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Analysis of the Reaction C"(He', n) C"t
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The angular distributions of the alpha particles from the reaction C"(Hes, n)C's at 4.5 and 2.0 Mev have
been analyzed from the point of view of nuclear stripping. By symmetrizing the wave function of the co-
plete Hamiltonian with respect to the exchange of alpha particles, the heavy-particle stripping amplitude is
formally included. The experimental distributions change decidedly between 2.0 and 4.5 Mev, and the calcu-
lated curves employing a combination of pickup and O,-stripping from C" agree quite well with the experi-
mental distributions. Interference between the two channels plays a major role in the final expressions.

I. INTRODUCTION

'HE theory of direct interactions' ' has been
utilized successfully in recent years to analyze

the angular distributions of particles from (d, ts), (d,p),
and inelastic scattering reactions. Reactions employing
Hee or H as the bombarding particle are subject to
analysis as direct interactions where both pickup' and
stripping can occur in the same process.

The C"(Hes, n) C" reaction has been studied at 2 and
4.5 Mev by Holmgren, Greer, Johnston, and Wolicki. s

Their results show marked variations in the angular
distributions. At 4.5 Mev the angular distribution of
the alpha particles oscillates rapidly, exhibiting two
pronounced minima, one at 70', the other at 145', and
three maxima at 25', 115', and approximately 180'.
The two forward maxima are of approximately the same
amplitude. The angular distribution corresponding to
a bombarding energy of 2 Mev exhibits a forward
maximum at 0', a minimum at 55', and a strong
backward intensity. (See Figs. 1 and 2.)

The analysis in terms of the pickup of a neutron by
the He' was inadequate to describe either angular
distribution. It was suggested that an analysis in-
corporating the process of the heavy-particle' stripping
of an alpha particle from C" with the process of pickup
might account for the observed angular distribution.
The following discussion formally incorporates these
processes, and the results exhibit the characteristics
found in the experimental angular distributions.

&=&c+T +& c+&a+&a +&ac
=&a+2'+ &.a+&a+ &a.+&aa.

The subscript C refers to the C" core for the neutron e
in C", and the subscript 8 refers to the Be' core for
an alpha in C". The subscript H will refer throughout
to the incident He' nucleus. The total Hamiltonian II
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stripping of an alpha particle from the C" nucleus can
be incorporated formally by constructing the total
wave function to be symmetric for the exchange of
alpha particles. After the first-order terms which
describe the direct process are separated from the
higher-order terms, the symmetry can be exhibited in
the initial state ~ or in the final state. 6 In the analysis
of the (Hes, n) reactions the latter approach is the more
convenient.

The total Hamiltonian for the reaction C"(Hes, tr) C"
can be written

II. DEVELOPMENT OF THE DIFFERENTIAL
CROSS SECTION

The general approach to be used in this development
has been treated at length by Fulton and Owen. ' The
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FIG. 1. Theoretical curve of Eq. (23) for the reaction
C"(He',n)C" at a bombarding energy of 4.5 Mev in the lab
system. The points are the data of Holmgren et al. , reference 3.

~ A. P. French, Phys. Rev. 107, 1655 (1957).
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The position vectors R; are vectors relative to the

center of mass of the complete system. The mass Ml
refers to the mass of the C" nucleus. The function {
refers to the single-particle bound-state wave functions
of the neutron in the initial and final states. The
functions $ refer to the internal wave functions of the
remaining nucleons. As described in a previous paper, '
the wave function of the complete Hamiltonian can
be written

+(~)=GsH)(~) (1+GH (1))it .(1)

In order to obtain 4 in a form which emphasizes an
alpha from the C" as the outgoing alpha particle, we
use a rearrangement of terms The initial-state Hamil-
tonian and perturbation are

Ho"'= Ha+H +Ha+ Ua. ,

Ht") = U.a+ Ufra.

(10)

0
Oo 90 I80'

The subscript j3 refers to the Be' core of the alpha
particle bound in C".

The final-state Hamiltonian emphasizing this process

Ho"' =Ha+Ha+ Uaa+H. ,

Ht(4)= U a+U a.

(12)

(13)
can be split up in various ways to describe asymptotic
conditions.

In order to describe the initial state for the pickup
of e by H, we write

Note that the He' system is captured by the Be'
core. Again initial- and final-state wave functions and
Green's functions are defined:

FIG. 2. Theoretical curve of Kq. (23) for the reaction js
C"(He',n)C" at a bombarding energy of 2.00 Mev. The points
represent the data of Holrngren, reference 3.

and
Ho"'=Hc+T +U c+Ha,

Ht")= Ua +Uac.

(g H (m))P (m) 0

(E—H() ("))G„=1.

(14a)

(14b)

Ho&" is the zeroth order Hamiltonian for the initial
state, while H~( ) is the corresponding initial-state
perturbation.

In like manner for the pickup process the final state
Hamiltonian and the corresponding perturbation are

Ho(') =Hc+T„+Ha+ Ua

Hr(s)= U c+Uffc

(4)

The initial and final state eigenfunctions and Green's
functions are defined by these operators:

(g H (())it .())=0 (6a)

(E—H()(')) Gt ——1, (6b)

(+ Ho(s))it'f(s) —0 (6c)

(E—Ho(')) Go ——1, (6d)

(E H)+=0, — (6e)

(E—H) G= 1. (6f)

if, (') =exp(ika Ra)
XexP{ ikff [(M—„/Mr)R„+(Mc/Mr)Rc]}

Xl )(„c)(R„—Rc)g, cg,ff; (7)

()tf(o)=exp{ik [(M„/M )R +(Ma/M )Ra]}
Xexp( ik. .Rc)l «na) (R R—ff) $fc$fH$ fa (&)

The corresponding asymptotic functions are

p, (') = exp(ika Ra)
Xexp{—ika [(Ma/M&)Ra+ (M /Mr)R ]}

Xx((aa)(Ra Ra)kiafia j (15)

pf(4) = exp(ik R )
Xexp{—ik [(Ma/Mr )R~+ (Ma/Mf )Ra]}

Xx,(ffa) (Rff Ra) $fa$fjj5fcI (16)—
The wave function 0 of the complete Hamiltonian
can then be written in a form which stresses a nuclear
alpha particle as an outgoing term.

+"'=GoH( (') (1+GH r "')P;(s).

It is recognized that actually there are three alphas
in the C" available for this process. Thus the operations
of Eqs. (2) through (9) could be carried out again. By
making use of the exchange properties of the individual
wave functions, however, it is easily seen that the three
n particles contribute equally. Thus the additional
processes enter only as a multiplicative factor.

As yet no symmetry properties have been imposed
upon + to take into account the exchange of the various
alpha particles. It shouM be remarked that the super-
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scripts on 0' do not denote diferent 4"s but serve to
identify the process stressed in a given development:

~(2)=@(4)

The rearranging of the leading terms, ' however, proves
convenient when we require the function to be sym-
metric under the exchange of alphas. By utilizing 0(")
as the exchange wave function, the alpha-stripping
process is formally included when the projection of the
symmetrized function 7 is taken on the function
(defined below) with u(1) going out. We construct
Y(1,2) to be symmetric for the exchange of alpha
particles 1 and 2. It is assumed that alpha 1 results
from the pickup process, and alpha 2 results from the
stripping process:

As described previously, ' we are interested in the
projection of Y(1,2) on a particular final state ~, and
wish to consider the coefficient of ir &ii

' exp(ik r &ii)

as r (~) is made large.
The scattering amplitude is

7=(f&2ilH, &2&(1+GH, &") li&'i)

+(f"'IH, "'(1+GH,"') Ii"') (19.)

In Eq. (19) the superscripts 1, 2, 3, 4 refer to the
eigenfunctions of a specific zeroth order Hamiltonian.
It is assumed that direct interactions arise from the
leading terms only. Even more specifically, we need
retain only V„|.- from H&(" and V& from H&" . The
differential cross section for the direct interaction is thus

da- M M~Mlk

dQ (2mA')'MFA' snai
av initial

Expressions (7) and (15) for the initial state and (8)
and (16) for the final state are not in the form of total
angular momentum wave functions. They result,
however, from a partial expansion of the angular parts
of the total angular momentum functions. The initial-
state wave function can be written as

4';= exp(ikH R~)g)H exp(ik; R;)f,(j,,p, ,R„, .), (21)

where It;(j,,)«,,R„, ) is the total internal wave function
of C" with total angular momentum j; with projection
p, , and the final state wave function as

)I)y=exp(ik .R )gy exp(ikc Rc)gc(jc,pc, Rii, . ), (22)

where 4'c(jc,inc, RIr, ) is the total internal wave
function of C", with total angular momentum j~ with
projection pt.-.

A similar approach was carried out in reference 6 for (d,e)
reactions where antisymmetrization was required.

The angular part of the matrix element for either
process in (20) is evaluated by expanding (21) in terms
of (22) with plane-wave and Clebsch-Gordan expan-
sions. For the pickup channel, It, (j,,Ii,,R, ) in (21)
is expanded in terms of the set of product functions|i&„c&(R„—Rc) representing the C" nucleus as a
neutron plus C" core. Thus (21) becomes

(23)

where J„~is the total angular momentum of the neutron
relative to C" and &j)J„cjclp;Ii;—Iicpc) is the Clebsch-
Gordan coefFicient corresponding to the vector addition
j,=J c+j&; Th. e angular functions in f, «& are then
further expanded in terms of those in fy&'& and the
product function l «„H&(R„R~)g—Iir in pq&2i represent-
ing the alpha particle as He' plus the neutron is written
as an expansion in the set of its total angular momentum
functions. Thus (8) becomes

2 &JagrIJ))H
I
papHpn @$1)+f) (24)

corresponding to the vector addition j =jJr+ J ir,
where j is the spin of the alpha particle with projection
p and J„~is the total angular momentum of the neutron
relative to He'.

The plane-wave propagation of the neutron away
from the C" nucleus serves to define its direction of
propagation as a preferred axis of quantization for
expansion (23). Similarly, the direction of its plane-wave

propagation toward He' defines a preferred axis for
expansion (24). It is found, however, that the second
plane wave propagates with orbital angular momentum
l' 0=0, and thus the angular functions for the pickup
channel can be expanded with the axis of quantization
defined by the propagation of the neutron away from
from C". The coefIicients in these expansions give the
angular part of the matrix element for this channel.

For the heavy-particle stripping channel, expansions
similar to (23) and (24) are made to express C" as an
alpha particle plus Be' core and to combine the Be'
core and He' into the C" nucleus. In this case Be'
propagates toward He' with lII~=O, and the axis of
quantization for the angular expansions is defined by
the direction of propagation of the alpha particle away
from C". The same axis of quantization must be used
for both matrix elements in (20), and it is convenient
to transform the functions of the heavy-particle
stripping channel to the pickup axis. This transfor-
mation introduces the associated Legendre function

P«~ii& ' ~'(cosP) into the heavy-particle angular matrix
element. The angle P is the angle between the two axes

(Ki and K~, defined below), and is a function of the angle
of the outgoing alpha particle. The angular matrix
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(f(4)
I
V Bli(3))

= (f"'
I
Tc +.2..B TB T TH

I
i"'). (2~b)III. THE ANALYSIS

element thus contributes a non-numerical factor to the and
total matrix element.

The radial matrix elements appearing in the differ-

ential cross section presented in Kq. (20) can be
considerably simplified by noting a simple relation
between the potentials and the two initial-state
Hamiltonians:

(f"'
I V-c

I
i"))

=(f"'I T, .,„+e„c. Tc —T„T—H li "—), (25a)

Here e g and e ~ represent the binding energies of the
outer neutron in C" and an alpha particle in C",
respectively, T, is the total kinetic energy in the
center-of-mass system, and T,= (—h /22M;)7'r2.

The procedure followed is to substitute the Fourier
transforms of the bound-state functions into the matrix
elements. These Fourier transforms will constitute the
major components of the angular distribution. They are

f'r(~c) (R —Rc) = (22r) ' Gl(~c) (Kl') exp(iK1' [R„—Rc])dK, ',

f'1 („H)(R„—RH) = (22r)
—

i~
~

F«rr) (kl') exp(zkl'. [R„—RH])dkl',

xr( B)(R —RB) = (22r) l Gl( B)(K2') exp(iK2' [R —RB])dK2',
J J

xl(HB)(RH RB)= (22l) l ' Fl(rrB) (k2') exp(ik2' [RH —RB])dk2'.

These transforms can now be inserted into the integrals of Eq (25)..The operators T; can be applied to the
exponential functions under the integral sign and the integrations over all spatial coordinates performed, giving

(f"'I V~cli"')=&1 ~ ~~dK1' dkl' F«~H)*(k)')Gr(„c)(K)')

( M- &' (
T, +2„c ,'h' MH 'kH—'+-M„'I K1'— kH

—I+Mc 'I K)'+ kH
II' " ' "& M, )

&(&(K)'—[k.—(Mc/Mr)kH])&(k)' [(Mrr/M. )k.—kH]), (26a)—

(f( )
I
V~Bli ' )=A2) ~ ~ "dK2' dk2' Fl(rrB)*(k2')Gl(~B)(K9')

M. q
'

(l MB
T, ,„+2,B ,'h' MH 'krr2—+—M 'I K2' — kH

I
+MB 'I K2'+ kH I

J & M, )

)&B(K2'—[k +(M /Mr)kH])l)(k ' —[kH+(M /Mp)k ]), (26b)

Integrating over the momentum coordinates, we obtain

~ ~a~r&

dQ (22rh')'M pkH final
av initial

A2
G1Fl(nH) (kl)Gl(nc) (K1)+ C2Fl(HB) (k2)Gl(nB) (K2)

Ag
(27)
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where

Cr(To)=T. +o c— (pzz. 'kH'+p. c 'k.' 2k—.kzz),
2M„

Cs(To) =To. .+ea — (pea k +pzza ka 2pa—n ~k 'kzz),
2M„

Kr ——k.—(Mc/Mz) kzz,

kr ——(Mzz/M )k —kzz,

Ks ——k.+ (M./Mz) kzz,

k, =kzz+ (MH/M p)k. ,

~ ~ ~A& ' ffc kfzz mfa hie/izzdr

Ao ' ' '
mfa Bzz mfa gaia ciFIdr)

(M,+M,)M„

The vector arguments of the function in (27) indicate the angular matrix elements. When these are evaluated .
as discussed above and initial states averaged over and 6nal states summed over, the differential cross section
becomes

dg ~.~II%I&.
( ~C&F&i D& (kr)«(.c&(%) ~'

dQ (2sfi')'M&;kzz

+2(Ao/Ar) cosPC&CoF&i„zz&*(k&)G«c&(E&)F&&zza&*(ks)G«a&(E,)+ ~
(A,/A, )C,F,&zza&*(k,)G, ( a&(E,) ~ } (2g)

where cosP arises from the transformation from the
heavy-particle stripping axis of quantization Ks to the
pickup axis Kr and P is the angle between Kr and Ks.

The Butler integrals Fl in general must be modi6ed

by a cutoff procedure in order to 6t the experimental
data. This cutoff procedure at present is supported only

by phenomenological arguments relating to the absorp-
tion of the incoming wave at points inside of the target
nucleus and to Coulomb and nuclear scattering dis-
tortions of the incident and outgoing wave.

Reducing the amplitude of l i and y& for r (R has the
practical eGect of increasing the relative amplitude
of the momentum wave function at large momenta
and causing the momentum wave function to oscillate
more rapidly. These eGects of course imply distortion,
since all distortions of the wave function generally
provide a relative change in the shape of the mo-
mentum distributions.

In the ordinary deuteron stripping problem the
so-called continuous momentum functions G~ are
associated with momentum transfers K which vary
slowly over the angular distribution, with the result
that changes in the integration of Gl have little effect
on the 6nal result.

TABLE I. The arameters used in the theoretical
curves Eq. (28)g of Figs. I aud 2.

Erg l(nC) l(nH) l{aB) l(HB) aI RI a2 R2 h2/Ag

2.0 Mev
4.5 Mev

1 0 1 0 461 500 427 550 050
1 0 1 0 4.15 4.80 4.88 6.10 1.75

In the analysis of the C"(He',cr)C" reaction
momentum transfer Kr varies in magnitude by a factor
of 2. In addition the G~{„g) function passes through
zero once in the interval from 0' to 180'. Thus the
Gi&„c&(E&) and to some extent Gii„a&(Es) are quite
sensitive to variations in 0'.

The data could be 6tted using integrations from
0~ oo in the case of Gi&„c&(E&). However, a much
more satisfactory fit is obtained when G«~c&(E&) is
cut o8 in the same manner as used for the Fl functions.

The data were fitted with Eq. (23) using the cutoB
radii E1 for Fl{ ~)*, R2 for Fl,{Jig)*,a1 for Gl { g), and a2

for G&i a&. The theoretical curves of Eq. (28) and the
experimental points are shown in Figs. 1 and 2. Table I
presents the parameters used for the curves shown
(radii are in units of 10 "cm).
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IV. DISCUSSION AND CONCLUSIONS

The agreement between the curves obtained from
Eq. (28) and the experimental data is rather striking
when one considers the approximate nature of such a
6rst-order calculation. Such agreement, however, may
not be surprising when the fundamental amplitudes
governing the angular distribution exhibit a rapid
oscillation over the interval from zero degrees to 180
degrees.

The use of distorted waves in the main should tend
to smear out the peaks and shift the maxima and
minima. The freedom of the choice of the "cutoG
radius" in large part takes the latter distortion into
account.

Better fits to the data could have been achieved
perhaps by additional variations in the parameters.
It is well to emphasize that we should not expect much
more than the general structure of the angular
distribution.

Specific consideration of distortions has been omitted
throughout. For example, the data at 2.00 Mev below
the Coulomb barrier should have a sizeable correction
arising from Coulomb eGects. The fact that some varia-
tion in the parameters was required at this energy
suggests the presence of distorted waves. The success

of the fits suggests that the interpretation of the reaction
Ct3(He', n) at these energies as a direct interaction is
consistent with experiment. A large part of both
theoretical distributions is supplied by the interference
between the "pickup" and "heavy-particle stripping"
channels. Furthermore, the variations between the
curves for the two energies are accounted for by the
kinematics.

Satchler' has suggested that the magnitude of the
exchange components provides a measure of the cluster
parameters which arise in the many-body problem.
Hence one could measure the relative cluster ampli-
tudes, for example, by studying the heavy-particle
components of (He', P), (He', d), (He', He'), (He', n)
reactions using a given target nucleus.
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