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It is shown that discontinuities can develop in the propagation of initially smooth waves governed by a
classical nonlinear theory of electrodynamics. The type of theory considered includes as a special case that
of Heisenberg and Euler, which describes the modifications that must be made in the Maxwell equations
to include the classical limit of the nonlinear vacuum effects of quantum electrodynamics. A particular
solution of the equations is constructed by the method of characteristics; this example illustrates how, with
the appropriate well-behaved initial conditions, the characteristics can be made to intersect at later times,
thus forming discontinuities. The classical approximation fails when the gradient of the field strength
becomes large, so that no definite conclusion can be drawn as to the actual physical creation of singularities,

I. INTRODUCTION

'T is well known' that quantum electrodynamics
&- predicts and experiment verifies that the vacuum
is polarizable and that two general electromagnetic
lelds will not superimpose but will interact ("scattering
of light by light" ). Heisenberg and Eulers ' have
derived an explicit Lagrangian which describes these
nonlinear eftects in the classical limit of long wave-
lengths, low frequencies, and not too excessive field
strengths; here the linear Maxwell equations are re-
placed by eoelieear equations. One of the very im-
portant differences between linear and nonlinear partial
differential equations is that in the latter case solutions
may occur which, although the initial values are
entirely smooth, develop a surface of discontinuities at
a later time. ' The situation is mathematically analogous
to certain hydro dynamical problems, where these
discontinuities appear as shocks. In this paper we shall
show that any nonlinear classical theory of electro-
dynamics admits solutions that exhibit this formation
of discontinuities.

II. "SIMPLE WAVE" SOLUTIONS FOR
GENERAL LAGRANGIAN

It is easily demonstrated' that only two independent
scalar invariants can be constructed from the com-
ponents of the electromagnetic field tensor, F„„;they
are, in the usual notation

I=F Fs"=2($'—E'),
K= (e'~s"F&,F„,)-"=—(4E 8)'. .

* This research was supported in part by the U. S. Air Force
through the Air Force Office of Scientific Research of the Air
Research and Development Command. This paper contains thesis
research submitted to the University of Maryland Graduate
School by Morton Lutzky in partial fulfillment of the requirements
for the M. S. degree in physics.' For example, see any text in quantum electrodynamics, such
as J. Jauch and F. Rohrlich, The Theory of Photons and Electrons
(Addison-Wesley Publishing Company, Cambridge, 1955), p. 298.' W. Heisenberg and H. Euler, Z. Physik 98, 'I14 (1936).

'V. Weisskopf, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 14, 1 (1936).' John A. Wheeler and John S. Toll (to be published).

5 See, for instance, L. Landau and E. Lifshitz, Classical Theory
of Fields (Addision-Wesley Publishing Company, Cambridge,
1951),p. 63.

If we impose the conditions that the held equations be
linear differential equations, then6 the only possibility
for the Lagrangian (which must be a relativistic sca.lar)
1s

where a is a constant. On the other hand, if the linearity
restriction is dropped, we may take as the Lagrangian
a general function of the two invariants

Z =@(r,K).

Since it is our purpose only to show that we can find
solutions which involve the formation of discontinuities,
we can simplify our problem by considering solutions
of a particularly simple form. Thus we assume that, in
a particular reference frame, all components of the
four-vector potential vanish identically except for
As rt (x,t—)—, where p represents a plane wave depending
only on x=xi and on t. Then the invariant E is found
to vanish identically. It is convenient to transform to
the independent variables (=x+3, rl=x —f; then the
remaining invariant I is given by

a any a ~azq
I+—

I

at a@() ag &a@„)
(4)

which may be written

Since 2 and its derivatives are functions only of
I=4p~p„, we find that Eq. (5) is of the general type

~it+ bgt„+c&„„=0, (6)

' L. Landau and E. Lifshitz, reference 5, p. 69.

where we introduce a notation in which subscripts on

p denote partial differentiation. For any such solution
and a general Lagrangian of the form of Eq. (2), the
variational principle is equivalent to the single partial
differential equation:
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where a, b, and c are functions only of &p~ and p„:
a= 2g 'O'2/BP

c=2$PB'2/BP

b = BZ/BI+ID'2/BP.

(8)

(9)

When the solution p ($,g) is such that b') 4ac through-
out a region E($,p) of space-time, Eq. (6) is hyperbolic
in E. and can be solved by the method of characteristics. '
At each point two characteristic C+ and C are de6ned
which have the tangent directions given by:

&-(pp, p,)=&0, (12)

where Iio is any fixed constant. Then this relation will

be satisfied at later points obtained by following C+
characteristics from the initial curve 8; these C+
characteristics are all straight lines; and the values of
@~ and p„are constant along each C+ characteristic.
The propagation of solutions of this type, which are
called "simple wave" solutions, is easily determined
geometrically from the initial values. It is now clear
how singularities in the solution can arise. If the initial
values are chosen such that the slopes p+/u of Eq. (10)
give for some interval on 8 a converging set of charac-
teristics, these characteristics, which carry diferent
values of g~ and p„, will intersect at later times.

At a point where two C+ characteristics intersect,
the assignment of values of pg and p„ is no longer
uniquely determined. The general situation involves
the formation of an envelope by the family of straight
lines; this curve separates the $, g plane into two regions,
in only one of which the solution is unambiguously
determined by the initial conditions. The envelope thus
forms a limiting curve beyond which the solution cannot
be continued in a unique and unambiguous manner.

Due to the fact that a, b, and c have the forms given
by Eqs. (7), (8), and (9), it is possible to find P+ and

as follows: From the theory of characteristics, ' it
follows tha, t along a C characteristic Pt. and g„are
related by

(13)

7 See, for instance, R. Courant and K. O. Friedrichs, Supersonic
Ii/o7/fI and Shock S"ames (Interscience Publishers, Inc. , New York,
I948), especially Chap. II.

where p~ are the two real solutions of

p' bp+—ac=0

Functions F+(p~,p„) and P (pr, p„) can be constructed
which maintain constant values along each of the C+
and C characteristics, respectively. We state without
proof the known' results that an especially simple type
of solution of the Eq. (6) can be constructed if the
initial values along any curve that is not a characteristic
are chosen to satisfy:

III. SPECIAL EXAMPLE

The particular Lagrangian of Heisenberg and Euler'
can be treated by the above methods. The field strengths
along the initial curve 8 can be chosen to be sufficiently
small, ' so that one need only retain the first two terms
in the expansion of the Lagrangian in powers of the
invariants, which yield

,'I+ ,',PfP ——(7/4)—E), — (15)

where P= ke'/457r'tn, ' Equation (5. ) or Eq. (6) then
becomes

A, =At4, '+4',A,+424„, (16)

where the explicit appearance of p has been removed
by introducing:

4=p'4 (17)

Equation (11) can then be solved to give one root as:

p = -', (4lw, —1)+-', (12K'—N,11) ** (18)

where li=P~P„. We identify this root with p and Eq
(13) then becomes

4~&6 1[12 (P)P„)' 8—AQ„+1]''t-+
2 )2

This is already of the form (14) and its solution may
be represented parametrically by

(20)

Since, in the simple wave solution, the 6eld strengths remain
constant along C+ characteristics, it is simple to check at the end
of our investigation that the contribution of the omitted higher
order terms is indeed numerically negligible.

From Eqs. (6)—(9), we see that c/p has the form
PP/P(g~g, ), where the function P of the product p~p„
depends on the particular Lagrangian 2 of Eq. (2).
Hence, Eq. (13) can be written

P(A4 )d4&+4Pd4. =0 (14)

The function P (p~,p„), which is constant along the
C characteristic, is obtained by integrating Eq. (14)
with its integrating factor {p~(p~g„—P)) '. Once
F (p~, p„) is determined, continuous initial values of
P~ and p„along any contour 8 can be chosen which
satisfy Eq. (12) and thus yield a simple wave solution.
The slopes of the straight C+ characteristics emanating
from 8 are then found by Eq. (10). If these charac-
teristics should all happen to diverge, a new solution
with converging characteristics will result from the
mapping x —+ —x. Consequently we have shown that,
except for the case when the characteristics are all
parallel (e.g. , if the field equations are linear), it is
always possible to generate a simple wave solution in
which some neighboring characteristics must intersect,
thus leading to infinite gradients in the field strengths.
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where ) is a parameter which must be chosen in the
range 0~&X~&6, in order that the equation remain
hyperbolic, and where

f(X) {(3—12K)$3(1—2X)]'+ (12K—5) (1—6X)'*} "~'

(12K'—8X+1)*+1—4X
(21)

J is a positive, arbitrary constant of integration. (Note
that i/r»P„=X )T. hen Eq. (20) gives the values of f»
and P„along the initial curve B.A logical choice for this
initial curve is the line $=ri, or the x axis (3=0). Any
continuous assignments of values of ) to this initial
curve will lead to a particular simple wave solution.
For convenience we parametrize the initial curve by

1

kX 1—kX
(22)

where k is a real constant (k) 6) and the range of X is
0&~X&~1/k. Thus the complete x axis is parametrized
by (22). From Eqs. (10) and (18) we then find for the
slope of the line passing through that point of 8 which
corresponds to a given X:

deaf 1—= ——{(3—12'A) P (1—2X)jl
d$ 2J

+ (12K—5) (1—6X)—:}—'«' (23)

with 0&&X&~1/k. Thus the complete solution may be
traced out as follows.

Each value of X, 0&~X&&1/k, determines (1) a point
($,i») on 8, given by Eq. (22), and (2) a straight C+
characteristic passing through this point and with the
slope given by Eq. (23); and along which P» and P„are
constant at the values given. by Eq. (20). By running
over the complete range of P, we cover a region of the
g, rl plane with straight lines and therefore with values
of g» and iP„. These values are the simple wave solution.

The computations lead to a family of converging
straight lines for the C+ characteristics. The envelope
of this family is a curve of two branches, each of which
is a time-like curve, and the two branches meet at a
cusp, This cusp is the earliest point at which the
characteristics intersect and represents the first ap-
pearance of a discontinuity in the gradients of the field
strengths.

By choosing k to be very large and 5=1/k, the
values of P» and P„are everywhere smaller than k l,
according to Eqs. (20) and (21). Thus, for sufficiently
large k, the higher order terms in the Heisenberg-Euler
Lagrangian can be shown to give only a negligible cor-
rection to the above discussion. (For k=10", the cusp
occurs at about the time t=5.0)&10" in the units used
above. ) The critical field strength for the Heisenberg-
Kuler Lagrangian is 4.0&10"gauss, so that all normal
laboratory Geld strengths are indeed small compared
to this value, For examples with small Gelds, the charac-

I I I I
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Fxo. 1. Construction of a simple wave solution with formation
oi a singularity. The particular example of Eq. (22) of the text
with 4=6 and J= & has been illustrated. The characteristics are
straight lines and the small numbers indicate corresponding values
of the parameter X. The values of the Geld strengths, given
originally along the x axis, remain constant when propagated
along each characteristic and the singularity is produced when
these characteristics converge to produce the Grst intersection at
the point P, where an inGnity in the Geld gradients must appear.

teristics are all nearly parallel to the light cone. In
order to give an easily illustrated example, we show in
Fig. 1 a case with k=6 and J=-,'. (Of course, the field
strengths are enormous and the corrections would be
appreciable; in fact, the Lagrangian is quite inapplicable
anyway at such field strengths, so that this example is
purely pedagogical. )

IV. GENERAL REMARKS

It is clear that we cannot interpret literally the
formation of discontinuities in the Geld gradients; for,
the Heisenberg-Euler theory is invalid for fields which
change too rapidly, ' and therefore must break down
before a discontinuity is actually achieved. The physical
reason for the restriction on the Heisenberg-Euler
Lagrangian is that we wish to prevent the formation
of real pairs; we see, then, from the character of our
solution, that the field must create real pairs in the
space-time neighborhood of the singular curve. In this
region we no longer have a vacuum situation, the
Heisenberg-Euler theory no longer applies, and the
more powerful machinery of quantum electrodynamics
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must be applied to discover just what happens in this
case, and how the extension is to be made into the
unphysical region.

Because of the small numerical value of the constant
coefficients of higher order terms in the Heisenberg-
Kuler Lagrangian density, these efI'ects are too small
to be susceptible to experimental test. 4 The primary
importance of our investigation is to point out theo-
retical methods for the investigation of these nonlinear
effects, and to give an example of the kind of phenome-
non which may occur. It is hoped that such examples
will provide some insight into more realistic situations,
and be of some suggestive value in the consideration of
the nonlinear aspects of quantum field theories.
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iVofe added As Proof T.
—he question has been raised

as to whether the singularities which occur in the solu-
tion of the equation we have treated are due to special
properties of the equation, or whether any nonlinear
hyperbolic equation possesses singular solutions. We
have been unable to determine whether there exists a
nonlinear hyperbolic equation having the property that
for eo initial conditions does the solution exhibit
singularities. Therefore we regard this investigation as
merely demonstrating how, for a particular physical
situation, singularities may occur, and bow they are
formed in this case. In this connection, we note that
an investigation of the singularities occurring in the
solution of another type of nonlinear wave equation
has been made by J. B. Keller, Comm. Pure Appl.
Math. 10, 523 (1957).
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The radiative correction to the decay spectrum of polarized
muons is recalculated taking into account a mistake in our previ-
ous work which was recently pointed out by Herman. The revised
values for the radiative correction to f), (, and integrated asym-
metries for the high- as well as low-energy decay electrons have
turned out to be practically identical with the old values. The p
value determined from experiments, on the other hand, has to be
increased by about 1% because of the new correction. Thus the
over-all effect of the radiative correction to the p value is now an
increase of the order of 5.6/o when the experimental and theo-
retical spectral distributions are compared in the region 0(p/p
&0.95. The radiative corrections to the spectrum and lifetime of
the nuclear p decay arising from the charge interactions of the
electron and proton are also studied. Use of this expression gives a
correction of —1.7'Po for the lifetime of 0". The corrected

Feynman —Gell-Mann coupling constant is G= {1.40+0.01)X10 "
erg/cm'. In the universal U —A theory of weak interactions, the
calculated muon mean life becomes ~„=(2.31&0.05))&10 ' sec.
(These three values depend logarithmically on the ultraviolet
cuto8 ) and the corrections to r„ increase for increasing values of
X.) It is found that the corrections to the spectral shape of P decay
are rather large in the case in which the end-point energy 8 »m.c'.
The radiative corrections to the lifetime and the total asymmetry
for muon decay are found to be well de6ned and 6nite for ns, —+ 0
in spite of the fact that the differential spectrum itself diverges
logarithrnically in the same limit. The same situation is en-
countered in the case of radiative corrections to the nuclear P
decay. A physical explanation for such behavior of the radiative
corrections is attempted. In Appendix A, a simpli6ed expression is
given for the determination of the Michel parameter.

l. INTRODUCTION

'HE lowest order radiative correction to the decay
of polarized muons have been studied in previous

papers. ' ' In the present work, the functions which de-

* Supported in part by the joint program of the Once of Naval
Research and the U. S. Atomic Energy Commission.

~ Behrends, Finkelstein, and Sirlin, Phys. Rev. 101, 866 (1956).
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T. Kinoshita and A. Sirlin, Phys. Rev. 107, 593 (1957). This
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T. Kinoshita and A. Sirlin, Phys. Rev. 107, 638 I'1957). This
paper will be quoted as III.

termine the various corrections are reconsidered, taking
into account a mistake in the treatment of the low-

energy quanta, recently pointed out by Herman. 4 In
Sec. 2, the results of this calculation and their e8ects on
the parameters 5, p, $, the lifetime, and the integrated
asymmetries for high- as well as low-energy electrons
are discussed.

As a consequence of this recalculation, the p value is

increased by an additional amount of about 1%, the

4 S. M. Herman, Phys. Rev. 112, 267 I;1958).


