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tions, the positive sign of D (E)ca'n be directly foreseen

by consistently using dispersion relations.

6. CONCLUSIONS

Starting from the assumption that the two subtracted
dispersion relations for D (E) I given by (2) and (3)j
both hold, for a suitable value of the coupling constants,
we can reach the following conclusions:

(a) In the s—s case, the two expressions D i(E)
and D "(E), plotted as functions of gr' )which is
approximately equal to (gz'+g&')/2), do not meet for
any positive value of g&'. Making allowance for the
large errors in the determination of the cross sections
and for the errors introduced by our way of dealing
with the unphysical region and the high-energy region
of the integrals, the two expressions could perhaps
give coincident values, but only for a very small gr',
corresponding to a positive value of D (E) which is

clearly incompatible with experiment.
(b) In the ps —ps case, the two expressions give lines

that meet for a gg' of the order of 5, and the correspond-

ing common value of D (E) turns out to be positive
and in good agreement with the experimental data.

(c) In the s—ps and ps —ps cases, no definite
prediction can be made, except that agreement with
experiment could hardly be reached if the pseudoscalar
coupling constant were at least two order of magnitude
larger than the scalar one.

(d) In all four cases, the two lines cannot meet for
negative values of D (E); this is a very definite
prediction of dispersion relations for the sign of D (E),
which seems to be independent of any assumption on
the sign of the relative heavy-meson —nucleon parity.
It is our personal belief that this result is also practically
independent of the assumptions and approximations
made. Dispersion relations enable us to predict,
therefore, a constructive Coulomb interference in the
E=p elastic scattering at low energy.

'7. ACKNOWLEDGMENT

We are deeply indebted to Dr. D. Amati for useful

dlscusslons.

PH YSI CAL REVIEW VOLUME 113, NUMBER 6 MARCH 15, 1959

Unstable Particles as Targets in Scattering Experiments

G. F. Cnzw, Radiation Laboratory, University of California, Berkeley, California

AND

F. E. Low, Radiation Laboratory, Un@ersity of California, Berkeley, California, and Department of Physics and

Laboratory for Eudear Science, Massachitsetts lnstitttte of 1echnology, 'Cantbridge, Massachitsetts

(Received November 3, 1958)

A general method is suggested for analyzing the scattering of particle A by particle 8, leading to three or
more final particles, in order to obtain the cross section for the interaction of A with a particle which is
virtually contained in B. Binding complications are absent if a plausible assumption about the location and.

residues of poles in the S matrix is accepted. The method is useful for unstable particles from which free
targets cannot be made; the special examples of pion and neutron targets are discussed in detail.

1. INTRODUCTION AND RESULTS

A. The importance of measuring cross sections for
such interactions as pion-pion, neutron-neutron, pion-
neutron, electron-pion, etc. , has long been recognized
but no feasible way has been found for making targets
from pions or neutrons. Deuteron targets have often
been used with various subtraction procedures to give
rough values for neutron cross sections but compli-
cations due to the presence of the unwanted proton
have made precise interpretation impossible. Similarly
it has been recognized that virtual pions in the cloud
associated with physical nucleons might in some

approximation be considered as targets, but here, even
more than in the deuteron case, binding effects have
obscured the desired two-body interactions. The
purpose of this paper is to present a scheme for analyzing

experiments with complex" targets so as to obtain the
elementary cross sections of target constituents, free
from binding corrections.

The essential physical principle employed relates to
the location and residue of poles in the scattering
matrix. The existence of these poles can be proved in
local field theory, and the connection of the residues to
physically measurable quantities may be made very
plausible, although proofs have not yet been given
for all interesting cases. Well known examples are the

pole in the forward angular distribution for Coulomb

scattering and the Weiszaker-Williams pole in the
electron momentum transfer for processes induced by
high-energy electrons. ' The location of other singu-

' W. K. H. Panofsky and E. A. Allton, Phys, Rev. 110, 1155
(1958).
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larities of the 5 matrix, such as branch points, is of
indirect importance to our scheme and here we resort to
guesswork. In Sec. 2 of this paper the nonrelativistic
deuteron problem is analyzed, to illustrate with a
concrete example various essential aspects of our
program.

B. From a practical standpoint the problem turns
out to be largely one of choosing the right variables to
represent the experimental results. To ensure that
experimenters are not led by unfamiliarity with
S-matrix theory to overlook the utility of the scheme,
we present at once our prescription for analyzing
experiments of the type

A+8 —+ three or more particles,

so as to obtain the cross section for the interaction of A
with some constituent of 8. An example might be the
process

(a) 2z++P ~P+at least two mesons,

with the object of determining the total (2r+,m') cross
section, or possibly

(b) n+d-+ p+n+n,

with the object of determining the cross section for

n+n —+n+n

One must in general deal with four masses, First
there is the mass of the incident particle, which we shall
call p~,. then there is the mass of the "complex" target
particle, M&, and finally the two masses into which the
target can virtually decompose. Ke shall call p, 2 the
mass of the particle whose cross section is of interest,
while M2 refers to the recoil or "spectator" particle.
For example, in case (a) above, we have

Pg =P2= SS)r)

Mi=M2=M„,

while in case (b) we have

pg ——p,2=Sf„)
Mg= Mg, M2= M~.

The first experimental variable of interest will be
called 6' and is the invariant square of the difference
of four momenta for the target (M1) and spectator
(M2) particles. The laboratory kinetic energy of the
recoiling spectator particle we call T21.. Then we see that
a linear relation holds between LV and T2z (we use
units in which c=1):

6'= 2M1 T2z, (M1—M2)'. —

It is in fact convenient to use rather than 6' a quantity
P =2M2T» which nonrelativistically is the square of
the laboratory recoil momentum. Evidently the
following relation is true:

p'= (M2/M1) pP+ (M1 M)'$—

M2+T2z, = (p2z'+M22)'*,

~1z= (q1z,'+pz') '.
Our method of analyzing the scattering experiment

so as to obtain the total cross section' for the interaction
of p& with p2 requires a determination of the two-
dimensional distribution 820(w2, p2)/8w28p2, which can
be obtained through (1.1) and (1.2) if one measures the
energy and angle distribution of the recoiling spectator
in the laboratory system. To calculate the limits on the
possible values of the variables 222 and p' it is best to
consider the over-all barycentric system, where we
designate the total energy by t/t/. The relation between
5' and the laboratory energy of the incident particle is

W = (2M1ar zz+M12+ p12) l,

and the upper limit of the variable m is O' —M2. The
lower limit on m is the sum of the two smallest masses
which can occur in the final state in addition to the
spectator particle.

The upper and lower limits on p' depend on both W
and m and require a slightly involved but straight-
forward calculation. In the over-all barycentric system
let the recoil spectator energy be designated by E2.
One may easily show, then, that the relationship

E2= (W'+M2' —w2)/2W

holds true. Similarly, in this same system, we designate
the energy of the original target particle by 8&, so that

E1= (W'+M1' —P1')/2W. (1.5)

Let the corresponding momenta be called P2 and P1.
Then by definition,

(M1/M2) p2=a2+ (M —M )'
(P1 P2)2 (El E2)2+ (Ml M2)2

=2E1E2—2M1M2+2 cos8

Xt ( 1 1)( 2 2)) (1.6)

where 8 is the recoil angle in the barycentric system and

~ The procedure for determining differential cross sections vrill be
described below.

The second variable of prime interest will be called
zv' and is the square of the total energy of all the
outgoing particles —excluding the spectator —in their
barycentric system. If the angle as well as the mo-
mentum of the recoiling spectator is measured, nr' can
be calculated directly from energy-momentum
conservation:

2zt2= (a)zz,+M1 —3II2—T2z) 2

—(qzz' —2qzzp2z cos8z+p2z'). (1.2)

Here co&L, and q&I„respectively, are the total laboratory
energy and momentum of the incident particle, while
p2z, is the laboratory momentum of the recoiling
spectator and 81, its angle with respect to the incident-
beam direction. Thus we write
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kinetic energies for the incident pion of about 0.45 and
2.6 Bev, respectively. A phase-space diagram for case
(b) above is shown in Fig. 2. The importance of these
phase-space diagrams to our scheme is discussedbelow.

C. Let us assume that for some range of rrI2 and p'
at a fixed total energy the differential cross section in
these variables has been determined. Our method then
prescribes that the following function be constructed:

f'Miy '
J (21I2,P2) =22r

(

&M,)
Vi~'(P' —Po')'

L-'~' —2~'(~1'+~2')+-'( 1'—f 2')'j ~P'~~'

FIG. 1, Allowed region in p'/M' ss 2II'/3P for meson-nucleon
collision at 5'=2.5' (2.6 Bev laboratory energy) and 8'= 1,53II
(0.45 Bev laboratory energy).

where

PO (M2/M1) LP2 (M2 Ml) j.

t.O

.8

.6

.2

(q +a )/q,
.3

FIG. 2. Allowed region for P2/q1 and (qm+cP)/gp for neutron-
deuteron collision. The lower limit on (g2+n')/qI2 and the extra
polation distance below zero are both given by I22/qrs = 1/E, where
E is the neutron laboratory energy in Mev.

ranges from 0 to 180'. Formula (1.6), together with
(1.4) and (1.5), gives the range of p' for fixed values of
W and to. The upper limit on P' occurs for cos8=+1
and the lower limit for cos8= —1.

As an example of the above kinematical considera-
tions, Fig. 1 shows the allowed regions of the (21I2,P2)
plane for case (a) with W=1.5M~ and 2.5M„. These
total barycentric energies correspond to laboratory

This formula will be motivated below in Sec. 3, where
it will be shown that for fixed to2, if rl'Ir/clP'Bw' is
extended to negative values of p', it has a second-order
pole at 62= —tu22 or P'=P02. Furthermore the residue
of this pole is directly related to the total cross section
for the scattering of the incident particle by the particle
of mass p, &, at total energy m in the barycentric system
of these two particles. From the way we have con-
structed F(22I2,P2), it is clear that its value at P'=P02
is essentially the residue in question. Because of final-
state interactions involving the spectator it is expected
that other singularities of F(ws, p2) will appear in the
neighborhood of p'=ps', but nothing as important as
the pole of interest. Therefore we believe that by
extrapolation from the physical region it should be
possible to determine F(rrI2, P0').

From formula (1.1') it may be seen that we are
speaking of an extrapolation in the recoil-spectator
kinetic energy to the point

Tsr,' Lps' —(Mi ———M2)'g/2M1, (1.8)

which is always negative if the original target particle
and its two virtual components are stable, that is, if
we have

Mi (M2+ p2, M2 (Mi+l12, and Ia2 (M,+M„
In the physical region, T21. is of course always positive,
so an extrapolation over an interval at least equal to
T2&0 is required. However for case (a), which measures
pion-pion scattering, this interval is only 10 Mev, while
for case (b), which measures neutron-neutron scattering,
it is only 1 Mev.

According to (1.6) the physical phase-space lower
limit (cose= —1) on p' approaches zero at

ttI2= w '= W2+M '—(M2/Mi) (W'+Mi' —Ia ') (1.9)

and in the neighborhood of this point behaves
quadr atically:

P
(W2+M 2 p 2)2 4W2M 2
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Clearly our proposed extrapolation procedure is most
feasible in the neighborhood of w2=2Pp2. In case (a),
and in general when proton targets are used as a source
of pions, mo' equals m '; therefore the point mo lies
outside the physical region. In the physical region the
lower limit on p' is always greater than zero, but (1.10)
shows that for

(2p2 213 2)((213 /~ )Lpp'2+~ 2
233 2)2 4gT2~ 2]2

the lower limit is no larger in order of magnitude than
the extrapolation distance m '. Therefore for values of
m' in this range one may still hope to be able to carry
out our prescription. It is easy to show that a scattering
experiment with a f2ee target pion at rest, and with
the same incident-pion laboratory energy as with the
proton target, would correspond to a value of w'

in the above allowed range. Thus our method permits a
study of the same energy region that could be reached
if real pion targets were available.

With a deuteron target and the proton as a spectator,
the point mo occurs in the physical range for all but the
lowest bombarding energies and closely corresponds to
the unique value of m that would occur with a free-
neutron target at rest. The possibility of reaching mo

in the case of a deuteron but not in that of the proton
perhaps reflects the fact that the neutron contained in
the deuteron is closer to being a real particle than is the
pion contained in the proton.

In Sec. 2 it will be shown that for any experiment
designed to measure a neutron cross section with a
deuteron target, including our example (b), the value
of the function F(2pp, p2) at the position of the pole is
to a very good approximation

where o-» is the two-body total cross section of interest,
n is the inverse deuteron "radius" and ro is the neutron-
proton triplet effective range. The position of the pole
1S atPp = —a.

For experiments designed to measure neutral-pion
cross sections with a proton target, the corresponding
formula is

where fp„ is the coupling constant for neutral pions to
protons (f3~2——0.08). The position of the pole in this
case is at pp'= tn, 2. If one wish—es to measure a
charged-pion cross section, with a neutron recoil, one
uses the charged-pion coupling constant, f 2=2fp2.

Notice that the extrapolated value of F(wp, p2) is
negative in pion cross-section experiments but positive
for neutron experiments. This circumstance results from
the fact that a single virtual pion in the nucleon cloud
must be in a I' state, while the neutron in a deuteron is
in a mixture of S and D states. Odd angular momentum
in the complex target system in general gives rise to a

negative residue for the pole in the cross section. This
point will be elaborated in Sec. 3 below.

From a practical standpoint the negative residue in
the pion problem is a severe disadvantage. It means that
one must accurately determine not only the value of the
function F(2112,p2) in the neighborhood of p'=0 but
also at least its first derivative in order to perform
the required extrapolation. There probably will be a
peak in the cross section at low p' but this wiH be due
to a first-order pole whose residue is not unambiguously
interpretable, since it may involve cross terms with
parts of the amplitude that we cannot calculate. The
e6ect on which we must depend is a tendency for the
cross section to decrease at the last moment (as p' —+ 0)
as a result of the negative contribution from the second-
order pole.

D. To conclude this prescription for the analysis of
experiments, we generalize the foregoing to allow the
determination of differential as well as total cross
sections. First, when several outgoing channels are
possible, there is an obvious correspondence between
channels in the "elementary" reaction of interest and
channels in the "complex" target reaction. For example,
in our case (a) which involves the pr —pr interaction, if 2p

is greater than 3m there may be both three-pion and
two-pion final states. If one wishes to determine the
purely elastic x+—m' cross section, the measurement
shouM be restricted. to processes of the type

excluding events in which three pions emerge, but
otherwise the procedure stated above may be followed.

Should one wish to go further and measure the
angular distribution for a two-body final state, it is
necessary to consider a variable corresponding to the
barycentric angle of scattering for the two-body
system of interest. The definition of this variable is not
unique and will vary from problem to problem. In
many cases, however, it seems natural to measure the
energy orsq and momentum q3g of one of the outgoing
particles Lsay the pr+ in case (b)] and to evaluate the
invariant quantity

gl. '
gp M3L&1L+glL$3L cos813L& (1.13)

where 8~31. is the angle of the outgoing particle with
respect to the incident beam in the laboratory system.

One may then consider the same invariant in the
required barycentric system for particles 1 and 2, where
the energy of the outgoing particle 3 is

p13b
——(2p2 —I332+F32)/2w, (1.14)

if p4 is the mass of the "other" particle in the reaction,
1+2 —& 3+4. The momentum qp b is of course
(p13b2 —F32)'. The energy of the incident particle in this
system may be calculated if 6 as well as m is known.
One hnds

p11b= ('W +iV+@1)/2231,
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and a corresponding momentum q, t, = (toit, '—pi')l. The
cosine of the scattering angle in this system is then
related to the invariant q& q3 by a formula analogous
to (1.13), so that one finds

cos8 g
= (qirqsz cosHi 2i+cos icoi g

—cost coiz)/qs iqi s. (1.16)

Thus it is possible to subdivide the events observed
according to cos8s arid to extrapolate in p' at fixed Ob

in order to obtain the desired angular distribution. In
Sec. 2 it will be explained that when a 6nal-state
interaction involving the spectator is important it
may be necessary to avoid certain regions of the scatter-
ing angle eb. Since these regions are generally small, the
determination of the total cross section for a given
channel should not be too strongly affected by final-
state interactions.

a=(412, q4I Tl —p, e)e(p), (2.1)

where T is the neutron-neutron T matrix, P is the
Fourier transform of the internal wave function of the
deuteron, and where explicit spin functions have been
omitted.

The main point of our paper is contained in the
remark that g(p) has a simple pole at p'= n' (1/n is-
the deuteron radius) whose residue is simply the
normalization of the asymptotic wave function of the
deuteron. The rest of the amplitude has no pole at this
point. Furthermore, at p'= —n', the T matrix is on the
energy shell, so that it can yield direct information on
neutron-neutron scattering. This evidently follows
from the energy-conservation equations for Eq. (2.1):

2. A NONRELATIVISTIC EXAMPLE:
n+d ~n+n+P

A. We consider a neutron, of momentum q~, incident
on a deuteron at rest. The deuteron disintegrates,
leaving a Anal state with two neutrons of mornenta

g3 and g4, and a proton of rnornentum p. The contri-
bution to the amplitude from the process in which the
incident neutron is scattered by the neutron in the
deuteron, the proton standing by as a spectator, is
given by

The contribution of a in (2.1) to the cross section is

D|7 2C'
dydq, dq4 b(P+qs+q4 —qi)

Ar Mqiors~,

p p' qs' q4' q'' ' i Ifl'
x&I + + — +—

I
. (2.4)

E 2M 2M 2M 2M M) (p2+n2)'

In Eq. (2.4) the integral is to be extended over the
region of interest r. The quantity f, at p'= —n2, is the
neutron-neutron scattering amplitude, that is IfI' is
the neutron-neutron differential, unpolarized cross
section in the center-of-mass system. The normalization
of the asymptotic deuteron wave function, C, is:

C'= 2n/(1 —ron), (2 3)

with ro the triplet effective range. ' Strictly speaking, C'
is a function of p', as the deuteron is not in a pure S
state. In fact, one can easily show that C' must be
replaced by C2L1+(p/n)4427. Here e=&2Qn2, where Q
is the deuteron quadrupole moment. Since &=0.02,
however, the diBerence may be safely ignored.

We do not need to take the exclusion principle
explicitly into account. It is clear that for the process
under consideration (22-0 scattering, spectator proton)
it enters only into the quantity f. For the other process
of interest (rt-p scattering, spectator neutron), the
situation is slightly more complicated, but the coeK-
cient of the pole will not be aBected by the exchange
of the spectator and scattered particle.

In order to carry out the integrations indicated by
Eq. (2.4) we introduce the variable t1= 2 (t14—212), which
is the final relative momentum of the scattered particles.
In the notation of Sec. 1, tc2=4(q2+M2); then we have

If I'
C' dpdq-

Mqivr2, (P'+n')'

( p' q' (ai-p)'
X&

I +—+ — +—I. (2.6)
(2M M 4M 2M M)

We wish now to evaluate the remaining integrals holding
p', q', and s fixed, where

p qs q4
+ +

2M M 2M 2' 2M
(2.2)

41 (qi+p)

qlqi+pI
(2 7)

The energy difference between the Anal and initial
states of the T matrix in Eq. (2.1) is

qs q4 qi phE= +
235 2M 2M 2M

(n'+p')
(2.3)

so that when p'= —n' we have DE= 0 and the T matrix
in Eq. (2.1) becomes a multiple of the neutron-neutron
scattering amplitude,

The 5 function in Eq. (2.6) shows that a measurement
of the recoil energy and angle is equivalent to a rneasure-
ment of q'. The amplitude f is a function of the final
relative energy, qf'=q', as well as of s and the initial
relative energy, q,', where

41i+P
q

2 — —(p2+q2+n2)
2

(2.8)

' J. Blatt and V. Weisskopf, Theoretical Nttclear Physics (John
Wiley and Sons, Inc. , New York, 1952), p. 611.
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At p'= —n', we have already seen that by energy
conservation qf equals q;, so that s approaches the
scattering angle in the center-of-mass system. Thus
we have

dq= ~q'dqdp, d(cos8, ) =7rd(q')qdh, (2.9)

B,nd
d(p')

dy=~ d(p q,), (2.10)

so that now we write

8' 4 I/I'=—C2q
gp2gq2gs q

2 (p2+~2) 2

As p' approaches —n', Eq. (2.11) becomes

Bo 4 Cg do.„„—+ — (q, 8g),
Bp'Bq'ds qP (p'+n')' dQ

(2.11)

(2.12)

where s=cos8~. Integration over the variable s gives
the total cross section:

g o-'(q).
gp2gq2 ~q 2 (p2+~2)2

(2.13)

0 &q'/M & -', qP/M —n'/M. (2.14)

In order to calculate the limits on p', we note that
p'=M'(hV)' where d,V is the velocity transfer from
the deuteron to the spectator proton. Since AV is a
Ga1ilean invariant, we may calculate it in the over-all
center-of-mass system. I et P2 be the proton recoil in
this system. Then, by energy conservation, we have

Formulas (2.12) and (2.13) yield the extrapolation
procedure suggested in the 6rst section.

We shall see in the next section that it is generally
true that the distribution in energy and angle of the
spectator particle extrapolates, via Eq. (2.13), to the
total cross section of the other two particles at the
appropriate energy even when multiple-production
processes are involved.

8. We turn next to the important question of the
limits on the variables p' and q'. The limits on s are
of course &1. I et us choose q2 6rst. Clearly, in the
center-of-mass system, we may have q2 take all the
available energy, or none of it. Therefore we write

J (gq2gp2 )

2g 1 1
C2

&ql pmin +O' pmax +&
o.„r(q). (2.17)

If we neglect n'/p ' n'/qP, the upper limit in Eq.
(2.17) may be dropped compared to the lower. Further,
if we expand p;„'(q') about qo', we 6nd, if we call
g2 gl 2 Q

p '= (P2—-', qg)'=4sP/q ' (2.18)

The denominator of 1/(p;„'+n') therefore limits the
integral over q to values of N'&nmqP or (Aq) &o. Assum-.
ing no violent q dependence in o „„r(q),we may neglect
higher powers of N/qP in the denominator of Eq. (2.17)
and replace q by qo everywhere else. The remaining
integral is

The upper and. lower limits on p' are therefore given by
(P2+3q~)', where we have

= I:(4/9)qi' —(4/ ) (~'+q') I'.
This result is a special case of the general formula (1.6),
taken in the nonrelativistic Limit.

It is convenient to put these results on a plot of
p'/qP nersms (q'+n')/qP such as is shown in Fig. 2.
Here the allowed region of q' and p' is included between
the two lines. The point to which we must extrapolate
is p'= n'. C—learly the optimum q' is the one for which
p' can take on the value zero. This occurs at
qo' ——~q&' —n', a final center-of-mass energy which
corresponds, neglecting the binding shift 0.2, to the
collision of the incident neutron with a neutron at rest
in the laboratory. This is a second feature generally true
for a deuteron target, irrespective of the particle striking
the bound neutron: the minimum in the extrapolation
distance, at least in the limit n2 —+ 0, always occurs at
that final energy corresponding to the 6ctitious two-
particle collision in the laboratory.

C. The contribution of the pole at p'= —n' to the
total inelastic cross section is of the same order of
magnitude as the total neutron-scattering cross section,
so its effect is certain to be comparable to that of more
complex processes. It is therefore probable that a
successful extrapolation can be carried out in the
deuteron case.

This order of magnitude may be estimated most
simply by integrating Eq. (2.13) over p' and q'. We have

P2 P2 q2 q2 2

2M 4M M M M
(2 13) do. 2qoo„„r(qo)

J

" du

dg (4N'pP)+n'

+22 &q 2 ~2 q2

The velocity transfer is AV= (P2/M+3q&/M), so that
we obtain

Q2 q=——-'(qo) = -'(qo) (2 19)
0!

p'= (P2+ Se)' (2.16) D. We shall here discuss the residual dependence of
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the various terms in the production amplitude on the
extrapolation variable p' once the pole has been
removed. Of course the practicality of our scheme
depends most critically on this dependence. Roughly
stated, if the dependence on p' is too strong in the
neighborhood of p'=0, we shall be unable to extrapolate
to p'= —I22. More precisely, if there are singularities in
the cross section which are closer to the physical region
than the one at p'= —a2, then a polynomial extra-
polation may fail.

The P' dependence may be divided into a part
associated with those terms present in Eq. (2.1) and a
part associated with other terms, such as final-state
interactions. The first type is harmless, being given by
the characteristic momentum associated with the range
of the nuclear potential. Thus the deuteron wave
function satisfies the Schrodinger equation

e'&'V(r)IIt (r)dr,
2+~2/

(2.20)

Clearly the scattering amplitude is brimming with
singularities in the variables E„+, particularly in the
neighborhood of E„=O.One need only recall the branch
point at E„=O, the bound 22 pstate, and the virtu-al-

singlet state. (There are also other less obvious singu-
larities associated with scattering by the spectator
particle rather than with final-state interactions. ) Since
we have —',qi=qa=q, we see from Eq. (2.21) that for
small p the forward and backward directions will be
dangerous so that the extrapolation to the forward

and backward differential cross section can probably
not be carried out. As far as we have been able to
determine, as long as

~

s
~

is substantially smaller than 1,
however, the nearest singularity in p2 is the pole at
p'= —n2, so that the extrapolation is possible in

principle. Furthermore, the singularities in the forward
and backward directions appear to be sufficiently weak

so that, although they make an extrapolation to the

and hence the singularities of the second factor are
determined by the range of the potential. The proof for
the dependence of the T matrix on its initial momentum
is identical. Thus the dependence of (2.1) on p is quite
accurately given by the pole and its residue for a range
of p' which is large compared to the extrapola, tion
distance n'.

The p' dependence of the rest of the amplitude is
considerably more involved and much less favorable.
One can qualitatively understand the difficulty by
considering the final relative energies of the spectator
and one or the other of the neutrons. These energies are

(2.21)

diGerential cross section impossible at those points.
they will not cause any practical difficulty in the total
cross section. For example, a term in the total cross
section of the form

i7

although it has a branch point at p2+n2=0, would
show almost no trace of this singularity in the physical
region compared to the rapidly varying term of interest,
1/(p2+n2)2. Calculations are being carried out on a
special model to investigate these problems in more
detail.

3. THE GENERAL PROBLEM

A. The central physical principle employed in this
paper is the existence of poles in the 5 matrix corre-
sponding to single-particle "intermediate states. " In
the elastic scattering problem, 2r+X —+ 2r+1V, the fact
that such poles exist in the energy variable has been
rigorously proved; and it has recently been argued that
for nucleon-nucleon scattering there are poles in the
momentum-transfer variable. In both cases the residues
of the poles are given by the renormalized pion-nucleon
coupling constant. A generalization is required for the
present application, and the following conjecture seems
to us extremely plausible.

1. Consider an element of the S matrix corresponding
to a definite total number of particles X (incoming plus
outgoing) as a function of the independent invariants
which remain after all particles are put on their mass
shells and energy-momentum conservation is considered.
Then, if it is possible to divide the particles involved
into two groups, each of which has all the same quantum
numbers (spin, charge, parity, etc.) as some single-
particle state, we conjecture that there exists a pole in
the S matrix at a point related to the mass of this
particle. (In forming these two groups, if a particle is
switched from incoming to outgoing or vice versa
it is to be considered as the antiparticle with the
opposite energy-momentum. ) More precisely, if we
choose one of the independent invariants to be I",
the square of the total energy-momentum four vector
for either group of particles, then the pole occurs at
I"=—m', where m is the mass in question.

Consider, for example, pion-nucleon scattering,
7I 2 (qi)+Xi(Pi) -+

2r2 (q2)+%2 (P2). Here one may form
two groupings which lead to poles. First, the two
incident particles (2ri,Xi) and the two final particles
(2r2, %2) both can connect to a single-nucleon state,
giving rise to a pole in the barycentric energy at
(Pi+qi)'= 3P An altern—ative. grouping is (2rI,E2)
and (2r2, X&) which gives rise to a pole at (pi q2)'= —M'.
This latter variable is a combination of the conventional
energy and momentum transfer. The last possible
grouping, (2ri, 2r2) and (1V,,¹),has no pole associated
with it if one ignores electromagnetic effects.
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In nucleon-nucleon scattering, we have X~ (p~)
+X~'(p2') -+ X2(p2)+%2'(p2'), in which there are three
poles: at (pt+ p~')2= —Mp, corresponding to the
deuteron; at (p2 —p2)'= —222, ', and at (pt —p2')'
= —ns ', both corresponding to the pion. In pion-pion
scattering there are no poles.

2. The residue of a particular pole in the S matrix is
conjectured to be given by the product of the (smaller
dimensional) S-matrix elements which connect the two
groups of particles to the intermediate particle on its
mass shell. In the above elastic-scattering examples, one
is always considering groups containing two particles.
The S-matrix element connecting such a group to a
single particle, even though all three particles are on
the mass shell, does not correspond to a physically
realizable transition for stable particles. Nevertheless
the matrix element may be defined by a process of
analytic continuation and can be experimentally
determined. It is well known, for instance, that for the
transitions 2r+X~&—X or X+X+~2r the value of the
S-matrix element is essentially the pion-nucleon
coupling constant. It is also known that for the transi-
tion 22+P~~d the S-matrix element is directly related
to the normalization of the asymptotic wave function
of the deuteron.

In this paper we are concerned with a problem where
one of the groups in question contains two particles and
the other contains three or more. As shown in Fig. 3,
the smaller group consists of the complex target particle
(Mt) and the spectator (M2); the larger includes the
incident particle (p~) and all outgoing particles except
for the spectator. (We designate these outgoing particles
by the symbol F.) The intermediate particle here is of
mass p2.

Our basic conjecture is that the matrix element
connecting the larger group (F+1) to the intermediate
particle on its mass shell is equal to the physical
matrix element for the process 1+2-+F. A basis for
this conjecture has been given above in Sec. 2 by
considering a nonrelativistic deuteron problem in the
impulse approximation; it can also be verified in
relativistic-perturbation theory for the pion problem.
We are, however, not able to give a general proof,
although a proof for the case of real four-momenta has
been given by Zimmermann. 4 For our purposes we
require also complex four-momenta.

When we have a deuteron target (Mt ——Mq) with a
proton recoil (M2 ——M~) and wish to measure the
neutron cross section (p~ ——M„), the residue of the pole
in the 5 matrix at 6'= —M ' is the product of the
matrix element for the process d~~n+p with the
amplitude for the incident particle (pt) to be scattered

by the neutron. Correspondingly in the deuteron cross
section there will be a second-order pole whose residue
is a known multiple of the neutron cross section. Similar
statements apply to the proton target when the object

' W. Zimmermann, Nuovo cimento (to be published).

is the x' cross section. Let us now consider the calcu-
lation of explicit formulas for these residues.

B. We designate the total energy-momentum four-
vector of the F outgoing particles by the symbol Q
while the "internal" state of these particles is labeled
by the index m. The matrix element of essential interest
is then

(Q,~li lq &, (3 1)

where j2 is the "current" operator associated with the
particle of mass p~, and qi designates the incident
particle of mass yq. When (Q—qt)2 equals —p22 this
matrix element describes the physical transition
1+2—+ F. To establish a normalization, let us say that
the total cross section for the scattering of particle 1
by particle 2 is

( )=, 2 l&Q, li lq&l',
qi'p~ n

(3.2)

q1 I22 ! 42' 22' (Pl +92 )+4 (Pl P2~)]

The other matrix element that is required is

&psljslp~&

(3.3)

(3 4)

where P2 and P~ designate the single-particle states of
mass M2 and 3f&, respectively. Ke are interested in the
case (p2 —p~)2= —@22, where this matrix element is
given by a single real number if all three particles
involved have spin zero. If norizero spins occur, more
than one number may be required, but we shall concern
ourselves only with experiments where the initial state
is unpolarized and no measurement is made of the spin
of any final particle; in such a case only a spin average
of the square of (3.4) need concern us. We shall call
this average 4n-I' and normalize it so that, for the
process P —+ P+2r', we have

I'2=F2(p —p )'/4M '
j'2+2/~2 (3.5)

where f2=0 08
With the same normalization for the process

d ~ 22+P, a very good approximation is given by

(
M„E 1 —nrp)

(3.6)

as explained in Sec. 2.
The contribution to the cross section from the pole

indicated in Fig. 3 may now be calculated. One finds

2m- I- 4mF'60

, l&Q, li lq )I'
qar.Mi', (a2+p ')

d P2
X 4MgM28(p2'+M22), (3.7)

(22r)2

where 2e=g —Q', and qt' is the magnitude of the
momentum of particle 1 in a frame where particle 2 is
at rest. One may easily calculate that
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to the total pion-nucleon cross section of the order of
magnitude

FIG. 3. Diagram showing
the particle groups corre-
sponding to the pole of
interest.

f'(M)'t W —M)'
0 + P

?r (p) (++M)
(3.14)

with the energy-momentum conservation condition

I' =Pi+sr= P2+Q. (3.8)

~2 =K 2Ld cosOL ZE2L

d62dm'.
435)AIL

(3.11)

Remembering (3.2), we then get the final result for the
limit as 62 approaches —p2'.

I"- (Msi [4~'—2~'(~i'+~2')+-'(~i' —~2') 3

a~st.-"2~EM, & g&L

OI2 5)
&& —, (3.12)

(~'+~2')'

which leads to the prescription given by (1.7), (1.11),
and (1.12) when the relation (1.1") between p' and
62 is used. It may easily be verified that (3.12) reduces
to (2.13) in the nonrelativistic limit for a deuteron
target.

C. Ke conclude by discussing the particular case of a
proton target that is being used to determine the
(?r+,?rs) cross section. Formula (3.12) here becomes

t9 0 f2 P2/~2 to(lto? ~2)l
o..0, (3.13)

gp2d7r?2 p2 ~ p2 7~ (P2+~2)2

where p, is the pion mass.
To establish the order of magnitude of the effect, we

may perform a, rough integration of (3.13) over the
allowed phase space (e.g. , Fig. 1) assuming a constant
value for 0.„.The result for 8'—3f))p is a contribution

We may now transform from p2 to the variables of
interest by observing that in the laboratory system we
have

6"-= (p2 —pi)'= M2' M—i' 2—E2rM—r, (3.9)

w2= —(f' p2)'= W—2+M22+2psrqir, cos81,
—2E2z, (M i+emir. ), (3.10)

giving

(P2+~2)2 p2+~2 (P2+~2)2
(3.15)

In order to determine 0- quantitatively, the low-energy
proton recoils must be measured with sufhcient precision
to determine the tendency of the cross section to
decrease (or at least increase less rapidly) as p' ap-
proaches 0. Of course, as pointed out also by Goebel,
the existence of a concentration at recoil-proton kinetic
energies of the order of 10 Mev will constitute quali-
tative evidence for the m-x interaction. '

In conclusion, it should be emphasized that a negative
experimental result would still be valuable if it placed
an upper limit on the magnitude of 0-, since at present
absolutely nothing is known about this cross section.

' C. Goebel, Phys. Rev. Letters 1, 337 (1958).

Since (f2/?r) (M/I?)2 is of the order of magnitude unity,
we see that at sufficiently high energies the full pion-
pion cross section may be expected to contribute.
Therefore, if 0- + o is as large as 10 mb our pole should
constitute an important part of the high-energy pion-
nucleon interaction, since the observed total inelastic
?r+—p cross section is only 20 mb, even though it
includes also a (2r+,2r+) contribution, which occurs with
twice the coefficient of o. + o.

One may add here the qualitative remark that
analyses of elastic pion-nucleon diffraction scattering
in the Bev energy range have shown a mean-square
radius of the nucleon approximately equal to the charge
and magnetic-moment radii measured in the Stanford
electron-scattering experiments. This fact strongly
suggests that the pion-pion interaction must be im-

portant since these large radii can be understood only
in terms of a pion cloud. We expect, then, that a
measurement of the type described in Sec. 1 will show
a concentration of recoil protons at low kinetic energies,
as predicted by formula (3.13).

Unfortunately, as stressed earlier, the magnitude of
this concentration is not a quantitative measure of
o- . The difhculty is that, in squaring the amplitude,
there will occur cross terms which lead to a first-order
pole of unknown residue in the cross section. Only the
second-order pole has a clearly interpretable coefficient,
and in the physical region the second-order pole in
(3.13) has a small and negative effect, since


