+ f(—x) (

—(2.8)
1+(a/2s. )F(0) 0 2n.

may be approximated by

Si(x) =12(1—x)+Sp, ri(-;x—1), (2.9)

which de6nes the e8ective Michel parameter p, ff. These
functions are normalized by"

~1 ~1
S(x)x'dx= ' Si(x)x'dx=1.

J, (2.10)

Our problem is to find such a value for p, rr that S(x)
is most closely approximated by the linear function

'sIn our previous paper (reference 2), the value of p, it was
chosen as 0.706. This was caused by a failure to normalize the
spectrum in a proper manner. The same remark applies to our
previous determination of b, ff (which was 0.746).

(a) Michel Parameter

It was shown in II that the isotropic part of the
spectrum (II.3.6) can be approximated very well by an
uncorrected Michel formula in the range 0.3&x&0.95.
This still holds for our new spectrum (2.1). Because of
this, the normalized isotropic spectrum

which is very close to the value mentioned above. "This
is consistent with the observation of II that S(x) is
almost linear over a large region of electron momentum
x. We have excluded the interval 0.95&x in the deter-
mination of p,« in order to give a value which is fairly
independent of the details of the experimental resolu-
tion. The consideration of the experimental resolution is
necessary in that region on account of the fact that the
corrections to the differential spectrum diverge loga-
rithmically as x —+ 1.

If the local two-component theory of the neutrino is
exactly correct, one wouM therefore observe the Michel
spectrum (2.9) characterized by (2.11) in the range
x&0.95 instead of the uncorrected value p=0.75. Thus
the radiative correction to the p value is of the order of
5.6% if the observation is limited to that spectral
region. "

If one applied the above method to the old spectrum
(I.23), one would have obtained p, tr=0.71s Li.e., an
effect of 4.5% instead of (2.11)j."Thus the new value
of the radiative correction to the Michel parameter is
larger than the old value by about 1%. In spite of the
rather large numerical difference between f(x) of (2.2)
and (II.A.1), the difference in p, rt is therefore not very

"In obtaining Eq. (2.11), the term of order m. /m„of Eq. (2.1)
has been neglected. It is estimated that if one uses for t the maxi-
mum value allowed by the theoretical relation f& (1—P) & and the
present experimental lower limit (&0.75, this term could increase
the correction to the p value by about 0.7%. However, such a
value of f would require a value of

~
gz' considerably larger than

~gv ~' contrary to what is now believed.
'~The latest experimental values of the Michel parameter p,

with the Herman correction included, are 0.68&0.05 [L.Rosenson,
Phys. Rev. 109, 958 (1958)j, 0.69&0.02 LK. M. Crowe (private
communication) g, and 0.741&0.022 [Dudsiak, Sagane, and
Vedder, University of California Radiation Laboratory Report
UCRL-8202, and W. F. Dudziak, UCRL-8202 Supplement (un-
published)]. These values should be compared with the uncor-
rected value p=0.75.
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large. This is because the esaAz contribution to the diGer-
ence of old and new spectra is approximately equal to

tained by the choice
Se f f=0.726, (2»)

(n/2~) (6—4x) {1—em' —(&o
—1) (ro —2 ln2) ), (2.12)

except for @=0. Since this has the same momentum
dependence as the uncorrected spectrum, it modifies the
Michel parameter only slightly. On the other hand, the
contribution of (2.12) has an appreciable effect on the
radiative correction to the lifetime.

for the range x&0.95. The uncorrected two-component
neutrino theory gives 8=0.75. Thus the radiative cor-
rection decreases 5 by about 3% if the observation is
restricted to the range x&0.95. If one applied this
method to the old spectrum (II.3.9), one should have
found 8,go=0.730."Thus there is no signi6cant change
in the corrected value 6,ff.

Thus the radiative correction suppresses the rate of
muon decay by about 0.4%%uo. This should be compared
with the 3% increase of the decay rate in the previous
calculation. It is not understood why the radiative
correction suppresses rather than enhances the decay
rate. A physical explanation of this fact would be
desirable.

It is interesting to point out that the lifetime is
independent of the quantity co and hence approaches a
finite value in the limit ns, —+ 0. On the other hand, the
differential spectrum (2.1) diverges logarithmically for
nz, ~0. This is a consequence of the breakdown of
perturbation theory in this limit. These points are
discussed in more detail in Sec. 3.

(c) Correction to the Parameter 5

The parameter 6 may be determined in principle by
measuring the momentum dependence of dE(x,e)—dX(x, 8+m). The magnitude of the radiative correc-
tion to 8 can be estimated in analogy with (a), by ap-
proximating the function

T(x) =— 6 n
! 1—2x+—g(x) !, (2.14)

1+(cr/2ir) G(0) ( 2rr

by means of

Ti(x) =12(1—x)+248.rr(-', x—1).

Note that these functions are normalized by"

(2.15)

T(x)x'dx= ) T,(x)x'dx=1.
0 0

(2.16)

The best least-squares fit of x'T(x) by x'T, (x) is ob-

"This numerical result agrees with Berman's (reference 4).

(b) Radiative Correction to the Lifetime

The mean life r of the muon decay is obtained by
integrating (2.1) over all possible values of x and Q. If
one denotes the zeroth order mean life by ~0, the
fractional change of the lifetime due to the radiative
correction is given by"

re n— cr (25= ——F(0)= ——
! —n' !=4.2&&10 '. (2.13)

re 2~ 2~&4 )
(e) Correction to the Parameter (

The parameter $, which is defined theoretically in
terms of the weak coupling constants, is determined
from the observed total integrated asymmetry u by the
relation

(1+(n/2~) P(0) p
!P= —3a!

L1+ (n/2s. )G(0)j
(2.18)

From Table I, it is seen that the effect of the radiative
correction is to increase $ by only 0.3%%uo with respect to
its uncorrected value. This has the same magnitude as
the old value given in II but the direction is reversed.
We again notice that G(0) is independent of re and thus
the lowest order radiative correction to $ remains finite
in the limit m, —+0.

(f) Forward-Backward Asymmetry of
Low-Energy Positrons

The lowest order radiative correction to the asym-
metry of low-energy positrons in p+-decay is very large.
This was studied in III and was used in comparing the
theory with a recent experiment. "Let us express the
angular distribution of the decay positrons of energy
less than x by 1+a(x) costt. The theoretical expression
for a(x), including the lowest order radiative correction,
is given by the function a„(x,$,i') defined in III, We
shall give the new values for the function a„(x, —1, 0)
in Table I. Comparing the present table of a, (x, —1, 0)
with that of III, it is seen that they coincide within 2%%uo.

This difference is much smaller than the over-all e6ect
of the radiative correction and thus the results of III
are not a6ected by the modish. cation of the functions
F(x) and G(x).

14 Pless, Brenner, Williams, Bizzarri, Hildebrand, Milburn,
Shapiro, Strauch, Street, and Young, Phys. Rev. 108, 159 (1957).

(d) Momentum Dependence of the
integrated Asymmetry

The integrated asymmetry corresponding to electrons
of energy larger than a certain value p, =xm„/2 has been
discussed in II. The new values for the ratio Q„(x)/Q(x)
(see II) is given in Table I. These corrections are very
small and may be neglected in view of the accuracy of
the present experiments.



1656 T. K I NOSH I TA AN 0 A. S I RL IN

3. RADIATIVE CORRECTIONS IN THE
LIMIT m, /m„~O

As is seen from Eqs. (2.4) and (2.5), the differ-
ential spectrum (2.1) contains terms depending on
co=in(m„/m, ). As a consequence, if one considers a
hypothetical problem in which the ratio m, /m„ is
arbitrarily close to zero, the spectrum approaches +~
and —~ for x&0.7 and x&0.7, respectively. " This
means that the 1owest order perturbation theory is not
adequate even for small n when the ratio m, /m„be-
comes very small, the relevant expansion parameter
being of the order a in(m, /m„). In this limit, higher
order processes, such as multiple photon emission and
creation of electron-positron pairs, may become im-
portant.

At 6rst hand, this situation may look similar to that
of the infrared catastrophe, since both divergences are
associated with vanishing of the mass of a particle.
There is the important difference, however, that in the
present case there is nothing that compensates this
divergence in the same order of perturbation theory.
Moreover, the divergence of Eq. (2.1) occurs for all

values of the electron momentum whereas the usual

infrared divergence is associated with the low-energy

quanta only.
The appearance of the co term itself is obviously re-

lated to the nature of the electron propagation function.
In fact, the divergence of the lowest order corrections to
the differential spectrum in the limit m, ~ 0 is a conse-

quence of the vanishing of the denominator of the
electron propagator when the electron and photon have
no mass and their momenta are parallel. It is therefore
not entirely trivial that the lowest order corrections to
the lifetime turn out to be independent of m, and

approach a finite value for m, —+ 0.
In order to gain insight in the details of the cancella-

tion of the terms involving ar, it is instructive to perform
the integrations over the photon and electron momenta
in a somewhat diferent manner from that of Sec, 2. For
simplicity, we shall discuss the isotropic part only. Let
us denote the virtual and real photon corrections to the
muon spectrum by d1V. (p,) and d1V„(p„k), respectively,
where the latter has not been integrated yet with respect
to the photon momentum. If one integrates dS„over all

possible values of k and adds it to d1V„, one obtains the
differential spectrum (2.1). Further integration with

respect to p, from 0 to p, ' gives the quantity F(0)
—F(xo) (apart from a numerical factor) where F(x) is
defined by (2.7) and so= 2p,o/m„. Instead of this

procedure, we shall divide the domain of integration

'5 In this section, the behavior of the spectrum and lifetime as a
function of m, is studied in the limit ns, ~ 0. It is to be noted that
these quantities may turn out to be discontinous at m, =0. This is
because the photon mass X; is always considered to satisfy the
relation X; «m, in our problem which is not the case if ns, =0.

into three parts characterized by

(a) P'+k&0'
(b) p,'& p, +k&m„/2, &0& p, &p, '.
(c) m, /2 &p, +k,

The resulting integrals will be denoted by 1V„(p,.o),

Ã~(p, '), and 1V,(p,'), respectively. We shall also write

1VO(p,o) to represent the integral Jo"'d1VO(p, ) of the
uncorrected spectrum. Similarly 1V„(p,o) = Joi' d1V„(p,) .

In the domains (a) and (b), the photon can be emitted
in any direction and thus E and Ã& contain terms
depending on ~. On the other hand, the function E.
should not depend on + since the photon cannot be
emitted in this case in the same direction as the electron.
Explicit calculation of 1V,(p,o) and 1V„(p,o) shows that
not only the ordinary infrared divergences but also the
terms involving co cancel when these two are added
together and hence the sum 1V +1V„ is finite and well-

defined even in the limit nz, —+ 0. It follows that the cv

dependence of F(0)—F(xo) arises entirely from the
term Eq.

To see another feature of the problem, let us assume
for a while that the mass of the electron is arbitrarily
small and moreover restrict our attention to those
configurations in which the photon and the electron are
emitted in practically the same direction. Under such
circumstances, one may imagine that, as the radiative
interaction is switched on, occasionally electrons of
momentum p,+k in the uncorrected spectrum are
"shifted" to a state of momentum p, by the emission of
a quantum k. All the electrons in 1V,(p,o) may then be
regarded as having originated from corresponding elec-
trons in 1V0(p,') since p, +k& p,o holds for domain (a).
Taking account of the virtual photon process, the
number of electrons "counted" in 1VO(P,')+1V, (P,O)

+1V„(p,o) would thus be approximately equal to that
in 1VO(P,O) of the same momentum interval. On the other
hand, 1Vb(p,o) consists of those electrons that have
"drifted" into the interval (O,p,o) from higher energy
regions of the uncorrected spectrum, having lost their
energies by emission of photons. Such electrons there-
fore do not correspond to any in $0(p,o).i6

Since the electron has actually a nonvanishing mass
and the photon is not always emit ted in the direction of
electron, this argument is of course not rigorous. It is
not dificult to see, however, that its essential feature is
not affected by the removal of our assumptions.

YVe have thus found two properties that characterize
the separation of the integration domain (a) from (b)
and (c). It is unlikely that this is a mere coincidence.
Qne would rather be tempted to infer that there is a
close relation between them to the extent that the
former holds because of the 1atter. Somewhat inaccu-
rately, one might express this by saying that 1V +1V„

' Under the assumption of this paragraph, E,(p, ) should be
disregarded since it would represent those electrons that have
"drifted" from the region of uncorrected spectrum which lies
beyond the maximum energy.
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does not diverge for m, —+0 because the number of
electron is "conserved" in the transition Ns(P, s) ~
Ns(p s)+N, (p,e)+N. (p.').

The absence of the rr ln(m„/nz, ) terms in the decay
lifetime, i.e., the completely integrated spectrum, is ex-
pected from our argument since the domain of integra-
tion (b) disappears in that case. This result has been
verified for all the ten Fermi interactions using the
results of I and Eq. (2.4) of this paper. The same be-
havior has been observed in the case of the integrated
asymmetry in muon decay.

The arguments developed in this section suggest
strongly that this is not a peculiar property of the
radiative correction to muon decay but a property that
is also found for the radiative corrections to other decay
processes. This is supported in Sec. 4 by the analysis of
the neutron beta decay in the V—A theory.

4. RADIATIVE CORRECTIONS TO BETA DECAY

The lowest order radiative corrections to the nuclear
beta decay arising from the charge intera, ctions of the
proton and electron (assuming that the nucleons have
no anomalous magnetic moment) may be readily
evaluated using some of the general expressions derived
in I as well as Eq. (C.4) of this paper. "In the approxi-
mation in which the electron momentum p is neglected
in comparison with the proton mass m„, one obtains the
following expression for the radiative corrections to the
electron spectrum in the V—A theory:

A (m„y
APd'p= P'd'p 6 1n(— i+3 1ni i+)

2'

i
*df

I.(x) = —ln(i 1—f i).
t

(4.3)

As usual, Eq. (4.1) includes the contributions of the
vertex and wave function renormalizations as well as
that arising from the inner bremsstrahlung. Contrary to
the case of muon decay, the ultraviolet divergences have
not cancelled for the V and A interactions. This is be-
cause the order (pn) (ev) is quite different from (ep) (vv)
from the point of view of the electromagnetic interaction.

Our main concern in this section is to investigate the
behavior of Eq. (4.1) in the limit m,«E (or p -+ 1). In
this case (4.1) is reduced to

DPdsP = G'E '(1—x)'x'dx-
m4

2Ã2(mv q
&& 6ln] ]+3 in]

Em„) &2E i 3

1—x (1-xy
+4(lnx —1) ——,s+1nl

3x (x)
(1—x)' 4(1—x)+ lnx+0 —3

(1—x)' (1—x)
+4 ln

I (, (4.4)
E x

is the uncorrected spectrum, and G is the Feynman-
Gell-Mann coupling constant. The quantity X is the
ultraviolet cuto6, E is the maximum energy of the
electron (including the rest mass), and 1.(x) is the
Spence function"

E E(2(E„——E) i-
3E & ime

2 (2Pq+- L(p) I ( p)+I.i- —
&i+pi

(1—Pq (1+P~ 1
+-'I-f I

—-'L
I I

+- t»h-'p&2) &2) p

(E —E)' ( 2
&& 2(1+P')+ —21n~ ~, (4.1)

6Es &1—Pi

where P=P/E,

(4.2)P'd'p = (E„E)'d'p-
(2n-)'

' Throughout this section, we mean by the radiative correction
that part of the electroInagnetic corrections of order cx which is
not included in the usual Coulomb correction. This contribution is
the same for both electron and positron emissions and should be
added to the conventional Coulomb F function correction.

where x=E/E and Q=ln(2E„/m, ). The spectrum
(4.4) contains a term proportional to 0 and thus
diverges logarithmically in the limit m, —+0. If one
integrates it with respect to x in the range 0&x& 1, the
fractional change of the lifetime is found to be

rr ()I. y (m„q
I+»n] ~-2» . (4 &)

rp 2s &m i t,2E

The term containing 0 has dropped out in this expres-
sion. Thus the relevant expansion parameter for the
lifetime correction is apparently rr ln(mv/2E ) in con-
trast to that of the di6erential spectrum which is
n ln(m„/ns, ). Consequently, the radiative correction to
the lifetime is finite in the limit m, —+ 0 in exact coinci-
dence with the case of muon decay. Incidentally, one
may expect that the radiative correction to the muon
lifetime is also of order rr ln(m„/2E ). This happens to
vanish however, because E„=m„/2 in this case. Thus,

"Tables and useful properties of L(x) are given by K. Mitchell,
Phil. Mag. 40, 351 (1949).
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terms of order o. become the only corrections as was
discussed in previous sections. This will explain why the
lifetime correction to p-decay can be much larger than
that to muon decay.

When the observed electron mass is used, the most
important contribution to the spectrum comes from the
term ln(m„/m. ). If one neglects the smaller terms of
(4.1) which are momentum dependent, the resultant
lifetime is close to the value obtained from (4.1) for the
observed electron mass. This approximate lifetime,
however, depends on the term ln(m„/m, ) and hence
diverges logarithmically in the limit ns, ~ 0. Comparing
this with (4.5), it is seen that the neglected terms be-
come important in this artificial limit and exactly
cancel the lnm, term of the major part.

Unfortunately, formulas (4.1), (4.4), and (4.5) are
not unambiguous because of the presence of ultraviolet
divergences. To estimate the magnitude of the radiative
corrections, however, we shall put X=m„ in the follow-

ing, hoping that future theory will justify the approxi-
mate correctness of such a choice. In order to avoid
possible misunderstanding, any numerical values quoted
below that depend on the value of P will be labelled by
an asterisk as a warning that such numerical values are
not completely defined. It should be noted however,
that the corrections to the lifetime and coupling con-
stant of p decay become even larger if one chooses

Under the assumption X=m~, Eq. (4.5) gives a de-
crease in the lifetime of 1.9*% in the case of neutron
decay. "Of course, the use of (4.5) is not fully justified
in this case because the approximation E))m, is used in
deriving it. The above result is expected to be approxi-
mately correct, however, since most of the contribution
to it comes from the energy independent term
3 ln(m~/2E ). As a check, one may calculate Ar/ro in
the opposite limit in which p=0. From (4.1), one then
gets a decrease of 2.3*%for the neutron decay. One may
expect that the actual correction due to the interaction
of the radiation field with the charges will lie between
these two estimates.

The case of 0",a positron emitter with E 2.3 Mev,
is of particular importance because it has been used in
the evaluation of the vector coupling constant and in
the prediction of the muon lifetime. "Use of formula
(4.5) gives h7/ro= —1.7*%. This is somewhat smaller
than that given by Berman who has estimated Ar/ro
= —(2.6~0.5)*%.

In this section we have not considered in detail the
magnetic moment contributions and. other possible
structure effects arising from the pion clouds. Berman4

' Strictly speaking, it is inconsistent to put P =m„ in (4, 1) since
it has been derived under the assumption )P»m„'. Re-evaluation
of the Feynman integrals without this assumption (but assuming
still X'»m, 2) shows, however, that the value of (4.5) is decreased
only by an amount 0.002 when the cutoff ) is chosen to be m„.
This value is included in our estimate of the radiative corrections.

"R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958l.

has estimated that the magnetic moment contributions
are of the order of 0.2*%. Here we shall simply make
use of his result, The corrected Feynman —Gell-Mann
coupling constant then becomes G= (1.40&0.01)&(10 "
erg/cm'. From the radiative corrections for the decay
of 0' and for the muon decay, the muon decay mean
life is now calculated to be (2.31+0.05)X10 '* sec if
the universal Fermi interaction is assumed, while the
experimental value is (2.22&0.02))&10 ' sec. Thus if
the numerical values are compared, there appears to be
a small discrepancy between theory and experiment of
the order of 5%.

The situation is somewhat paradoxical because a
discrepancy of 5% seems to be rather small to be ex-
plained by a renormalization of gz due to the pion cloud
but not suKciently small as to be compatible with the
estimated errors. Concerning the possible ambiguities
due to the logarithmic dependence on the cutoff in the
case of neutron decay, it shou1d be noticed that for
X&ns~, the disagreement is even larger. In fact, to get
even a 1% decrease in the calculated value of r„, it
would be necessary to choose A«m~, which on the one
hand is unreasonable from the physical point of view
and, on the other hand, is inconsistent with our present
knowledge of the domain of validity of the local
quantum electrodynamics of the electron proton sys-
tem. "Structure effects of the pion cloud on the electro-
magnetic correction have been at least partially in-
vestigated by Berman who has analyzed in detail the
magnetic moment interactions, which appear to be very
small. Further study of these structure effects seems to
be of great interest. It would be also interesting, per-
haps, to investigate in detail possible eGects of the nu-
clear structure of 0"on the electromagnetic corrections.

Nonetheless, it seems premature for us to draw any
definite conclusion as to the significance of this dis-
crepancy. Several experimental and theoretical factors
such as the determination of the nuclear matrix element
in 0'4~N'4+e++v, the end point of e+, and the
experimental muon lifetime enter into this comparison.
Any future modification may change considerably the
present situation. " Clearly, more experimental and
theoretical work is needed to clarify this important
point.

When E is very large, the momentum dependent
terms of Eqs. (4.1) or (4.4) contribute considerably to
the modification of the spectral shape. To gain an idea
of the order of magnitude involved, we have considered
a hypothetical case where E =30m, . Upon using Eq.

"S.D. Drell, Ann. Phys. N. Y. 4, 75 (1958)."A very interesting possibility is to postulate that the universal
weak interactions are carried through an intermediate charged
vector meson of mass 1000m, .This would give a theoretical value
of v.„=(2.25%0.05) @sec and would predict an effective p value of
0.763 which is compatible with the latest Berkeley and Columbia
determinations. At the same time it would give a dynamical reason
for the tetrahedron scheme of the universal interactions. Un-
fortunately, this hypothesis seems to predict a rate for the
p —+ e+7 decay which is faster than is allowed by the present
experimental upper limit.
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(4.4), it is found that the ratio of the heights of the
spectrum at x=0.2 and x=0.9 is increased by 6.7%
when the terms of order n are included. The increase
will be 21% if one considers the ratio at E=ns, and
E=0.9E .

For a value of E of the order of a few electron masses,
the eGects on the spectral shape are considerably smaller
but not negligible. For example, for E =5m, the ratio
of the heights of the spectrum at E=m, and E=0.9E
is increased by 2.5%.

It is important to notice that the correction function
to the spectral shape is actually independent of the
ultraviolet cutoG X. This is because one has to normalize
the theoretical expression by

P&m
(P'+AP) (d'p/dE)dE= 1/r,

~me

where 7 is the experimental mean life, in order to com-
pare it with experiments. The normalized expression is
independent of ) up to terms of order n.
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Michel parameter pM defined for instance by (II.2.6, 7).
(The effect of the radiative correction appears as a
corrective factor multiplying the uncorrected Michel
spectrum. ) The old expression (I.28c), although com-
pletely equivalent to (A.1) up to terms of order a, is
somewhat more complicated than (A.1) because it is
expressed in terms of a parameter p which diGers some-
what from the original Michel parameter p~. Making
use of the definition of p given in (I.28a) and neglecting
terms of order m, /p„one finds the relation

p=
1+At+ s psr (A2 A.1)

(A.2)

u f(x)
h(x) =-

2K 3—2g
(A.3)

The equivalence up to the lowest order in a of (I.28c)
and (A.1) can be easily established with help of (A.2).

In reference 1, the function h(x) was chosen as a
suitable average of the corrections to the diGerent
interactions (S=P, V=A, and T), taking advantage of
the fact that they all have a very similar behavior. Since
it is now believed that the dominant interactions in the
muon decay are V and A, however, it is more reasonable
to choose as h(x) the corrections calculated for the V
and A interactions. We shall therefore choose

~1
h(*)L3(1—x); xjx'dx.

0

(A.4)In comparing theory with the experiments on the
decay of unpolarized muons, it has become customary to
determine erst the Michel parameter p~ by 6tting the
experimental curves with the general expression for the
electron spectrum in the four-component neutrino
theory, and then the value of p~ thus determined is
compared with prediction of a particular theory. In the
case of the two-component neutrino theory, this value
is to be compared with (p~) th„„t;„i——4. The inclusion
of the lowest order radiative corrections into the general
four-component theoretical spectrum was treated in
reference 1. LSee formulas (I.28a) and (I.28c).j

We would like to call attention here to an alternative
expression"

Analytical evaluation of (A.4) gives

(A.5)A.g
=0.0132, A2 = —0.0216.

The function h(x) diverges logarithmically for x ~ 1.
Because of this reason, this quantity was expressed in
reference 1 as a function of x and the experimental
energy resolution AE. In practice, however, the experi-
mental resolution function is folded into the theoretical
expression and then comparison is made with the ex-
perimental curve. In the theoretical expression, it is
therefore sufFicient to use the differential spectrum with
in6nite resolution. We have accordingly set DE=0 in
the function h(x) of Eq. (A.1).4x'dxt 1+k(x)]

1+Ai+ s psr (As —Ai)
rP(x)dx=

APPENDIX B. CLASSICAL CONTRIBUTION TO
INNER BREMSSTRAHLUNG

where f x is defined by 2.4 . The quantities A, andAs
APPENDIX A. SPECTRUM OF UNPOLARIZED MUONS

(FOUR-COMPONENT THEORY)

XL3(1 x)+2psr( x 1)j (A 1)

which is equivalent to Eqs. (I.28a) and (I.28c) up to
terms of order n but has a simpler structure than the
latter. In this formula, terms of order tl,/p, are neg-
lected. An advantage of this formula lies in the fact that
it depends directly on the original expression for the

"An expression very similar to (A.1) was first suggested by R.
Bebrends (private communication).

eAPpd pgd K

AU=
Pd'p.

(B.l)

It would be of some interest to see how much of the
radiative correction to the muon decay could be in-
terpreted as an eGect of classical radiation due to
acceleration of the charge-current. For this purpose, let
us note that the energy radiated per decay is given by



1660 T. K I NOSH I TA AN D A. S I RL IN

where DP„ is given by (1.17), e and «are the energy and
momentum of the photon, and Pd'p, is the probability
of the nonradiative decay [see (I.2)7. Now, if one ex-
presses DU as a function of the circular frequency v of
the emitted radiation, using the relations c=A', v and
«=kv/c, and then goes to the limit li —& 0, one finds the
fol]owing relation:

e' v' (P2 e,) (Pi e;) '
limhU= — P — dvdQ, (B.2)

c (2n-)' '=i, 2 . (p2 v) (Pi v)

where v in the scalar products stands for the 4-vector
[v, (v/c)n7 and n is the direction of propagation of
radiation.

As is well known, (B.2) can also be derived from
purely classical considerations if one assumes that the
radiation energy is emitted by an instantaneous ac-
celeration of the charge-current. In the second case, the
classical contribution of inner bremsstrahlung to the
muon decay spectrum may be defined as the number of
"equivalent quanta" which is obtained by dividing the
energy formula (8.2) by kv. Actually such a definition
is not unambiguous since the classical term will diverge
for the long-wavelength limit when it is integrated over
the photon energy. It is not impossible, however, to
estimate the magnitude of the classical contribution in a
more or less qualitative manner.

For this purpose, it is convenient to separate the part
of the spectrum due to real photons of energy larger
than a certain quantity, say the rest energy of the
electron, from that due to lower energy real photons and
the virtual photons. As is easily seen, the first part is
given by (n/27r)b, (x), where b (x) are the functions
defined by (I.25) if one sets or&=0 in that expression.
The second part is then given as the difference between
the entire radiative correction and the first part. Each
part consists of "classical" and "nonclassical" terms.
The classical term of the first part is given by(n/2x) 2 V(x)
(with co&=0) where V(x) is defined by (I.25d).

In the case of V and A interactions, the two parts of
the spectrum mentioned above are found to contribute
roughly equal amounts to the radiative correction to the

p value. Furthermore, in the region 0.3&x&0.9, the
first part is dominated by the contribution of the
classical term arising from (B.2). It may thus be said

that the classical radiation of frequency v&m, c'/h may
account for about half of the radiative correction of the

p value. The classical contribution is also characterized

by the fact that it is fairly independent of the electron
momentum throughout the range of the spectrum.

i p«max $2dg (1 g2$2/e2)
I=-'p' dx

J, , (, pp)'
where e= (k'+li; ') & and 8=p,/E, . Integration over k

can be easily performed by choosing n= k/e as the new
variable. One thus finds

where

I= ID+C, (C 2)

(&max&
p' ~~ lnl l dh,

Eg; ) (1—Pg)'
(C 3)

C=2 ln2l —tanh 'P —1 1+1

1 (1—P'i -
1

+—tanh 'P 2+lnl l +—[L(P)—L(—P)7
2p E 4 ) p

1 (1—P p (1+Py+—LI I

—L
I I

. (c.4)
2P ( 2 ) ( 2 )

The function L(x) is defined by (4.3).
The integral Io was previously used as the result of

Eq. (2.2). The correction function C is independent of
k, . Thus it may be used in any problem involving the
radiative corrections of two charged fermions. In the
case E2&)m2, (C.4) reduces to

(2E2q ( E2 ~C= 1—lnl l lnl l+1—-'m' (C.5)
& m2) &2m, )

This expression can be used in the case of the muon
decay and it may be expressed in the form given in

Eq. (2.3).

APPENDIX C. EVALUATION OF THE INTEGRAL I
The integral I, defined in (2.2), can be easily evaluated

in the rest system of particle 1. It is convenient to work
in the Coester representation of the vector meson field
in which the scalar quanta have been eliminated and
the field operators obey the same commutation relations
as those of the massless photon. ' Summing over the
three directions of polarization of the vector meson, one
obtains


