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where we have made repeated use of the Fourier electronic computer of the Cornell Computing Center
transform to give the values quoted in the text.

exp( —il x) (2+2')—' dl.
BA

LNote that E'(P,y,3) =E'(3,y,P), despite the unsym-
metric appearance of P and 3 in the last integral. ] This
last integral was integrated numerically with the
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An optical potential has been derived which includes, to first order in g, the eGect of the nucleon-nucleon
angular dependence. Nucleon-nucleon scattered amplitudes calculated from the 310-Mev nucleon-nucleon
phase shifts have been put into the potential and the proton-carbon scattered amplitudes calculated from
it by WKB approximation. Good agreement was obtained with the scattered amplitudes as derived directly
from the 313-Mev proton-carbon data using an extension of the analysis employed previously by Bethe.
The inclusion of the nucleon-nucleon angular dependence in the potential was found to be important
in order to obtain the correct value of the imaginary part of the forward scattered amplitude and the
correct proton-carbon angular dependence at moderately small angles. Phase shift solutions 1 and 6 of
Stapp et al. were investigated and found to give essentially the same agreement with the differential cross
section at small angles. Solution 6 was found to give a better 6t to the polarization data than solution 1,
but the signi6cance of this is not clear.

I. INTRODUCTION

' N the direct-interaction model' of nuclear reactions
- one tries to understand the interaction of an incident

particle with the nucleus in terms of the interaction of
the particle with the individual nucleons composing
the nucleus. At high energies the effect of binding is
small and the particle-nucleus interaction can be
related directly to the particle-nucleon interaction.
In particular the optical potential for the elastic
scattering of protons from nuclei at high energies can
be simply related to the nucleon-nucleon scattering
matrix. ' Since the nucleon-nucleon scattering matrix
is determined entirely by the nucleon-nucleon scattering
phase shifts, a detailed analysis of the elastic scattering
of protons from complex nuclei provides a good test
for the direct-interaction model. Furthermore, such an
analysis should provide a method for distinguishing
between sets of possible nucleon-nucleon phase shifts.

Recently several authors have made such an anal-
ysis. ' 4 Bethe, in his analysis of the small-angle scatter-
ing and polarization of 313-Mev protons by carbon,

* Supported in part by the joint program of the Once of Naval
Research and the U. S. Atomic Energy Commission.

' K. M. Watson, Revs. Modern Phys. 30, 565 (1958).
~ B. W. Riesenfeld and K. M. Watson, Phys. Rev. 102, 1157

(1956).' H. A. Bethe, Ann. Phys. N. Y. 3, 190 (1958}.This paper will
be referred to as B.

4 S. Ohnuma, Phys. Rev. 111, 1173 (1958}.

showed that the proton-proton scattering phase shifts
of Stapp et al. ' and the neutron-proton phase shifts of
Gammel and Thaler' were in quantitative agreement
with the proton-carbon data. He was unable to dis-
tinguish between the five different phase shift solutions
of Stapp, however; all solutions gave essentially the
same agreement.

In his analysis of the experimental data Bethe found
the value 8.6 f (1 fermi=10 " cm) for g~r(0), the
imaginary part of the spin-independent scattered
amplitude at O'. This agreed with the value calculated
from the optical potential derived from the nucleon-
nucleon phase shifts. A more reliable value of g~r(0)
can be obtained independently from the total neutron
cross section at this energy. Since the cross section is
nearly constant over a wide energy interval about 313
Mev, its value is known quite accurately. The cross-
section data' give g~r(0) =9.45 f.s This is in disagree-
ment both with the proton-carbon data and with the
direct-interaction model as calculated in B.

However, because of the over-all success of the

s Stapp, Ypsilantis, and Metropolis, Phys. Rev. 105, 302 (1957}.' The T=0 phase shifts calculated by Gammel and Thaler are
given in reference 3. Also see J. L. Gammel and R. M. Thaler,
Phys. Rev. 107, 1337 (1957).

r J. DeJuren, Phys. Rev. 70, 27 (1950};R. Fox et aL, Phys.
Rev. 80, 23 (1950); A. Ashmore et a/. , Proc. Phys. Soc. (London}
70, 745 (1957); V. A. Nedzel, Phys. Rev. 94, 180 (1954).' R. Wilson (private communication).
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direct-interaction model demonstrated in B, it seems
worthwhile to extend the analysis given there in order
to see if, by suitable modification, the model can in
fact account for this discrepancy. In this paper the
discrepancy is removed by considering two e8ects
neglected in the earlier work. First, departures of the
angular dependence of the nuclear scattered amplitude
from that given by Born approximation are considered.
These departures are found to be important even in
the region of small angles considered. They introduce a
modi6cation in the analytic form of the di8erential
cross section and of the polarization which leads to a
diGerent determination of the scattered amplitudes.
Secondly, the angular dependence of the nucleon-
nmcleoe scattered amplitudes is taken into account.
This leads to a modification of the optical potential
which, to the order considered here, amounts to an
increase in the effective radius of the potential over
that determined by electron scattering. It also causes
the real and imaginary parts of the modi6ed potential
to no longer have the same radial dependence and this
is found to strongly affect the angular dependence of the
proton-carbon scattered amplitudes. The amplitudes
calculated from this potential are found to be in
excellent agreement with those deduced directly from
the experiments.

It is found that both Stapp phase-shift solutions 1
and 6 give essentially the same agreement with the
differential cross-section data. However, due to the
larger value of the real part of the spin-dependent
scattered amplitude given by solution 6 compared to
solution 1, it is found that solution 6 gives better
agreement with the polarization data than solution 1.

kc
V(r) =2

jV

H(0)—G(0)i (r)+ u(r)e L

=Vc(r)+V, . (r)e L.

The Born approximation scattered amplitude then is

f Born(q)— e—ik' rV(r)eik rd3r

Here g is the mass number of the nucleus, Z the atomic
number, and ko the wave number of the incident proton
in the proton-nucleon center-of-mass system. A(q)
and C(q) are the nucleon-nucleon scattered amplitudes
de6ned in 8 and are given directly by the nucleon-
nucleon scattering phase shifts. The subscripts 0 and 1
refer to the total isotopic spin.

This result assumes that the amplitude for scattering
from a bound nucleon differs from that for the scattering
from a free nucleon only by the kinematical factor
(k/ko). There is, in reality, also a difference arising
from the fact that the final momenta are not the same
in the two cases; in the case of scattering from a free
nucleon the final momentum is reduced by a factor of
L1—q'/k'$'. It is necessary to assume that this has
only a small eGect upon the scattered amplitude if one
wants to relate nucleon-nucleus scattering to the
observed nucleon-nucleon scattering. This is certainly
a reasonable assumption in the region we are considering
(8&9'), since here the momentum is degraded by at
most 1%; even at 25' it is degraded by only 10%.

If an optical potential is assumed, it can be written
in the form

II. DETERMINATION OF THE PROTON-CARBON
SCATTERED AMPLITUDES FROM THE

NUCLEON-NUCLEON SCATTERING
PHASE SHIFTS

The Born approximation to the elastic scattered
amplitude from a spin-zero nucleus, given by the
direct-interaction model, is'

f~Bo™(q)=G(q)F(q)+H(q)F(q)»n«-. (1)

Here q=2k sin-,'9, where 0 is the scattering angle and
k is the wave number of the incident proton in the
laboratory system; 0- is the component of a- norma, 1

to the scattering plane. F(q) is the nuclear form factor,

=G(0) ~ w(r)e'&'d'r

H(0)
e ' "u(r)e Le'"'d'r (5)

Comparing Eqs. (1) and (5), we find

()=L2 'G(o) j 'J G(q)F(q)io(q )q'dq (6a)

e(r) =iL2~'H(0)rj ' H(q)F(q)j &(qr)q'dq (6b).
F(q) = (4'/q)

~

p(r)r sin(qr)dr, (2)
al o

where p(r) is the nuclear density normalized so that
4r J'o"p(r)r'dr= 1. G(q) and H(q) are given by

G(q) =-:(k/k.)LP -~)~.«)+ V +~)~,(q) &,
(3)

H(q) =-,'(k/ko) cscOL(1V—Z)CO(q)+ (~+Z)C, (q)g.

Here jo and j& are the ordinary spherical Bessel functions
of order 0 and 1, respectively. If G(q) is taken to be
just the constant G(0), then Eq. (6a) reduces to the
usual expression

e(r) =p(r).

Likewise, with H(q) =H(0), Eq. (6b) becomes

N(r) = —~(1/r) Ldp(r)/«j,
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2''c'-' 1 dp(r)
V(r) =— — —G(0)p(r) —iH(0) — — -n L . (7)

E k'r dr

This is the form of the optical potential usually assumed.
%e have written it in the same notation as used in 8
except for the factor —i appearing in the second term,
which results from a trival change in the dehnition of
H(0). In our notation a positive Hg(D) gives rise to a
negative imaginary spin-orbit potential and a positive
real spin-dependent scattered amplitude, whereas a
positive Hz(0) results in a positive real potential and a
positive imaginary amplitude.

The optical potential defined by Eqs. (4) and (6)
describes the nucleon-nucleus scattering as the multiple
scattering of the incident nucleon from the individual
target nucleons in the nucleus. The amplitude for each
scattering is taken to be essentially that for scattering
from a free nucleon (when properly averaged over
spin and isotopic-spin). Since this is known only in
the "far zone", the use of this potential assumes that
two successive scatterings do not occur in a distance
large compared with the wavelength of the incident
particle. This assumption is generally valid at large
energies.

Splitting G(q) and H(q) into their real and imaginary
parts and then expanding to 6rst order in q', we have

G (q)=G (0)(1——:~ q+ "),
G, (q)=G, (0)(1—-',), q+ "),

Hz(q)=Ha(0)(1 —&nba'q'+ . ),
Hz (q) =Hz (0) (1 ',nza'q'+. . .—).-

The constant a' is introduced here for convenience;it
makes X and n dimensionless. We set it equal to s(r')
which, for carbon, is 3.86 f'. Table I lists the values of
the eight parameters in Eq. (8), derived from the various
nucleon-nucleon phase shift solutions considered in B.
They are obtained by using Eq. (3) together with the
values of A and C at 0' and 12' (6' in the laboratory
system) given in B. Xz, nz, and nz are all reasonably
small, as expected; Xz, however, is quite large, especially
for solution 1. (This is because the small value of
Gzz(0) is due to the cancellation. of nearly equal, but
opposite, contributions from diGerent nucleon-nucleon
states (see B, Table II), resulting in an exceptionally
large slope-to-value ratio at q'=0.] McManus and
Thaler" have computed the corresponding parameters
resulting from the Gammel-Thaler nucleon-nucleon
potential. ' In terms of our notation they found Xz= 1.5,

' Gammel and Thaler (reference 6) found three diGerent T=0
phase shift solutions which, together with solution 1 of Stapp,
Gt the neutron-proton data. These solutions are referred to as
1A, 1B, and 1C. Likewise, for Stapp solution 6, three different
T=O solutions were also found, referred to as 6A, 6B, and 6C.
T=O phase shifts have not been calculated for the other Stapp
solutions. See reference 3 for details."H. McManus aud R. M. Thsler, Phys. Rev. 110, 590 (1958).

TAaLE I. The 310-Mev nucleon-nucleon scattering parameters
as determined from phase shift solutions bi to 1C and 6A to 6C.
G and II are in fermss; ) and n are dimensionless.

Nucleon
parameter j.A 1.8 1C 6A 68 6C

GR(0)
Gs (0)
Hs(0)
Hz(0)
XR

5.05 4.48
12.39 11.92
6.44 5.99

34.43 32.64
1.24 1.34
0.24 0.23
0.19 0.15
0.13 0.14

5.42
11.79
5.93

35.94
1.16
0.24
0.15
0.18

3.05
11.79
15.62
26.70
0.59
0.31
0.17
0.14

4.77
11.79
14.39
24.63
0.56
0.29
0.15
0.12

3.73
11.84
1534
26.48
0.41
0.31
0.18
0.12

Xg =0.31., ng= 0.23, and el =0.19, which agree in
general with the values given in Table I for solution j.,
especially as regards the large value of Xg.

For F(q) the best Guassian 6t to the form factor as
determined by electron scattering" is used:

F(q) = exp (——,'a'q'). (a= 1.96 f). (9)

This approximation agrees with the best Fregeau form
factor up to qs=1.5 (8=17'), well beyond the region
being considered. For convenience, Eqs. (8) are replaced
by

Gg(q) =Gz(0) exp( —~shia'q'),

Gz(q) =Gz(0) exp( —-', Xza'q'),

Hg(q) =Hg(0) exp( ——,'nzza'q'),

Hz(q) =Hp(0) exp( —-',nza'q').

(10)

As long as q' remains small, Eqs. (10) will not differ
from Eqs. (8) by much.

Upon combining Eqs. (4), (6), (9), and (10), the
optical potential, including now the Gnite range of the
nucleon-nucleon interaction, is found to be

V(r) =- r2'c'
G~(0)(1+X~)

**expi-
7l~C E a'(1+Xzz) )

r'
+iGz(0) (1+hz)—l exp ~—

a'(1+)I.z) )

( r2—Hz(0) (1+nz)—
& exp ~—

a'(1+nz) ]
+iHzz(0) (1+nzz) *'

r2

&& exp (

(
~

n L. (11)
a'(1+ng) )

The eGect of the angular dependence of G and H is
just to increase c by various amounts, with the result
that the real and imaginary parts of Vt. .and V, , no
longer have the same angular dependence and V, ., is
no longer proportional to (1/r) (d Va/dr). The dominant

u J. H. Fregesu, Phys. Rev. 104, 225 (1956).
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TABLE II. The nuclear scattering parameters for the elastic scattering of 313-Mev protons by carbon. The parameters determined
by the least-squares 6t to the data are given together with those determined directly from the nucleon-nucleon phase shift solutions
1A to 1C and 6A to 6C. (1A)' and (68)' are the parameters calculated from solutions 1A and 6B neglecting the angular dependence
of the nucleon-nucleon scattering. B is the parameter obtained by Bethe. '

Nuclear
parameter

gxz(0)
g~I(o)
h»(0)
hXI(0)

QI

PI

Least
squares

3.4
9.45"
8.06

23
2.7
0.38

1A

2.5
9.6
2.1

26.0
1.8
0.40
1.4
0.28

j.B

3.1
93
2.2

24.9
1.9
0.39
1.1
0.29

iC

3.7
9.3
1.8

27.7
1.7
0.39
1.5
0,36

6A

1.9
9.2

10.5
20.8
1.0
0.46
0.40
0.19

3.0
9.4
7,2

19.5
0.97
0.43
0.30
0, 18

6C

2.3
9.4
98

20.7
0.80
0.45
0.45
0.17

(1A) '

2.4
8.9
1.8

23.9
0.38
0.15
1.5
0.26

(68)'

2.5
89
8.4

18.9
0.38
0.15
0.49
0.22

1,7
8.6
5.3

20.3

a See reference 3.
b Derived from the total neutron-carbon cross section.

g~z(q) =gxrr(0)F(q)[1 —grrq'+ . j,
g~r (q) =g»(0)F(q) L1 mq'+ 7, —

hrrrr(q) = srn9hrrrr(0)F (q)[1 frrrq'+. j-,
hrrr (q) =»nghrrr (o)F(q) [1 rrq'+—

(12)

In 3 the parameters g and p were assumed to be small
enough to be neglected at small angles. But, since

F(q) is not even the correct Born approximation to
the modified potential [Eq. (11)j, it will be seen that
they are not necessarily small and their inclusion in
the analysis helps to obtain a detailed Qt to the data.

For small angles and large ka, the scattered ampli-
tudes from a potential of range a is given in good
approximation by

grr(q) =ikJt y[1—exp(2id«)$Jo(qy)dy, (13a)
0

h&(q) =ik)t yer exp(2ihr) Jt(qy)dy,
0

(13b)

term in V(r) is the imaginary part of the central
potential. Since all the phase shift solutions give about
the same value for X~, we see that the rms radius of the
potential is effectively increased from (-', )'*a=2.4 f to
[ss (1+Xr)j'a=2. 7 f .

Let frr(q) =g~(0)+h~(q)o. „be the scattered ampli-
tude resulting from Eq. (11). grr(q) and her(q) can be
written in the form

(14). The results are listed in Table Il for the various
phase shift solutions considered. Since in the presten
case V, , is not proportional to (1/r) (dUc/dr), the
relation

h~(q) = (H(0)/G(0)) sin8g~(q)

is not strictly valid, even in Born approximation.
Therefore hrr(q) was computed directly from Eq. (13b)
rather than from Eq. (15). The error caused by using
Eq. (15) is not very large for h~r(q), but can be as
much as a factor of two for h»(q) even at q=0.

All the solutions give essentially the same value for
grrr(0), which is in good agreement with the experi-
mental value of 9.45 f. This experimental value is
quite reliably determined from the total neutron-carbon
cross section. On the other hand, the theoretical value
depends almost entirely upon Gr(0), which, in turn, is
determined accurately by the total proton-proton and
proton-neutron cross sections. This agreement, obtained
on the basis of the two best known experimental
quantities, is one of the strongest indications of the
reliability of the method used here.

hrrz(0) is roughly proportional to Hz(0) —[2Hr(0)
XGrr(0)/ka'j. Thus, while the values of Hrr(0) differ by
a factor of 2.5 between solutions 1 and 6, the values of
h&rr(0) differ by as much as a factor of 5. The signif-
icance of this large difference in the value of hrrrr(0)
will be discussed further in Sec. IV.

For the Coulomb scattering we use the approximation
developed in B. The Coulomb scattered amplitude is

~l= ~l. 1+f+ oE, l b
2l+1 2l+1

&L —~l, +&

(14)

where J0 and J& are the ordinary Bessel functions of
order zero and one, y= (l+-,')/k, and h~ and et are given with
in terms of the scattering phase shifts by

fc(q) =gc(q)+ho(q)~~,

E—I
hc(q) = —i sing ( —l)gc(q)

1ÃC

2ek
go(q) = —— [1+2in ln(0. 54/q)]F(q),

pl
2

(16)

(17)

The phase shifts resulting from the optical potential Here rs= (Ze'/v) =0.0662 and p is the total magnetic
were calculated by WEB approximation and the eight moment of the proton. The imaginary part of gc(q)
parameters in Eqs. (12) computed from Eqs. (13) and is assumed to be zero for q)0.54.
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IIL ANALYSIS OF THE DATA

Chamberlain et al." have made accurate measure-
ments of the small-angle scattering and polarization of
313-Mev protons by carbon. In order to deduce the
nuclear scattered amplitudes from these data, we
proceed with an analysis similar to that done in B.
Quantities x(q) and y(q) are defined as follows:

' do 1 4rz'k' jhj'
x(q) =q'—

. dQF'(q) q' F'(q)

a -a
q, f

FIG. 1. x(q) calculated from Kq. (24) for several sets of param-
eters listed in Table III. The curve I.S is the least-squares 6t to
the data. The experimental points are derived from the measure-
ments of Chamberlain et al. of the differential cross section for
the scattering of 313-Mev protons by carbon.

Se2k
+ gzvz(0) (1—rizq') ln(0. 54/q)

g2

4ekg—~R(0)+&g~R'(0)+ gRz'(0)

+4rzkrfRgzzR(0) jq'

2(nRgzzR—'(0)+rlzgzzz'(0)fq', (22)

The total scattered amplitude is

f(q) =g(q)+h(q) o., (18)

gk 8r
y(q)

—= —P+2atskLgzzR(0) (1—tiRq-') 2zs
2F'(q) dQ

with

g(q) =gR(q)+go(q),

h(q) = hzz(q)+ho(-q).
(19)

Then, from Eqs. (12), (17), and (19), the differential
and polarized cross sections at small angles are given by

Xln (0.54/q) —gRz (0) (1—rfzq') $

+4tzskhzzz (0) (1—yzq') ln (0.54/q)

2~khRR—(0)+fg~R(0)h~R(0)+g~z(0) h~z(0)

+2zsl Rkh~R(0)&q' &(gR+ pR) g—~R(0)h~R(0)

+(~z+»)g»(0) h~z(0) 3q' (»)
do- 4e2k2 8@2k—= jgj'+ jhj'=F'(q) — — g»(0)
dQ q4 q2

&n Eq; (22) all the quantities in the brackets are
known experimentally except jhj'." However, since
for q'«1, q'jhj' is small compared to x(q), only a
rough estimate of it is needed. We calculate jhj' from
Eqs. (12), (17), and (19) using hzzR(0) = 8 f and hzzz(0)
=23 f. These values are chosen to agree approximately
with the values finally deduced from the polarization. "
Upon using the value 9.45 for gRz(0), Eq. (9) for F(q),
and the experimental measurements" of do/dQ, x(q)
can be calculated from Eq. (22). The results are plotted
in Fig. 1 as a function of q2. The errors indicated are
only the quoted statistical errors.

Since the first term in Eq. (22) dominates all the
others except at the smallest angles where the Coulomb
term is large, x(q) is expected to be well deterznined

except at these angles where the Coulomb subtraction
makes it uncertain. Using only the values of x(q) from

0.54
j
h j'

X (1 rizq') ln +— +gzzR'(0) (1 2riRq"-)—
F'(q)

4ek
+gNz'(0) (1 2mq') g—»(0) (1—VRq') — (2o)

(f2

4urz'kgzzR—(0) (1—rfRq') ln(0. 54/q) 4tsskhzzz(0)—

X (1 fzzq')» (0.54/q)+—g NR (o)hN R (o)

X j 1—(riR+iz R)q'$q'+ gzzz(0) hzzz (0)

Xj 1 (tlz+fzz)qsjqs 2zskhzzR(0)(1 zzRq )) (21)

"Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis, Phys.
Rev. 102, 1659 (1956).

"The factor {1—pig') can be taken equal to unity since the
term in which it is a factor is zero for q &0.54.

"pR and pz are taken equal to zero in calculating jhj'q', so
this quantity is over-estimated in the analysis. This eRect is
unimportant for q'«1, where jhj'q' itself is small, but for the
largest angle considered (9') probably results in a value of
x(q) 5 to 10% too small.

E—ac
(p —-,') =0.764.

mc

do 2
P= 2 Re (g*h) =——F'(q) (2azskgzzz (0) (1 rzzq')—

dQ gk
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TABLE III. The parameters a0, a&, a2 and b0, b&, b2 determined by the least-squares 6t to the data and calculated from the nucleon-
nucleon phase shift solutions 1A to 1C and 6A to 6C. (1A}'and (6B}'are the parameters calculated from solutions 1A and 6B neglecting
the angular dependence of the nucleon-nucleon scattered amplitudes. 8 is the equivalent parameter obtained by Bethe. '

Parameter

a0
ay
a2
6{}
~1
b2

Least
squares

—37
111—130—4.5
247—279

—3.8
iii—117—1.15
258—194

1B

—3,5
102—105—1.2
239—179

—4, 1
107—114—1.0
265—215

—2.2
91.0—85.3—5.8

215—152

—3.3
99.8—92.8—40

205—139

—2.5
95.3—88.2—5.5

219—148

(1A)'

—2.6
86—28—1.0

218—96

(&B)'

—2.8
86—28—4.7

191—80

—19
77.4

—2.9
184

a See reference 3.

Ol too-
C.0
V W

47
CO

iO
os
O

I

O
Ia

C

0 fo~
i

~0 0~0~

3.5' to 9',"a least-squares 6t of the form

x(g) =Qs+Qig +Irsr1
gives the results

as = —4rshgNR (0)= —3.7,

&1 gNR (0)+gNI (0)+4&hrlRgNR(0) 111) (2~)

Iri= 2/gRg
—vRs(0)+grgNI'(0) j= &30—

From the first equation we find gNR(0) =3.4 f. This,
together with the value of gNI(0) =9.45 f taken from
the total neutron-carbon cross-section data, gives
kg=2. 7 from the second equation. The determination
of gz in this manner is, of course, very uncertain, but

does indicate at least that it is relatively large, i.e.,
greater than unity. With this value of pz the last
equation gives q~=0.38. This value of gl is more
reliable than that for r}R since gNI'(0)))gNR'(0).
These results are listed in Table II for comparison with
the same quantities as calculated directly from the
nucleon=nucleon phase shifts. In Table III we have
listed the parameters ao, a1, and a2 as calculated from
the various phase shift solutions.

x(q) calculated from Eqs. (24) and (25) is labeled
LS in Fig. 1. It Qts the experimental points quite well
except at the smallest angles (where it was not fitted).
Also in Fig. 1, x(q) is shown as calculated from Eq. (24)
using the parameters in Table III for phase shift
solutions 1A and 6A. The other solutions give results
in between these. Thus, all the solutions give essentially
the same 6t to the data, in spite of moderate diGerences
in the values which they give for ao, a1, and a2. We shall
return to this point in the next section.

Using xr.s(q) in Eq. (22), a smoothed value of
do/dQ is calculated; it is labeled 5 and plotted in Fig. 2

along with the experimental points. Also in Fig. 2 we
have plotted do/dQ as calculated from Eq. (20) and
the phase shift parameters for solutions 1A and 6A.
The divergence of the calculated curves away from the
experimental point at 13' is due to the neglect of q'
terms in Eq. (20).

With the experimental values of g~- and q now
determined, Eq. (23) can be used to calculate y(q),
using the experimental values of the polarization, I',
and the smoothed cross section, (do/dQ)R. For hNI(0)
in the first part of Eq. (23) we again use the value of
23 f which is consistent with the value Anally found.
The result is plotted in Fig. 3. Using only the data from
3.5' to 9', a least-squares fit of the form

l.o
0

I 1 1

4' 6O 84 IO' l2'
Laboratory Scot ter)ng Ang f e

yields
y(q) =be+big'+bshe'

FIG. 2. The differential cross section for the scattering of
313-Mev protons by carbon, calculated from phase shift solutions
1A and 6A. Curve 5 is calculated from the least-squares param-
eters given in Table II.

'~ The experimental points from 2.5' to 7 were obtained using
an angular resolution of 0.35'. For larger angles the resolution was
only 0.84 . However, since for these larger angles the cross section
is not as rapidly varying as it is at the smaller angles, the former
data are probably as reliable as the latter.

bP = 2nhhNR (0)= ——4.5,

bl gNII (0)hNR (0)+gNI (0)hNI (0)+ 2rrhrIRhNR (0)
= 247, (27)

br = —(r}R+rrR)gN R (0)hNR (0) (rli+ pr) gNr (0)h—NI (0)
= —279.

This gives hNR(0)=8. 06 f. hNI(0) can be calculated
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fairly accurately from the second equation in (27)
since the third term is only 4.5pz&7. A reasonable
value is h~r (0)= 23 f. These results are listed in Table II.
p,z and pl cannot be determined separately from Eqs.
(27). In Table III we have listed the values of bs, br,
and b~ as calculated from the various phase shift
solutions.

y(g) calculated from Eqs. (26) and (27), and from
the phase shift parameters for solutions jB and 68,
is shown in Fig. 3. The preference for solution 68
indicated in Fig. 3 is a result of the larger value it
gives for h~~(0). A large value of h~g(0) is needed to
give the low polarization at small angles by means of
the negative Coulomb interference. This is the main
evidence for an imaginary part to the spin-orbit
potential, which was noted earlier by Heckrotte. "
Notice that this result does not depend on the extremely
small-angle measurements (2.5', 3.0'), which are
unreliable. Their inclusion in the analysis would make
bo still more negative and so increase the experimental
value of h~~(0) further.

Finally, Fig. 4 shows the experimentally measured
polarization along with the phase shift calculations for
solutions 18 and 68. Also shown is the smoothed-out
polarization, i.e., I' as calculated using the least-squares
values of y(q) and x(q). Again, the disagreement at 13'
can be interrupted as being due to the neglect of g'
terms in Eq. (21).

IV. DISCUSSION AND CONCLUSION
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FIG. 3. y(g) calculated from Eq. (26} for several sets of param-
eters listed in Table II. The curve LS is the least'squares fit to
the data. The experimental points are derived from the measure-
ments of Chamberlain et al. of the polarization of 323-Mev
protons scattered by carbon.

neighborhood of 2 would probably clarify this
ambiguity.

To demonstrate the effect of the nucleon-nucleon
angular dependence on the proton-carbon scattered
amplitude, the scattering parameters have been
calculated for solutions 1A and 68 using the values of
G(0) and II(0) given in Table I but taking X=rr=0
The results, given in columns (18)' and (68)' in Tables
II and III, show that the main eGect of including the
angular dependence is to increase gs(0) and rf. The

The agreement between the experimental and
theoretical values of do/dQ shown in Fig. 2 demonstrates
rather conclusively the validity of the direct-interaction.
model. Hence the least-squares values listed in Table II,
with the exceptions perhaps of h~n(0) and rf~, may be
considered reliable within the variations of the results
of phase shift solutions 1 and 6." The corresponding
quantities as calculated in 8 are shown for comparison;

x(q) and y(q) calculated from these parameters are
shown in Figs. 1 and 3. The difference between these
results and those given by the present analysis is due

primarily to the inclusion of the q' terms in Kqs. (24)
and (26), and to the neglect of the data at the smallest

angles in making the least-squares fit to x(q). In partic-
ular, the larger value of gag(0) found here is due to
the latter. Since solution 6A, which is in excellent
agreement with the di6'erential cross section (Fig. 2),
gives a value of g~~(0) similar to that found in 3, the
smaller value cannot be ruled out. An improvement in

the measurement of the diGerential cross section in the
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"W. Heckrotte, Phys. Rev. 101, 2406 (2956).
"The least-squares values of the parameters are based on the

absolute differential cross section& which is known to only 20%.
This introduces a corresponding uncertainty into these parameters.
However, since the 6t obtained with the nucleon-nucleon phase
shift solutions (Fig. 2) is better than 20%, it is hoped that the
absolute calibration is in fact better than 20%.
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PIG. 4. The polarization of 323-Mev protons scattered by
carbon, calculated from phase shift solutions 2B and 68. Curve I'
is calculated from the least-squares parameters given in Table II.
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increase in g~r(0) is just what is needed to obtain
agreement with the value of g~r(0) deduced from the
total neutron-carbon cross section. Moreover, the
large increase in p increases a. by nearly a factor of 4,
bringing this quantity into agreement with the least-
squares value; b2 is increased by a factor of 2, bringing
it closer to the experimental value.

While these results are obtained using a particular
shape for the nuclear density, viz. , Gaussian, it does
not seem likely that these conclusions could be greatly
modified by any reasonable change in the distribution.
The analysis is limited to small angles where the second
moment of the distribution should give the main
contribution, and this may be supposed reasonably well

known from the electron scattering esperiments. "
Therefore it appears that in order to fit nucleon-nucleus
scattering data by a potential based on the nucleon-
nucleon interaction, account must be taken of the
nucleon-nucleon angular distribution. Phenomenolog-
ically this means the use of optical potentials with
diGerent ranges for the real and imaginary parts and
with V, , not necessarily proportional to (1/r) (d Vo/dr).

The polarization curves (Fig. 4) indicate the pos-

sibility of making a distinction between different sets
of nucleon-nucleon phase shifts on the basis of proton-
nucleus scattering. However, the slight preference

shown here for solution 68 is probably not significant.
It; comes from the larger value of k&tt(0) given by
solution 6, and any conclusions drawn from the value

of hatt(0) are subject to various uncertainties. " It is

worth emphasizing, however, that the experimental

data at the smallest angles were omitted in determining

hatt(0); the inclusion of these data in the analysis

would increase hatt(0) still further.
The triple-scattering parameter P may also be used

to obtain information about the nucleon-nucleus

interaction. From the expression

»nP=2 —(1—&')'* LC~(q)h~(q) g~(q)&r(q)3—, (28)
dQ

"The experimental determination depends mainly on the
polarization at small angles, which is poorly known; it also
depends on the value of hzz(0) used on the fIrst line of Eq. (23).
The theoretical determination, on the other hand, is quite sensitive
to the nucleon-nucleon parameters Hg(0) and Hy(0) (Sec. II).

p can be computed for small angles using Eqs. (12),
(17), and (19) and the parameters in Table II. Ilnfor
tunately no small-angle measurements have yet been
made. The smallest angle for which data are available
is 10.4'; here P= —9'&18' or 30'+18'."LThere is an
ambiguity in P because only the quantity cos(e—P)
is measured experimentally. ) At 9' phase shift solutions
1A, 6A and 68 give P equal to 6.5', 26', and 13',
respectively; the least-squares parameters (together
with tttt=1 and ttr ——0.25) give /=25'. Thus at 9' all
solutions give P)0. While the formulas developed in
this paper do not apply for 0)9', it is certain that at
larger angles P will become still more positive.

This conclusion diIIfers from that of other authors, 4"
who find P(0 in the neighborhood of 10'. At small
angles (8&20') gr(q), br'(q), and hr(q) are all positive, so
that from Eq. (28) we see that P can be negative in this
region only if gtt(q) is also positive. Now gran(q)=F(q)
)& tgrrtt (0) (1—rtttq') —2rtk/q'j, which is negative at very
small angles. It can become positive only if the Coulomb
term becomes smaller (in. absolute value) than the
nuclear term before the latter goes through zero. In
Horn approximation p&= 0, and so this may happen at
about 5'. Even in more exact calculations qg is not
large if the angular dependence of the nucleon-nucleon
scattering is not included in the potential (see Table II),
and so gtt(q) may still become positive. However,
because of the large value of rttt found here, g&tt(q)
decreases more rapidly than the Coulomb term and so

gtt(q) is never positive in this region; consequently P is
positive. Solution 6 gives a larger value of P than solu-
tion 1 because of the very large value it gives for hatt(0).
While both solutions are consistent with the present
triple-scattering data, an improvement in these data
may eventually be able to rule out one of the solutions. j'
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1' Note added &t proof Amodified p.h—ase shift analysis of the
proton-proton scattering at 310 Mev LMoravcsik, Cziffra, Mac-
Gregor, and Stapp, Bull. Am. Phys. Soc. Ser. II, 4, 49 (1959).)
strongly favors solution 1 over solution 6. This may indicate that
there is a systematic error in the small angle proton-carbon
polarization data.


