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Nuclear Spin Relaxation in Normal and Superconducting Aluminum*
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Nuclear spin-lattice relaxation times have been measured in normal and superconducting Al from 0.94'K
to 4.2'K, and as a function of static field in the normal state. In the normal state the relaxation rate is
proportional to temperature as predicted by Redfield and others. The field dependence is somewhat greater
than predicted. Relaxation in the superconductor was studied by a field cycling method which allowed the
measurements to be made in the normal state but relaxation to occur in the superconductor. The results
disagree with a simple two-Quid model, but are explained by the theory of Bardeen, Cooper, and Schrieffer.
The contrast between the temperature dependence of nuclear relaxation and ultrasonic absorption confirms
the central feature of the Bardeen-Cooper-SchrieGer theory that electrons of opposite spin and momentum
are correlated.

I. INTRODUCTION

I~ONDUCTION electrons strongly influence the~ nuclear magnetic resonance in a normal metal
through the interaction of their magnetic moments
with those of the nuclei. Two e6ects are important.
First, the electrons alter the static magnetic field seen
by the nuclei from the value of the applied magnetic
field; the shift in the value of external field at which
the nuclear resonance occurs in the metal, compared to
a salt, is the so-called "Knight shift. '" Secondly, energy
exchanges with conduction electrons at the top of the
Fermi distribution usually provide the quickest means
for the nuclear spins to come into thermal equilibrium
with their surroundings —the process characterized by
the "nuclear spin-lattice relaxation time, " Ti.'

Several years ago Bardeen and Frohlich published
preliminary theories of superconductivity which showed
that in all likelihood the wave functions and energies
of electrons near the Fermi energy are drastically
modified when a metal makes the transition into the
superconducting phase. Since these are the very elec-
trons which are important in both the Knight shift and
in nuclear relaxation, it was clear that measurements of
the Knight shift and Ti in both normal and supercon-
ducting phases of a metal should provide a test of any
theory of superconductivity. These expectations have
been borne out. In this paper we report experiments on
nuclear relaxation in normal and superconducting
aluminum and their theoretical interpretation using
various theories including the recent one of Bardeen,
Cooper, and Schrieffer' (hereafter referred to as BCS).
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' Townes, Herring, and Knight, Phys. Rev. 77, 852 (1950).' See, for example, D. F. Holcomb and R. E. Norberg, Phys.

Rev. 98, 1074 (1955).' Bardeen, Cooper, and Schrieffer, Phys. Rev. 106, 162 (1957);
Phys. Rev. 108, 1175 (1957).

The Meissner effect4 makes it difficult to do conven-
tional nuclear magnetic resonance experiments in
superconductors; that is, superconductors exclude the
magnetic fields necessary for magnetic resonance except
in a small skin region approximately 10 ' cm to 10 6

cm thick. By using colloidal particles whose mean
diameters were smaller than this field penetration
depth, Reif5 and Knight' recently were able to measure
the Knight shift in normal and superconducting
mercury.

As reported in a preliminary communication, v our
experiments on relaxation times avoid the impasse
posed by the Meissner eGect by utilizing another
property of superconductors: superconductivity can be
destroyed by application of a su%ciently strong mag-
netic field. The critical field which will destroy super-
conductivity4 depends on temperature and is con-
ventionally described by a two-dimensional phase
diagram of critical field ~ersns temperature. The
boundary line between the superconducting and normal
phases, the critical field vs temperature curve, 4 is
approximated fairly closely by the equation

H, (8) =H, (0)[1—(8/8 )'$

where H, (8) and H, (0) are the critical fields at; the
temperature 0 and absolute 0, respectively, and 0, is the
critical temperature above which superconductivity
cannot exist even in zero 6eld. For aluminum, H, (0)
=98.4 gauss and 0,=1.172'K.' In a magnetic field
greater than the critical field for any given temperature,
the metal is normal and the magnetic fields necessary
for magnetic resonance experiments can penetrate into
the metal in the usual manner,

To obtain the Ti characteristic of the superconducting
phase, the resonance was observed in the normal state
but the nuclei allowed to relax in the superconducting

D. Shoenberg, SrtPercondttctioity (Cambridge University
Press, Cambridge, 1952).

s F. Reif, Phys. Rev. 102, 1417 (1956); Phys. Rev. 106, 208
(1957).' 1tVr. Knight, Phys. Rev. 104, 852 (1956).' L. C. Hebel and C. P. Slichter, Phys. Rev. 107, 901 (195'').

s Cochran, Mapother, and Mould, Phys. Rev. 105, 1657 (1956).
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state. The following cycle was followed: First, the
nuclear spins were allowed to come to thermal equi-
librium with the lattice in a static magnetic field strong
enough so that the metal was in the normal phase.
(Approximately 450—500 gauss was used. ) The magnetic
field was then quickly turned to zero, the metal be-
coming superconducting; nuclear spin relaxation took
place during the time, t, that the field was oG. Next
the field was turned on quickly, the metal returning to
the normal phase, and the nuclear resonance signal was
observed "on the run" as the magnetic field passed
through the resonance value (360 gauss). The nuclear
spin-lattice relaxation time characteristic of the super-
conducting phase could then be obtained by studying
the height of the resonance signals so obtained versus
"t," since the height of the resonance. signal was a
direct measure of the amount of nuclear magnetization
left after relaxation.

The technique described in the foregoing is similar
to that of Sachs and Turner, ' Pound and Ramsey, "and
Abragam and Proctor"; it was suggested independently
for the superconductivity problem by Redfield, who

has recently reported measurements in both normal
and superconducting aluminum" as well as in lithium

and sodium. " Throughout our work we have been in

close touch with Redfield and have benefited greatly
from the exchange of data and ideas.

Because of the Meissner effect, nuclear spin relaxation
in the superconducting phase occurs at zero external
field. To compare results with the normal metal, it was

necessary to measure in the normal state the zero-field

relaxation time as a function of temperature. To
further test the theory for the normal state, measure-

ments as a function of field were also made in the
normal phase.

A detailed analysis of our procedure and a discussion

of zero-field relaxation appear in parts II and III of
this paper; the experimental details of the measure-

ments in aluminum between 0.94'K and 4.2'K follow

in part IV. The results and analysis of 1& measurements

in the normal phase are given in part V. In part VI,
the results of measurements of T~ in the superconduct-

ing phase are presented and discussed in terms of
several theories of superconductivity; the simple
"two-Quid" theory; the one-electron, energy-gap theory;
and the new microscopic theory of Bardeen, Cooper,
and Schrieffer. Special details and conclusions follow

in parts VII and VIII.

' E,. Turner, thesis, Harvard University, 1949 (unpublished).
"N. F. Ramsey and R. V. Pound, Phys. Rev. 81, 278 (1951).
"A. Abragam and W. G. Proctor, Phys. Rev. 106, 160 (1957);

Phys. Rev. 109, 1441 (1958).
"A. G. Red6eld (private communication).
'3A. Anderson and A. G. Red6eld, Proceedings of the Fifth

International Conference on Low-Temperatlre Physics, Madison,
Wisconsin, Auglst, 1957, edited by J. R. Dillinger (University of
Wisconsin Press, Madison, 1958).

8,=CH/M. (6)

Equation (6) can be derived from Eq. (5), but the
reverse is not true. Comparing Eqs. (3) and (6), we

see that in the presence of a magnetic field

dr 1q f1 1) 1

ES, tl ) r,

II. NUCLEAR SPIN-LATTICE RELAXATION IN
STRONG AND WEAK MAGNETIC FIELDS

The nuclear spin-lattice relaxation process in a strong
external magnetic field is usually treated in terms of the
nuclear magnetization, 3I. In thermal equilibrium, M
is given by Curie's law.

Mp=CH/SI. ,

where Mo is the thermal equilibrium nuclear magnet-
ization, B is the applied static magnetic field, OL, is the
lattice temperature, and C is the nuclear Curie constant.
When the nuclear magnetization is not in thermal
equilibrium with the lattice, energy is exchanged be-
tween the spin system and the lattice, the magnetization
relaxing toward 350, following the equation

dM/dt= (M p M)/T,—.
The time constant, T~, is the nuclear spin-lattice
relaxation time —the characteristic time for energy
transfer between the nuclear spin system and the lattice.

From an experimental standpoint the nuclear magnet-
ization is especially convenient for characterizing the
nuclear spin-lattice relaxation process, because, all

other things being equal, the height of a nuclear
magnetic resonance signal is directly proportional to
the nuclear magnetization present; nuclear resonance
techniques, then, provide ways of following the relax-
ation process with time.

An alternative way of treating the spin-lattice
relaxation process is in terms of the nuclear spin
temperature. At thermal equilibrium with the lattice,
the nuclear spin system has the lattice temperature;
that is, the energy levels of the nuclear spin system are
populated according to Boltzmann statistics character-
ized by the lattice temperature.

p„'/p '= exp[(E —E„)/k8r.],
where p„' and p

P are the thermal equilibrium proba-
bility of occupation of the eth and neth nuclear energy
levels with energies E and E„, respectively. (E and
E are the exact energies of the total nuclear system. )

When not at thermal equilibrium with the lattice,
the nuclear spin system is still often characterized by a
temperature, in this case unequal to that of the lattice.
That is,

p./p = exp[(E.-Et„)/t 0,], (5)

where 0, is the spin temperature. When a magnetic
field, H, is present an alternative definition of 0, can
often be given in terms of Curie's law; that is,
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Thus, instead of characterizing nuclear spin-lattice
relaxation in terms of growth or decay of magnetization,
one may think of the energy exchanged with the
lattice as causing the nuclear spin system to warm up
or cool oG as its spin temperature approaches that of
the lattice. From Eqs. (3) and (7), we see that the
same Tj characterizes either treatment of spin-lattice
relaxation.

We are concerned with relaxation in sero field. If the
nuclear system is characterized by a spin temperature
(not low enough for nuclear ferromagnetism) Curie's
law tells us that in zero field the magnetization is sero
independent of 0,. In zero field, relaxation cannot then
be characterized by changes in magnetization. As will
be shown explicitly in Sec. III, it may still be discussed
in terms of spin temperature using Eq. (7). The
concept of spin temperature is therefore particularly
useful for discussing our experiment.

Further insight into zero-field relaxation is given by
a detailed picture of the nuclear orientations. In a
strong magnetic field the nuclear temperaturemeasures
the extent to which nuclear moments line up along
rather than opposed to the external field. In zero
external field, the nuclei experience solely the fields due
to their neighbors. A nucleus may line up along or
opposed to the local field it experiences. The spin
temperature in zero external field characterizes the
degree of alignment of nuclei in their individual local
fields. The fact that the local fields at various parts in
the sample have basically random orientations causes
the bulk nuclear magnetization to be zero.

It is easy to have a spin system at zero field whose
spin temperature differs from 01.. The situation could
be obtained, for example, as the result of adiabatic
demagnetization from a strong field to zero field carried
out in a time short compared to Tr. (Such a demagnet-
ization is part of our field cycling procedure for meas-
uring Tr as mentioned in part l.) Energy transfer
between spin system and lattice would, of course, take
place as the spin system came into thermal equilibrium
with the lattice; that such is the case is illustrated in
paramagnetic salts by the cooling of the lattice after an
adiabatic demagnetization of the electron spins.

A full description of relaxation at zero external field
requires as its starting point a solution of the energy
levels and wave functions of the nuclei which are
coupled together by their magnetic dipole fields. The
solution has never been obtained. As we will see, the
use of a spin temperature enables us to formulate the
relaxation time calculation in terms of diagonal sums,
whose evaluation does not require solution of the e~act
energy levels. We are thus able to calculate the relax-
ation time completely. We therefore have two compel-
ling reasons for assuming a spin temperature: (1) the
relaxation in zero field is most easily pictured in terms
of temperature changes, and (2) the theory of the
relaxation time can be carried through.

The arbitrariness of the spin temperature assumption

is somewhat mollified by its success in describing similar
situations. It has been very fruitful in discussing cooling
done by adiabatic demagnetization on paramagnetic
salts; spin temperature gives a description of many
types of spin situations as discussed by Purcell and
Pound. " It has proven especially useful in analyzing
recent "spin calorimetry" experiments" of Abragam
and Proctor performed in weak fieM and recently
extended by Schumacher. " As discussed more com-
pletely in parts III and V, assumption of a spin temper-
ature results in a one-parameter spin-lattice relaxation
process even at zero field; (i.e. , the approach to equi-
librium involves only one exponential). Our experi-
ments, discussed in parts V and VI, indicate that the
relaxation at zero field is indeed describable by a
one-parameter process in both the normal and super-
conducting phases.

III. ANALYSES OF PROCEDURE TO MEASURE T1

In this section the concept of spin temperature wi11

be used to derive the relationship between T~ and the
magnetization measured immediately after the cycle
of measurement described in the introduction. Since
nuclear spin level splittings in common laboratory
magnetic fields are much less than k0 down to exceed-
ingly low temperatures, the nuclear spins obey Curie's
law and have a simple spin specific heat expression in
the temperature range of interest in this paper. That
means that thermodynamic relations can be used to
calculate what happened to both 0, and M during the
cycle of measurement.

If the nuclear spin Hamiltonian, X, is taken to
consist of the nuclear Zeeman interaction, BCg, and the
nuclear dipole-dipole interaction, K~~, the spin-lattice
interaction being treated as a perturbation, then the
expressions for the magnetization, M, and the specific
heat at constant field, C, become"

M =CH/8. ; Crt = (6+CH')/0, ',

where the nuclear Curie constant, C=trKz'/kHs tr1
and b= trXaq'/k tr1. For the purposes of this section,
(b/C) l will be defined as Hi„since it is of the order of
the local magnetic fields at the nuclear site due to the
presence of neighboring nuclei. With this notation, we
have

M =CH/8, ; CIr =C(Hi, ,s+H')/8, '.

At the beginning of the cycle of measurement the
nuclear spins are characterized by the lattice tempera-
ture, 01., since they were allowed to sit for several
spin-lattice relaxation times in the magnetic field.

When the field is switched to zero, the nuclear spin
system is adiabatically demagnetized. From thermo-

"E.M. Purcell and R. V. Pound, Phys. Rev. 81, 279 (1951)."R.T. Schumacher, Phys. Rev. 112, 837 (1958).
re C. J. Gorter, Paramagmettc Relaxatiort (Elsevier Publishing

Coxnpany, Inc. , New York, 1947).
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dynamics, for an adiabatic process,

dQ= CrrdO+8(BM/88) IrdH = O. (10)

Integrating this equation between the limits H; and H~,
we obtain

8,(H f) 8 (H,)[1+(Hg/Hi. ,)'j'*/-
[1+(H,/Hi. ,)'$l, (11)

M(Ht) =M(«)Hr[1+(H'/». )']'/
H, [1+(Hr/Hi. .)')l, (12)

e,

e., 1

"~pc

C~K

ep

I

Hp p HLpc H~

I

I

I
l
1

I

Ho

where Eq. (9) has been used. For the case of adiabatic
demagnetization from an external field H and the
lattice temperature Og, to zero field and a spin temper-
ature 8,I, we have

(a) (b)

Fis. 1. (a) A cycle of the spin temperature, e„versus magnetic
6eld starting at temperature 00 in a field IIO ——5HI„, going to
zero Geld adiabatically, relaxing, and returning adiabatically to a
temperature gv' in the field Ho. (b) Magnetization, M, versus
magnetic field for the cycle of Fig. 1(a).

O, i=Or, [1+(H/Hi. ,)'j**—OrHi. ,/H, (13)

Mf —lirn f MeHt[1+ (H/Hi„)'js/
Hy-+P

HL1+(Hs/Hi-)'3') =0 (14)

From Curie's law the magnetization must go to
zero at zero field, as in Eq. (14). lJpon reaching the
low value given by Eq. (13), the spin temperature
begins to rise towards the lattice temperature as
relaxation takes place. The temperature reached at the
end of the relaxation period, 0,2, is obtained by inte-
grating Eq. (4) in terms of the time, t, during which the
6eld is o8. For Tj we use the nuclear spin relaxation
time in the superconducting phase, T~,.

1 1 (i iq—=—y ~

———
[ exp( —t/Ti, ).

8,2 OL i8,1 OL)
(15)

8,'= 8»[1+(H/Hi. ,)')'; M'= CH/8, '. (16)

As a result of the spin-lattice relaxation, 0,'&81. and
M'(M. A plot of 3f versus H and 8, versus H for the
cycle is shown in Fig. 1 for Hio, /H=5. Combining
Eqs. (13), (15), and (16), and using Curie's law, the
final result for the magnetization after the cycle, M',
becomes

&Ir '8 i (+I 1 ——
I exp( t/Ti, ), —

Oz . Oz ( 81.s
(17)

oi
M'=A+8 exp( —t/Ti, ).

In general, A((B. Equation (17) is the desired
relation between 3f' measured using nuclear magnetic
resonance in the normal phase, and the T~ characteristic
of the superconducting phase. The same type of cycle
was used to determine both Tj versus magnetic field
and Ti (at zero field) verses temperature above the
critical temperature. Experimentally, log(M' —A) verses
t gave a straight line in agreement with Eq. (17).

Next, the field is turned back on to its original value;
the spin system is adiabatically remagnetized from 0,2,
following Eq. (11), to a temperature 8,'.

This is a good indication that spin temperature is an
appropriate variable with which to treat the nuclear
spin system in the presence of the nuclear dipole-
dipole interaction.

Implied in this discussion is the assumption that the
demagnetization and remagnetization be adiabatic
and reversible. This means, 6rst of all, that the time
constant for the change of 6eld must be much shorter
than the spin-lattice relaxation time so that T~ effects
can be neglected during the demagnetization and
remagnetization. Also it is essential that the field be
varied slowly enough compared to the characteristic
spin-spin interaction time, T2, that the nuclear spin
system quasi-statically follow the external field and
act as a thermodynamic whole. Let us amplify these
remarks.

Suppose we start with a nuclear system in thermal
equilibrium with the lattice in a strong field and turn
the field to zero instantaneously. We may analyze what
happens in terms of the sudden approximation: since
the wave function immediately after turning the field
to zero is the same as it was immediately before, the
magnetization is initially unchanged. However, the
nuclei now precess about their /oca/ fields which are
randomly oriented. In one or two precession periods (of
order of the strong-field T&), the nuclei will be randomly
oriented spatially and the magnetization will be zero.
If we then turn the field on again suddenly, we trap the
magnetization at zero in the strong field. No resonance
will be seen because the magnetization cannot be
established in the strong field without spin-lattice
relaxation. Thus we lose the resonance completely and
have certainly not performed a reversible process.

It is essential to our experiment that we avoid the
situation of sudden switching just described. We must
turn the 6eld off and on sufficiently slowly for the
magnetization to decrease or grow in step with H.
Neglecting spin-lattice relaxation, a crude way of
describing what we want to happen is as follows:
consider a nucleus which is initially lined up along the
strong field. As we turn H to zero, the total field seen
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by the nucleus is the vector sum of H and Hi„,i. If we
change H su%ciently slowly compared to. the precession
rate in the total 6eld, the nucleus will remain lined up
along the total field. By the time H reaches zero, the
nucleus is pointing parallel to Hi„,i. Although the
spatial orientation of the nuclear moment may have
changed, it will still be lined up along the total 6eld it
experiences. The degree of alignment is thsts mairltained.
If H is turned back on slowly, the nucleus will continue
lined up along the total field so that when we reach the
initial value of H, the nucleus will only again have its
original strong-field spatial orientation. The original
bulk magnetization will thus be recovered; the process
is reversible. Since the degree of nuclear alignment is
maintained at all times, we can easily estimate the
temperature reached by equating tIH/h81, to pH&„/h8, .
The result agrees with Eq. (13).

Of course the local field varies in time, but we may
hope that the essential features of our description are
maintained. We may say that the most critical region
of switching is when H is comparable to H~„,~ (since it
is at this condition that the total field is changing
direction from that of H to that of H~„,~). Under these
circumstances the precession period in the total field is
comparable to the high-6eld T~. Therefore, we must
turn the Geld o6 slowly compared to T2. To avoid
spin-lattice relaxation effects while the field is being
switched, we must turn it oG or on faster than T~.
The switching time, r, must therefore satisfy the
relation T~& r& T~.

In measurements in the normal state the requirement
on r is easily satisfied. Since T2=35 microseconds and
the normal state relaxation time T~„ is about 0.2 to one
second in the temperature range of interest, r can be in
the millisecond region. However, the measurement of
T&, poses a problem. At the boundary between the
normal and superconducting phases, the magnetic fieM
drops from the critical Geld value to zero in a distance,
X, of about 10 ' cm. As the transition between phases
is made, this boundary wall sweeps through the sample
at a velocity determined either by the size of the
particle and the external 6eld time constant, in the
case of a powered sample such as was used in this
experiment, or by factors beyond one's control when
appreciable supercooling is present. Assuming a smooth
wall motion with no granular intermediate state in the
powdered particles of radius r, this means that r ~&Tsr/),—3.5 milliseconds for our sample. A precipitous
switching, of course, shows up experimentally as a loss
in signal as described above.

IV. EXPERIMENTAL DETAIL

The resonance was observed with a bridgeless system
similar to that used by Schumacher. "A 400-kc oscil-
lator of the Pound-Watkins type" fed the rf through a

' R. T. Schumacher and C. P. Slichter, Phys. Rev. 101, 58
(1956).

's G. D. Watkins and R. V. Pound, Phys. Rev. 82, 343 (1951).

high impedance to the sample coil, which was directly
connected to the grid of an rf amplifier. As used, the
apparatus was sensitive only to changes in p", the
imaginary part of the complex nuclear susceptibility.
The amplified signal was then detected, and after
further audio amplification it was displayed both on an
oscilloscope and on a gated detector; the latter was
used to improve the signal-to-noise ratio.

A special laminated magnet was constructed out of
0.014-in. thick sheets of silicon steel, so that it could
be pulsed rapidly. Adjustable laminated sections were
provided near the gap as shims to obtain favorable
homogeneity of magnetic field over the aluminum.
sample. The current through the magnet was switched
using Western Electric mercury relays.

In order to work at the critical temperature and
below in aluminum (8,=1.172'K), a 3-Dewar system
was used —an outer liquid nitrogen Dewar enclosed a
Dewar containing liquid helium at 4.2'K and an inner
Dewar containing liquid helium which was pumped
over by an oil booster pump backed up with a me-
chanical pump. The inner Dewar contained the sample
which sat in the helium bath which was sealed beneath
two one-millimeter constrictions placed for the purpose
of cutting down the Qow of Rollin film. " The lowest
temperature attained was 0.94'K. The sample coil and
leads sat in the middle Dewar at 4.2'K separated from
the sample by a vacuum jacket.

Our sample was "atomized" particles of 99.9'P~ purity
obtained from Alcoa and sieved through a 325-mesh
sieve. The mean particle size determined by a micro-
scope was about 10 microns. The sample was annealed
after many measurements were made, and several of
the measurements were repeated to look for effects of
strains; Debye-Scherrer x-ray photographs were taken
of the annealed and unannealed samples to look for the
presence of dislocations. No di8erence in the two
photographs could be detected.

Since the transition between normal and supercon-
ducting phases at finite critical fields is a first-order
transition, heat must be transferred between the
helium bath and the powdered sample to keep the
sample at the bath temperature. The characteristic
time for thermal contact between particles and bath
was measured by the following method. When the field
is turned off, the sample is heated to a temperature
higher than that of the bath. The sample then cools.
When H is turned on again, the transition occurs at a
6eld which corresponds to the sample temperature at
turn-on time. By means of an oscilloscope across the
sample coil, we could observe when the sample was in
the superconducting state, and therefore at what
critical field it returned to the normal state. We
observed no dependence of the turn-on critical field on
the time, t, which elapsed after the sample went
superconducting. Therefore, the thermal contact be-

's W. H. Keesom, Hebam (Elsevier Publishing Company, Inc. ,
New York, 1942).
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TABLE I. Zero-Geld relaxation in aluminum.

Temperature ('K)

1.185
2.30
3.70
4.20

T&8 (seconds oK)

0.45&0.05
0.45&0.05
0.46&0.05
0.52+0.05

tween bath and powdered sample was much faster
than any times important to this experiment.

Sample temperatures below the critical temperature
were determined by measuring the critical field and
using the curve of critical 6eld versus temperature
determined by Cochran, Mapother, and Mould. ' This
curve was checked for our powdered aluminum sample

by use of a carbon resistor thermometer. Temperatures
just above the critical temperature were determined
using a thermocouple vacuum gauge calibrated for
temperatures just below the critical temperature by
means of the critical 6eld curve. Temperatures between
4.2'K and 2.2'K were determined by using helium
vapor pressure curves.

B. Theory of Nuclear Spin-Lattice Relaxation

Korringa, ' Overhauser" Heitler and Teller" and
others have developed theories of the nuclear relaxation
in metals for the strong field case. Red6eld2' has
developed a general theory of relaxation which enables
him to calculate the zero-field relaxation.

We have developed an alternative derivation which
we give in order to point out the main features which
determine the external field and the temperature
dependences of the nuclear spin relaxation by conduc-
tion electrons. Our basic equation [Eq. (24)) is a slight

~o J. Korringa, Physica 16, 601 (1950).
"A. W. Overhauser, Phys. Rev. 89, 689 (1953).
"W. Heitler and E. Teller, Proc. Roy. Soc. (London) A155,

629 (1936).
"A. G. RedGeld, IBM J. Research and Develop. 1, 19 (1957).

7. EXPERIMENT AND THEORY IN
THE NORMAL PHASE

A. Experimental Results

The discussion to follow will be given in terms of the
relaxation rate, R, the reciprocal of the relaxation time
T». At high magnetic 6eld the relaxation rate in the
normal phase, R„(oo), is found to be directly propor-
tional to the absolute temperature in many metals' ";
this in agreement with the one-electron theories of
Korringa" and of Overhauser. "A sample of our results
in aluminum for the relaxation rate at zero external
field, R„(0), are given in Table I; the field dependence
of R„ is summarized in Fig. 2. R (0) for pure aluminum
samples was found to be directly proportional to the
absolute temperature in agreement with recent meas-
urements by Redfield and Anderson. " We find
R„(0)/R„(~) =3.35W0.35.
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FIG. 2. Magnetic Geld dependence of TJ8 for normal aluminum.

where p„and E are the probability of occupation and
the energy of the exact nuclear spin states. LIf we
regard Eq. (18) as the first law of thermodynamics
applied to the nuclear spins relaxing at zero field,
BE/88, is just the spin specific heat at constant field. j

The interaction between the nuclear spin and the
electron spin causes transitions between the various
nuclear states n and m. In terms of t/I/', the probability
per unit time of a transition from the nth to the neth
state, we have a family of rate equations,

dp /dt=g (p W „pW ) — (19).
If we could solve the rate equations, we could

substitute the resultant dp„/dt's back into Eq. (18) to
determine how the spin temperature relaxes. We are
unable to carry through such a solution. Accordingly,

"J.H. Van Vleck, Phys. Rev. 57, 426 (1940).

generalization of one previously obtained by Gorter. '
The expression to be derived will also be used in part
VI to discuss nuclear relaxation in the superconducting
phase. To our knowledge, the 6rst use of the general
methods we present was by Van Vleck'4 in his paper on
paramagnetic relaxation in Ti and Cr alums. He used
the spin temperature concept to get an expression for
the relaxation in the form of a diagonal sum, thereby
avoiding the necessity of solving a complicated spin
Hamiltonian involving combined crystalline and Zee-
man splittings.

As previously mentioned, the exact nuclear spin
energy levels and wave functions in the presence of both
the nuclear Zeeman interaction and the nuclear dipole-
dipole interaction have never been obtained. Neverthe-
less, the theory below will be formulated in terms of
these exact levels and their probability of occupation;
the assumption of spin temperature will enable us to
put the end result in the form of a diagonal sum, which
we can evaluate without obtaining the true level
energies.

The time derivative of the total nuclear spin energy
of the system relaxing at zero field may be written:

d d dp„d BE de.—~=—2 p.E.=Z &.=—~(t).)= — (18)
dh d& d& dh a8, d&
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(20b)
kg,

To guarantee equilibrium when 8,=01,, the principle of
detail balance requires

=exp[(E„—E )/kgr7 1——
(E E„)—

(21)

Thus, omitting various algebraic steps,

dp-
E

dt

=l ———l[P (E„—E„)'tv. 7/2 P 8„„. (22)
E. g~ gi, ) sam , n

Also,
gE 8 rp. E.e-E.&") 1 p„E„'
gg gg ( P ex(xe, ) k82P 8

(23)

Substituting Eqs. (22) and (23) in Eq. (18), we obtain
the simple relaxation form of Eq. (5), with

1
R=—= l[2 (E- E-)'~-7/Z E-—' (24)

The relaxation described by Eqs. (18) and (19) is
equivalent to a normal-modes problem with real coefFi-

cients. It would be characterized by many relaxation
times were it not for the simplification introduced by
the spin temperature assumption which leads to the
simple form of Eq. (24), characterized by a single
relaxation rate.

One should note that the lattice temperature appears
only in 8"„;this fact will make it easy to draw con-
clusions about the dependence of E on lattice tempera-
ture (at any given external field), since the nuclear

spin levels n and m are not temperature dependent.
Equation (24) also shows us that R should depend on
external magnetic field since the energy level spacing
and arrangement at any given temperature will be
dependent upon the relative strengths of the Zeeman
and dipole-dipole interactions.

To calculate the temperature and field dependences
explicitly, we evaluate Wn using perturbation theory.
The interaction, BC81., between the nuclear moments
and those of the conduction electron may be written

Xsr. =E (8~/3)y, y Jz'I; S;8(r;—R,), (25)

we assume that the solution of Eq. (19) is consistent
with there always being a spin temperature. Now, the
spin temperature assumption means that

p /p = exp[(E —E )/k8, 7—1—(E„E„)—/kg, (20a)

Also, since trBC=, O, we have

where E, and Ef are initial and final electron energies
and h~ is the difference in nuclear energies. So far we
have taken account of one electron in a given initial
state going to a given final state. We must now add
the contributions of all electrons (sum over k and s)
and over all final states (sum over k' and s') taking
into account the exclusion principle. Since the proba-
bility that a state of initial energy, E;, be occupied is
the Fermi function f(E,), and the probability of an

empty final state is 1 f(Ef), we hav—e

W„„= P P„~.. . „&,f(E;)[1—f(E&)7
k, k', 8, e'

dKdErPmi s', .i sf(K)
S, 8' 0

&&[1—f(Er)7~(E')u(Ef), (2'7)

where p(E) is the density of electron states in energy.
Equation (2/) is evaluated in detail in Appendix I.
The result is

W„„=P o;,(~lf,.l~)(~ll;. l~), (28)

where n= x, y, or s and where a;, are given by

sin'kgb;,
&'~'~-'l x(o)I', ~(E')~(Ef)

9 (kpR,;)' ~

64m'

Xf(E;)[1—f(Er)7dE;. (29a)

In this expression, kp is the magnitude of the wave
vector at the Fermi surface, and E,, the distance
between nuclei i and j. If we normalize our wave
functions to a volume V, we have for the free-electron

where i labels the nucleus at R; with spin operator I;
and gyromagnetic ratio p„, and j labels the electron at
r, with spin operator S, and gyromagnetic ratio y, .

b(r, —R,) is a Dirac delta function. We are using in
Eq. (25) the interaction appropriate to s states since
it is generally much more effective in producing
relaxation than the usual dipole-dipole term.

A Bloch function will be used for the electron wave
function in the metal: tp=gi, g; exp( ik—r„), where q;
is the spin function and h is the wave vector. We use
first-order perturbation theory to calculate the transi-
tion probability between two discrete states of the
combined system of nuclei plus electrons. We sum over
all electrons, taking into account Fermi statistics, to
obtain 8'„, the transition probability between two
nuclear states. Labeling nuclear states again by n and
m, electron states by k and s (for spin), the transition
probability per unit time between two states of the
combined system may be written

P„x, , „k,——(2~/k) l
(eksl&sI. lmk's') l'

Xg (Eg—E,—her), (26)
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case p= Vmk/2grsk', so that where
trXz'= 1'„'lg'Hp'(2I+1) ~I(I+1)/3, (36)

16 m'V'kg' sin'kgb, , t
v'v-'l x(o)I', f(E')

9gr Ig (kg R,;)' ~

)&[1—f(Ef)]dE;. (29b)

As we have remarked, f(E,) appears in Eq. (29a)
because it takes an electron to Rip a nucleus and
[1—f(Er)] appears because there must be a hole
available for the electron after having Ripped the
nucleus. E~—E; is the difference in Zeeman energy of
the initial and final electron states; the electron changes
its kinetic energy slightly to conserve total energy for
nucleus plus electron. Since Ey —E,((kOJ., the difference
between E~ and E, can be ignored in the normal phase.
The factor sin'kgR, ,/kg, 'R,gs reflects the correlation in
the relaxation of two nuclei arising because the electron
wave function spreads over many nuclei. The correlation
vanishes if the electron wave function has zero wave-
length. When Eq. (28) is substituted in Eq. (24), and
the commutator [X,I; ] introduced, then

I(I+1) '
trKgg =—y h (2I+1)~

X P (f.gg")'. (37)
~, 2', 0r, P R;&

C. Temperature Dependence of R„

The entire temperature dependence of R„appears
in ggpp Eqs. (29a) and (29b). In fact, it is contained in
the expression

In our case Ey —E,((kT&(Ep, where Ep is the Fermi
energy; since f(E)[1—f(E)] is large only within about
k8 of Ep, we obtain

Rcc p (E)f(E)[1 f(E)]dE—=p (Ep)k8 (39)

R=—= (—1)( P gg;; tr([X,I; ][X,I,,])/2 trX'. (30)
Tl s, gg, cl

, f-s"I'-I g, (32)
~,i.o, P E;~3

where f gg" are angular factors involving the direction
cosines of I, and I; with R,, Evaluation of the terms
in Eq. (30) for i=j (according to Appendix I) shows
that

P gg;, tr[X,I, ]'=ggppP tr[Xz, Ig, ]'+tr[X(gag, I, ]'. (33)
s, a

Also
trX'= trXz'+trXdv'.

There are additional terms involving a;; for i / j.These
terms are smaller than the terms for i= j (shown
above) by at least the factor sin'krR, ,/kF'R, gs which is
much less than one. Consequently, these terms are
dropped here.

Substitution of Eqs. (33) and (34) into the relaxation
expression, Eq. (24), gives the final result:

trXz'+2 trXgg'
)

trXz'+ trXss'

1
&=—= +Oo

~I
(35)

For our case X=Xz+Xqq, the Zeeman and dipolar
portions, respectively; that is,

Xz= —y~kHp Q' I"
Also

(I,"R,;) (I,"R,;)

', ~R; R;

at any given 6eld. Consequently, the entire temperature
dependence of R at any external Geld comes from
Fermi statistics and is a linear dependence. The com-
plete expression for R for strong external 6eld, shown
in Appendix I, agrees with previous one-electron calcu-
lations by Korringa" and by Overhauser. "As pointed
out in Sec. A, the prediction of linear temperature
dependence agrees well with experiment both in strong
and weak 6elds in aluminum and other metals.

D. Field Dependence of R„

From Eq. (34) we have at any given temperature,

R(H)/R(po) = (Hs+2A)/(IP+A), (40)

where H is the external field and A=Hs trXd(P/trXz
which is independent of H. Equation (40) agrees with
a previous calculation by Redfield. "It predicts R„(0)/
R„(~)=2, whereas 3.35+0.35 is found in aluminum.
However, a form similar to Eq. (40), R(H)/R(po)
= (H'+A')/(Hs+A) shown as the solid line in Fig. 2,
fits the data very well. Measurements in aluminum by
Anderson and Red6eld" agree well with ours. A dis-
crepancy of this size is much too large to explain by
taking into account the terms of Eqs. (32) and (33) fori' Calculat. ions of the effects of p and higher angular
momentum components in the conduction electron
wave function give a very small correction in the
wrong direction. The disagreement is not understood
at present.

Recent data in lithium and sodium by Anderson and
Redfield" show that R (0)/R„(eo) is very close to the
theoretical value of 2 in these metals. This suggests

"A. Anderson and A. G. Redfield (private communication).
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that the difhculty is not with the fundamentals of the
present theory of the field dependence, but rather with
its application to aluminum.

Temperature ('K) 8/&c

TABLE II. Temperature dependence of the superconducting
relaxation rate.

VI. EXPERIMENT AND THEORY IN THE
SUPERCONDUCTING PHASE

A. Experirnenta. l Results

1.26
1,127
1.06
0.945

1.2a

0.99
0.963
0.906
0.81

0.28

1.1 ~0.2
1.6 &0.2
2.55~0.2
2.2 ~0.3

0.05 to 0.15
The data for the relaxation rate in the supercon-

ducting phase, E„are shown in Table II. For purposes
of comparison, we have extrapolated the values of the
normal relaxation rate in zero field, R„(0) below the
critical temperature, and have plotted R,/R„(0) versus
T in Fig. 3. A point obtained by Reif' (using saturation
technique in colloidal mercury) is included in Fig. 3.
Recently Anderson and Red6eld" have extended the
data in aluminum by using adiabatic demagnetization
of a paramagnetic salt to cool their sample. In this
manner they reach 8/8, =0.35. Their data agree with
the general form of the points in Fig. 3—a sharp rise
in R,/R„(0)—2 just below the critical temperature
followed by a slow falling off for lower temperatures.
By 8/8, =0.5, R,/R (0)=1.From these data one would
conclude that, for temperatures just below the critical
temperature, R, is considerably greater than R„(0),
whereas for temperatures near absolute zero, E, is
much less than R„(0).

I.O
.8

KQK A

el III y

Io
8'

6

l
~ '$
I

/ rS
I

I

////.2 ,5 .6 .7 .8 .9 I.O
QI CURVE FOR SCS (MODIFIED) gy)s J
Q2 CURVE FOR BCS(MODIFIED);~eI Ol

CURVE FOR BOSfUNMODIFIED) E7fJJaats I aH

FIG. 3. Relaxation rate in a superconductor, R„relative to the
zero-6eld value extrapolated from the normal state, R {0),versus
reduced temperature e/e, . The three theoretical curves using
BCS theory are described in the text.

B. Thoro-Fluid Model Theory of R,

Of the various theories of superconductivity that
have been proposed, the simplest theory that has had
any degree of success is the "two-Quid" theory. 4 It
supposes there to be two diGerent kinds of electrons,
i.e., normal and superconducting ones. Reasonable
assumptions for a two-Quid model would make the
relaxation rate always slower in the superconductor
(or in any event either always slower or always faster),
so that nuclear spin relaxation does not seem capable
of interpretation in terms of this theory.

a Data on Hg by F. Reif, Phys. Rev. 102, 1417 (1956).

C. Bardeen-Cooper-Schrie6'er Theory of R,

Recently, Bardeen, Cooper, and SchriefFer developed
a theory of superconductivity' based on the attractive
interaction between electrons which results from virtual
exchange of phonons if the phonon energy, Ace, is greater
than the difference in energy of the electrons involved.
When this attractive interaction is stronger than the
screened Coulomb repulsion, it is energetically favorable
to form the superconducting state. We shall not
attempt to review their theory, which is quite clearly
set forth elsewhere, ' but we shall mention the key
points essential to calculation of nuclear relaxation.

For our calculations we need to know the electron
wave function of the superconductor, the energy of the
wave function, and the appropriate statistical factors
which describe thermal excitation. BCS describe the
ground state of the superconductor at absolute zero as
a linear combination of Bloch states in which the
momenta and spins of pairs of electrons are correlated;
that is, labeling states by wave vector k, and spin
quantum number s (s=&-,'), BCS consider cases in
which the states k, s, and —k, —s are either both
occupied or both vacant. Now for a normal metal at
absolute zero, states lying above the Fermi energy,
E'g, are unoccupied, those below occupied. In a super-
conductor the BCS ground state contains fractional
occupation of pair states above the Fermi energy, and
correspondingly vacant pair states below. It is con-
venient to express the wave function in terms of the
electron creation and destruction operators, ck, ,* and
c1,,„the pair creation operators are then b~*=c~g*c 1,g*.

Denoting the vacuum by 40, BCS And that the
wave function, its, at absolute zero is given by

IIo=Q((1—h )l+h lb *]C,

where hq is a function of k given by BCS.
The term (1—ha)'Cs corresponds to pair state k

being unoccupied, whereas (h~)'bq*Ce corresponds to
occupation. In a eornsal metal, hk=1 for a state below
Ep, and hk=0 for a state above. BCS determine hk for
the superconducting ground state by minimizing the
total energy of the conduction electrons, using Eq. (41)
taking into account the electron-phonon and screened
Coulomb interactions mentioned above. It should be
emphasized that the excited pairs which form the
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superconducting ground state do rot result from thermal
excitation but rather from choosing a linear combination
of Bloch states to obtain a lower energy; BCS have
introduced the terminology "virtual pair" to emphasize
this fact.

Excited states corresponding to temperatures above
zero are obtained by allowing a fraction of the electrons
to be thermally excited, the remainder being formed
into virtual pairs as in the ground state. Two types of
thermal excitation are possible. First, there may be an
electron in state k, s while state —k, —s is unoccupied—so-called "singles. " Second, there may be thermally
excited pairs (occupation of both k, s and —k, —s).
BCS have called these "real" pairs to emphasize their
thermal origin. The function which speci6es a real pair
in state k must be orthogonal to one specifying a virtual
pair in the state. Accordingly, BCS choose the function

[(1—hg) 'by* —ha']4 p (42)

—hg &jII ck"*}Cp, (43)
nfl

where k", k', and k specify the states occupied by
singles, . real pairs, and virtual pairs, respectively.
(Phase space is exhausted by the three types. ) Using
Eq. (45), BCS minimize the free energy (E TS) to-
determine the equilibrium values of the probabilities
of occupation by singles, real pairs, and virtual pairs
s(8), P(8), g(8), and of the quantity h&(8) at a given
temperature.

To calculate the nuclear relaxation time, E„one
must know 8', the transition probability per unit
time between two nuclear states, N and m. (See part V.)
To calculate 8 for the superconducting phase, one
must calculate the matrix elements of 3C8~, the nuclear
spin-electron spin interaction, using the electron wave
function, Eq. (43). The matrix elements must be
squared, multiplied by the appropriate statistical
factors (s, p, and/or g) and summed over all electron
coordinates, taking into account conservation of energy.
In as much as the entire temperature dependence of R,
or E„occurs in 8'„, the ratio of E, to R at zero 6eld,
R,/E (0), versus temperature can be obtained from
lV„directly. A detailed calculation is made in Appen-
dix II using second quantization to treat the electrons.

XVhen one performs the multi-electron calculation of
8 for the superconducting state, W„~, outlined
above and derived in detail in Appendix II, one obtains
an expression of almost the same one-electron form as
that for the normal state W„~. From Eqs. (28) and
(29) (part V), one should note that the entire temper-
ature dependence of 8' ~ occurs in an integral

to specify real pair occupation of state k.
The most general wave function which is orthogonal

to the ground state (and thus which corresponds to
excitation) is taken as

0-.= {IIL(1—h~) '+he&~*jII[(1—h~ )'&'*

involving the density of electron states and Fermi
functions:

~(E')~(E~)f(E' 8)L1 f—(E»8)jdE' (44)
~o

Ef and E; are conveniently measured relative to the
Fermi energy, Ep, and differ by a nuclear Zeeman
energy, as discussed in part V.

The expression for W„~ is the same as that for
W ~ except that the integral in Eq. (44) is replaced by

C(E;,E,,8) =1y[eg(8)/E;E, j. (4&)

Again, E is measured from Ep. The parameter eo,

having dimensions of energy, is a temperature-depend-
ent quantity characteristic of the super conducting
phase. ep versus temperature is shown in Fig. 4. p(e0)
=1.75h8, and ep(8) ~0 as 8 —+8.. BCS show that
2ep(8) plays the role of an energy gap associated with
excitations. Accordingly, the density of states in Eq.
(45), p„has a gap centered about Er, of width 2ep(8),
and is highly peaked near the gap edge.

The factor C(E,,Ef,8), which spoils the complete
one-electron appearance of F„8, is a two-electron
correlation factor that has its origin in the virtual
pairing in the superconducting state wave function;
a given initial and 6nal state may be connected by X',&L,

in two ways depending on whether the electron in kg
or that in. —kg is being scattered (see Appendix II).
Thus the matrix elements, when squared, will have
interference terms which become C(E;,Ef,8) when the
sum over electrons is carried out.

The factor C goes from about 2 for E; and E~ near
the edge of the gap to 1 far from the gap. BCS point
out that a similar expression comes when one is com-
puting other rate processes involving electron scattering
except that the factor C may be either 1+(ep'/E, Ef)

I.O

0.8-
&o(8)
~ (0) 0.6-

0.4—

0.2-

I

0.2 0.4
8x8,

0.6 0.8 I.O

Pro. 4. SCS energy gap parameter, e0, versus
reduced temperature 8/e. .

c .(E')~.(Ef)C(E',Ef 8)f(E'8)

X[1 f(Ef,8—)]dE,, (45)
where

&,(E)=0 for iEi «, (8)
=p(E) {E'/[E'—ep'(8) )}l for

~

E
~
)ep(8), (46)

and
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or 1—(ess/E;Et), the + or —sign being appropriate
to the particular process. Thus for ultrasonic absorption
the minus sign is appropriate. In this case, C goes to
zero for E; and Ef near the gap. The result is that
ultrasonic absorption" should and does experimentally
drop rapidly as one goes down in temperature from the
critical temperature, whereas the nuclear relaxation
rate should and does go up and then down. Eo oee-
electron theory can simultaneously explain both results
Consequently the comparison of the nuclear relaxation
(or for that matter infrared absorption" ) data neith data
on ultrasonic absorption prosides direct verification of the

basic feature of spin mome-ntum correlation(thro, ugh
virtual pairing) of the BCS theory.

Even without evaluating R, by Eq. (45), one can
see that R,/R„(0) given by the BCS theory will have
qualitatively the correct temperature dependence
[R,&R„(0) just below 8„R,&R„(0) near absolute
zero). The factor f(1—f) peaks about the Fermi energy
and roughly speaking cuts oG the integral a distance k0

above and below Ep. When the gap is small, the total
number of states within the energy interval &kg is
nearly the same in superconducting and normal states:

p+k8 ~+k8

p,dE— peed&

However, p, is peaked where as p is Qat. Therefore

(+ks p+ss

p, 'dE& p„'dE and R,&R„(0), (49)

and the superconductor has faster relaxation.
When 8—0, p, is much smaller than p„ in the interval

+k8, and R, &R (0). In fact, the exponential tails of
the function f(1—f) make R,/R„(0) approach zero
exponentially with 1/8 as 8 goes to zero.

If the difference between electron energies E; and E~
is ignored in evaluating E„as is legitimate in evaluating
the relaxation in the normal state, the BCS result for
R,/R„(0) diverges logarithmically. Of course, the
Zeeman energy, p,„IIi„,prevents this catastrophe, but
the fact that p Hi„&(eo results in the BCS value of
R,/R„(0) being quite a bit larger than the experimental
values. The dotted curve in Fig. 3 is that calculated
using E~—E,=p„Hi„. Indeed, p„H~„ is much less than
the expected energy breadth, BE, of the electron spin
energy levels. Since the BCS theory does not include
such an energy level breadth, the calculation of R, must
be modided when p„Hi„&(BE. A breadth such that
p Hi„(&8E&(sp(8) would limit the peaking in p„so
that the larger the breadth, the lower the calculated
value of R,/R„(0).

To correctly put such a breadth into the BCS theory,

"R.W. Morse and H. V. Bohm, Phys. Rev. 108, 1094 (1957)."R.E. Glover and M. Tinkham, Phys. Rev. 104, 844 (1956);
108, 243 (19S7).

one would have to allow for electron scattering sects
in the construction of their theory. However, a fairly
natural way of including electron state lifetime effects
is to modify the usual expression for the transition
probability per unit time between two states to take
into account such a level breadth. The usual expression
for S';, is derived from

sin'[(Et —E,ah o)it/2h]
W'.;,=4i V,;i' p(E;)dE, . (50)

h't(E, —E Rhoi)'

Instead of regarding p(E;) as slowly varying and taking
it outside the integral to obtain the usual expression
for 8';, , one can introduce normalized breadth func-
tions, A(E), centered about E; and Ef and having a
width BE; the usual calculation for the relaxation rate
using 8';; would then be carried out using Eq (50.)
along with D(E E;) and D—(E—Et). However, the
result of the procedure is the same as if one kept using
the usual transition probability expression for W;; and
applied the breadth functions instead to the density of
states, p„which appear in the relaxation rate expression
R,/R (0), Eq. (45).

Then p, (E,8) would be replaced by a new function
p, '(E,8) given by

p, '(E,8) = p, (E',8)6 (E' E)dE', —

I'~(E -E)dE =1,
(51)

for both E; and E~. The simplest breadth function for
calculational purposes is a rectangular function of total
width 25E and height 1/2bE, centered about E, or Et.
One would expect ti„Bi„«bE((so(8=0), so that in the
modified relaxation expression (with p, '), Et could be
set equal to E;. Under these circumstances, the ratio
of relaxation times is given by

Equation (53) was split into integrals over four
regions: 0 &&x( rl

—8, rl
—b ~& x ~& rt+8, rl+8 (~x ~& 1.1q, and

1.1q~&x~& ~. The first three were evaluated by pulling
f(x) [1—f(x)]outside, giving it the value f(rt) [1—f(rt)].
The last integral, for 1.1g ~& x ~& ~, was evaluated
numerically by using p, rather than p, ', as it was
expected that the B needed would be less than 0.1g to
get agreement with experiment.

R,
=2 [p,'(x, il,b))'~ 1+—~f(x)[i—f(x)]dx, (52)

R„(0) 3 s L x')

where x=E/k8, b=bE/k8 and rt=ss/k8. We use

p, '=0, 0&~&&-B
= (1/28) [(x+8)'—rts)', rt

—8 &&x & it+8
= (1/»)([(x+b)'-~']-:-[(x-b)' —~']-:)

x& rl+b. (53)
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The result for R,/R„(0) using Eqs. (52) and (53),
for two values of 8E/eo(8=0), are shown in Fig. 3 as
the solid curves. The theoretical curves all have the
correct qualitative features but peak at a temperature
somewhat high by comparison with the present experi-
mental points. Two comments should be made. First,
the manner in which the level width was introduced is
reasonable but somewhat artificial; it is not clear what
would be the result of a more correct theory, containing
electron lifetime effects in its formation. However, since
the result for R, depends only logarithmically on the
width, one would not expect significant change in curve
shape to result from the correct theory. Second, the
appropiate breadth might well be temperature depend-
ent. This would mean that one should move from one
of the curves on Fig. 3 to another as temperature
changes, presumably using a smaller value of 8E/eo (8=0)
as the temperature decreases. A curve featuring such
a 8E/eo(8=0) would fit the data for 8 just below 8.
somewhat better than the curves shown.

One possible estimate of the level breadth could be
made in terms of the time needed to cross the 10-micron
particles. This gives a value of about unity for 6E/
eo(8=0). A better fit is found with a value between 0.1
and 0.01. Perhaps the smaller numbers express the idea
that an elastic scattering may be removed by a redefi-
nition of the eigenstates. Thus, even for particles of
dimension b for which Ab/no))k8, (where no is the
velocity of electrons at the Fermi surface), the critical
temperature is unchanged.

VII. DISCUSSION OF SPECIAL DETAILS

Most of the data were taken with an unannealed
sample. The signal observed after the field-switching
cycle obeyed the exponential decay law very well.
However, some loss of signal was observed which was
independent of the relaxation process when the sample
became superconducting during the cycle. The pow-
dered sample also had a slight tendency to supercool.
(H, for passage from normal to superconducting phase
was less than H, for the reverse passage. ) The spurious
loss of magnetization was attributed to nonadiabatic
phase transitions for some of the nuclei during the very
rapid phase changes in the supercooled portions of the
sample; that is, the nuclear spins in some regions of the
sample could not follow the rapidly changing magnetic
held and were "dephased" relative to the spins in the
rest of the sample. Spin diffusion from these dephased
spins would undoubtedly aBect additional spins near
the dephased ones, but only within a distance of about
10 ' cm in the times important for our experiment.
All such spins would be lost in contributing to signal.
That supercooling was the cause of the spurious magnet-
ization was made clear by annealing the sample. This
resulted in pronounced supercooling (up to 50% change
in H, ), and almost all of the magnetization was lost.

In this experiment considerable trouble would be

be caused by Aux trapped within the aluminum particles
after transition from normal to superconducting phase
has been made. The nuclei in the regions of trapped
Aux would be in the normal state, so that they would
have a relaxation time diferent from that of the nuclei
in the superconducting regions of the samples. Since
for our points (just below the critical temperature) R,
is greater than E„, this e6ect would give rise to a long
tail in the plot of 3f' versus t. No such tail could be
found in any of the data, indicating that the amount of
trapped Aux, if any, was small. The eGect of a sma/1

contribution of trapped Aux would be to lower slightly
the value of E, interpreted from the data; however,
the change would be less than the present experimental
error. In addition, the detuning of the sample coil upon
transition from normal to superconducting phase was
about what it should be according to the Q of the coil
and the sample-Ailing factor, again indicating a small
amount of trapped Aux, if any. It is reassuring that
Cochran, Mapother, and Mould' found no evidence of
trapped Qux in pure single crystals of aluminum.

VIII. CONCLUSIONS

In the normal phase nuclear spin-lattice relaxation
in a given field is characterized by a single relaxation
time (to within an experimental uncertainty of about
5%).This means that as a result of adiabatic demagnet-
ization to a low held from thermal equilibrium in a high
field, the nuclear spins relax as if their density matrix
were diagonal at the low fieM and. characterized by a
spin temperature.

The ratio of low-field to high-Geld relaxation rates in
aluminum disagrees with the theoretical result in
aluminum. Recent data in lithium and sodium by
Anderson and Redfield show that the external held
dependence of relaxation rate is very close to the
theoretical result in the alkali metals. This suggests
that the difficulty with aluminum is not with the
fundamentals of the present theory based on the spin
temperature assumption but rather with the application
of it to aluminum. In contrast, the temperature
dependence of the relaxation rate at a given field seems
to obey the predicted linear temperature dependence
very well in aluminum.

In the superconducting phase the nuclear relaxation
is characterized by a single relaxation rate. E, is greater
than R„(0) for temperatures just below the critical
temperature; for temperatures near zero, the reverse
is true. The data are in semiquantitative agreement
with the predictions of the theory of Bardeen, Cooper,
and SchrieQ'er as modified to take into account broad-
ening of the electron levels. Their result is similar to
that of a one-electron, energy-gap model of supercon-

ductivity except for a factor that expresses the effect of

the correlation of electron pairs of opposite spin and
momentum. The nuclear relaxation, when contrasted
with data on ultrasonic absorption, confirms the
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Xsz, =P (8~/3) y,y„k'I; S,8(r;—R,),
2t 7

(54)

which is Eq. (25) of part V. The nuclear states are
eigenfunctions of X=Xz+Xdq, the Zeeman and nuclear
dipolar portions, respectively. A Hloch function will be
used for the electron wave function: X=XI,q, e

—'"'7
where k is the wave vector and g; is the spin function.
Using k and s to represent the electron states, the
matrix elements of Eq. (54) may be written

P,f P(8'/3)y, p fi,'(I
I
I;

I

m——) - (s
I S;I

s')

Xx, (R,)x~(R,)e-'&'t —"t'~ R'. (55)

Now X~(R,) is independent of R;. It will also be
regarded as independent of k, since Xk(R,) is a slowly

varying function of k, and the only wave vectors
involved will be those close to kp, the wave vector
corresponding to the Fermi energy. Hence

I;&=(8 /3)v.v.&'x(0)'Z( II,
I )

essential idea of pair correlation which is central to
the BCS theory.

Further experiments are being undertaken by one of
us (LCH) in aluminum, tin, and some alloys to obtain
a better quantitative check of the BCS theory and to
obtain a quantitative estimate of the appropriate
energy breadth of the BCS states for this type of
experiment.
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APPENDIX I. CALCULATION OF R„

We first wish to calculate H/', the transition proba-
bility per unit time of a nuclear spin transition between
two nuclear spin states m and m, induced by the nuclear
spin-electron spin interaction. This interaction may be
written

Using perturbation theory, we have

W = p (2tr/5)
I
v;fl'B(E, —Ef—Std), (57)

k, k', s, s'

where E; and E~ are electron energies and &co is a
Zeeman energy.

Calling the density of electron states in energy p(E),
and introducing R;,= R,—R;, and the angle S between
k and R;,, S' between k' and R... substitution of Eq.
(55) in (57) gives

(2tr ~
64tr'

y.'v.'54I y(0) I4

Ea 9

I sin8d0 sin8'd8'
dEdE'p(E) p(E') f(E)X

2, 7', s, s'

X[1—f(E')](n
I
I;

I
m) (s I

S
I
s') (s'

I
S

I s) . (m
I I; I

n)

Xe—skBst' costesk~Rgt' cost'p(E E&~k~) (58)

64m'k'
~'~-'I x(o) I' &(~ I

I'- Im) (mlI -
I
~)

9 2t 7

sin'ATE;,
X— p(E;)p(EI)f(E,)[1 f(Ef)]dE,, —(60)

(k pR;;)'

where E,—Sf=&co is a Zeeman energy difference,
Equation (60) may be written as

W„= P a,;(elI;.Im)(mlI;. Ie)
2t 7, Q

(61)

[which is Eq. (28) of part V]. As remarked in part V.
a;;=[sin'ktE, ;/(ktR;;)']a;,&(a;;, so that the terms in

Eq. (61) for i' are dropped here. Now

E„=[P W„(E„—E„)']/2 P E„' (62)

[which is Eq. (24) of part V]. Here

Q W„„(E„E„)'—
= & a,,(~II;.Im)(mII;. Im)(E„—E )'

nm27a

P a,;(el[X,I, ]lm)(ml[X, I; ]le)

where f(E) and [1—f(E')] are the probabilities that
the initial electron state is occupied and the final state
is vacant, respectively. Using

P (sls. ls')(s'ls. . ls) =trs.s.
s, s

= ~38 (2s+1)s(s+1)=-', 5 „, (59)

and performing the integrations over 0 and 0', there
results

7

. (slStls')e ""' """' (56)

= —P a;;tr[X,I, ][X,I; ], (63)
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where X=Xz+Xdd. We evaluate only the terms for
i= j.Now

—p tr[X,I; ] = —Q{tr[Xz,I; ] +tr[Xdd, I, ]'

regarded as an operator, expressed in terms of the
complete set of Bloch states for one electron with
annihilation operators as coefficients. That is,

P=P cg, ,44k, (r),
k, 8

(2')

where

and

+2 tr[Xz,I, ][Xdd,I, ]), (64)

Xz= —y 5Hp +4 Ii*
2jg2

Xdd 2 2 fad IiaIkp)
j,A:, n, p g~gs

(f-d")'
X Q =4trXdd2.

i~i 't, i, ~, P Pi;~.

Thus, substituting in Eq. (63), we obtain the numerator
of Eq. (62):

Q W„(E„—E )'=a, ;2 trXz2+4 trXdd'. (65)
f4 4m

as in Eqs. (31) and (32) of part V. Consequently, the
third term in Eq. (64) has an odd number of spin
operators, so that tr[Xz,I ][Xdd,I, ]=0 Using . the
commutation laws of the l, , one can show that

—tr[Xz,I,„]2=2' 252H21V(2I+1)~I(I+1)/3=2 trX '

and
I(I+1) '

—tr[Xdd, I, ]'=2y„454(2I+1)~

where the up, ,(r) are one-electron Bloch functions for
wave vector k and spin s, and the c~, . are the annihi-
lation operators for the Bloch state labeled by k and s.
The complex conjugate, ck, ,*, is the creation operator
for the Bloch state k, s; both operators obey the usual
anticommutation relations. Substituting Eq. (2 ) in

Eq. (1') gives

Sx
Xsl.——~,y„52 Q I; Q I Cg, *44'., *(r)S

k, k', s, s'

X8(R,—r,) c~, ,44~, ,(r)dr. (3')

Since I.S=I,S,+-,'[I+S +I S+], where I~=I,aiI„
and S~=S +,S„,BCgl, will consist of three parts, XqL,„

and Kql. . The spatial integration for each
operator yields

~

44(0)
~

' with the assumptions of part V
that N&(0) is a slowly varying function of k near kp
and sin'k pR, ,/(k&R;;)2 0 fo—r i&j. Finally, using
(tie,

~

S,
~

m, ) =m, and (tri,+1
~

5+
~
tN, ) = (tt4

~

S
~

ttt, +1)
= [S(S+1)—tm(ttp+1)]l= 1 for S=-2, we obtain

Xsr„= (8tr/3)y. 'y. 'k'~44(0)~' P ,'I., —

j,k, k'

X (cg't ckt ck'4 cgi))
Now

z 2 —tr(Xz+X )2—trXzp+trXdd2 (66) X&&+= (8tr/3)Va Va & IN(0) l 2 2I+iC&'4
j,k, k~

Substituting Eqs. (65) and (66) in Eq. (62) gives the
final result [Eq. (35) in part V],

(4')

E =c;
trXz'+2 trXddp

trXz'+trXdd'

For the free-electron case, from Eqs. (60) and (61),

16 m'V'k p'
v'v-'Ix(0) I' ~f(Z)[1 f(~)]«—

a

APPENDIX II. CALCULATION OF NUCLEAR SPIN
RELAXATION USING SECOND QUANTIZATION

When the conduction electrons are treated using
second quantization, but the nuclei are treated using
ordinary quantization, the nuclear spin —electron spin
interaction has the form

Xzr, = (8tr/3)y, 'r„h' P; I,"(P, Sfi(r; R,)P), (1')—
where S is a spin operator for one electron and. P is

Since trXz' H', limH R„=a;;.Thus we obtain the
high-field R„=(16/9tr) (m'ki 'y.'ya'/k') V'

~
g(0)

~

'k8, in
agreement with Overhauser" and Korringa. "

XBJ+ A Z 2 BI+Pc&'4
k', k(pairs)

(5')

XzJ, =A P P 2I 4cg~t c
k', k(pairs)

As discussed in part V, to calculate the nuclear spin-
lattice relaxation rate it is necessary to know 8'„, the
transition probability per unit time between two nuclear
states m and e, induced by K&I.. To obtain 8"„,
one must calculate the matrix elements of
(tt,XBI, ljl). . . , g, g which will in general depend on
both initial and final state electron quantum numbers.
Each of the matrix elements must be multiplied by the
statistical weights of electron states involved, and
finally a sum carried out over s, s', k, and k' to obtain
5'„.Since the BCS wave functions contain the electron
states paired off in the grouping k, —k, we shall
relabel the k's and k"s in Eq. (4') introducing
A= (8tr/3)y. y kp~l(0) ~2, to obtain

Xsz~=A p p 2I»(ca~t cat —c a 4 c vi),
j k', k(pairs)
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—Ii. '7II "*)c (6')

where bq*=ci,t*c i, i,
* (the pair creation operator), and

k, k', and. k" specify states occupied by virtual pairs,
real pairs, and singles, respectively. BCS minimize the
free energy, E—TS, using Eq. (6') to determine the
equilibrium values of statistical weights of singles, real
pairs, and virtual pairs s(8), p(8), g(8), and the coeK-
cients hp(8) corresponding to a given temperature.

Their results are given most simply in terms of an
electron energy Ei,=+(pi,'+ ppp)& instead of the usual

energy of the Bloch state, e&. ~0 is a temperature-
dependent parameter characteristic of the supercon-
ductor as evaluated by BCS.' pp(8) versus 8/8, is shown
in Fig. 4. pp(0) = 1.75k8. ; pp(8) varies slowly near
8/8, =0 but pp(8) ~ 0 fairly rapidly as 8/8, goes to 1.
BCS show that 2pp(8) plays the role of an energy gap
associated with excitations. The density of electron
states in E&, p„also displays this gap:

de dN dew (
p, = = =p

/ I
for

dEy d pi, dEi, &Eg' —pp')

where all energies are relative to the Fermi energy.
In terms of E~, BCS find that the results for the

probabilities s(8) and p(8) are the same as in the normal
metals; defining a function f(E~,8) which looks like
the normal metal Fermi function,

f(E.,8) =
eEp/kP+1

(7')

BCS find that the thermal equilibrium values of s(8)
and p(8) are

(8')s(8) =2f(1—f) p(8) =P,
as in the normal metal. Since g(8) = 1—s(8) —p(8), one
has

g(8) = (1—f)'. (9')

Also BCS And that at thermal equilibrium

h(Ei„8)=-', L1—pg/Ei, 7. (»')
BCS define Ej, to be positive, which means that f(Ei,)
describes electron occupation for k & k p and hole occu-
pation for k(kr. From the form of f(E~), the single

particles and excited pairs form a set of independent
fermions with a dispersion law Ei,=+ (pi,'+ pp )~

The minus sign occurring in the I„-term has its physical
origin in the fact that electrons of spin up and spin
down produce magnetic fields at the nucleus of opposite
sign. This fact is important because with a supercon-
ductor one gets interference between the two terms.

The BCS wave function is discussed in part VI;
they choose

c = fIIL(1—Ii.)'*+h„'fi.*7IIL(1—&„)'&'*

The only aspect of the calculation remaining to be
discussed is the energy of wave function. The energy
E& plays an additional role here. Let us consider two
excited states 1 and 2. They will diGer because of the
assignment of states among the three types of terms:
s, p, or g. As a result the total energy, Wi, of the
electrons in state 1 will differ from 8'2, the total energy
in state 2. BCS show that

Wi —Wp=pi Eg—Qp Ep,

where we inc1ude in the sum the value of E~ for each
electron which is found in a single (s) or a real pair (p);
if k is used for a single, Ei, appears once, whereas if it
is used as a real pair, E& appears twice. Consequently,
because of the Eqs. (7') through (11') we do not need
to distinguish between real pairs or singles, but we can
merely compute the probability of occupancy and
energy as though any single Bloch state k had an
energy E& and a probability of occupation given by the
Fermi function of energy E&.

In light of the above, the fact that the Zeeman energy
diGerence between initial and 6nal states in zero field
is very much less than the gap energy, pp(8), means
that there are only three types of matrix elements for
which conservation of energy is possible:

I. Single+single &—+ real pair+virtual pair.
II. Single+ real pair ~ real pair+single.

III. Single+virtual pair &-+ virtual pair+single.

These will be called types I, II, and III, respectively.
At 6rst it looks peculiar to see a transition such as I
which does not appear to conserve particles. Detailed
study shows that such is not the case since each pair
state is partly occupied and partly empty. We use the
empty real pair with occupied virtual pair, or con-
versely. Since the scattering operator c&, *ck, conserves
particles, we need never fear that we shall violate
conservation of matter. Because the Ksg operators are
of the form c~ *c~ corresponding to an electron scatter-
ing, each of the three types can be further divided into
four cases: k &k p and k' & k p, k &kg and k'& kg, k &k p
and k' &kp, k &kp and k &kg. They will be referred to
as "above-above, ""below-above, " "above-below, "and
"below-below. " Since the BCS theory treats electrons
and holes on equal footing, as does Ã8~, one need only
calculate the "above-above" and "above-below" matrix
elements for the three types, I, II, and III, to get the
complete answer.

Finally, two further subdivisions arise. If the energy
of a single in k is designated by E and in k' by E', there
is a group of matrix elements of types I, II, and III
for which the energy difference between initial and
fnal state is E'—E; for the second group it is E—E'.
The various matrix elements for each operator must be
divided into these two groups to keep track of conser-

vation of energy.
A typical matrix element will now be calculated for
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illustration. Only that portion of the wave functions
dealing with the states k and k' will be shown. Let us
consider a matrix element using 3C81„.One should note
that the initial state will be connected to one part of
the final state by ck t*c» and to another part of the
6nal state by c»*c k &, so that interference will result
for these two states. This result arises because either
the electron in kg or in —k'g can be scattered. A sign
change will take place due to the difference in sign
between c~ g*c» and c k g*c ~g in X'81,

Type I.—"Above-above" —Group E' E. —

Initial state: ckg*c ~ g*co.

Final state: [(1—hk)*+hk'ckt c

X[(1 hk) 'ck&t c—k'g kk']4 0.

The matrix elements with the parts of 3Cql. , are

(
I ~

/excited &~~SLY'excited)

= (zI&o, [(1—hk )~c k gck't kk&$[(1—hk)&

+hk c—kicktf(ck't ckt ol' c k$ c k $)ckt c k g C&e).

We make use of the anticommutation rules for the
operators. The result with ck t*ckt is (1—hk )&(1—hk) z;
that for c kg*c k g is (—)hk:hk l. Thus for this matrix
element,

g.„,',SC„,P.„.) =a P P -', (niI. , im)
j k, k'(pairs)

X[h,.—:h,—:+(1—h, .):-(1—a,)-:$, (»')

where e and m label nuclear states.
The same result as Eq. (12') is obtained for Xsl~

and 3Cql. with I„replaced by I+, and I,. Again the
initial and 6nal states of P,„, are connected in two
di&erent ways for both BC&1.+ and BC&1. since both the
electron in k or that in —k may be scattered. The fact
that BCql.„BC81+,and BCPL, give the same result here
is a reflection of the equivalence of the x, y, and s
directions for spin scattering processes in zero field.

The above matrix element is typical of those which
must be calculated. Each of the matrix elements, when

squared, must be multiplied by the appropriate sta-

2'
W„„s=—A' Q

i, j k, k'(unrestricted)

(niI, im). (mi I;in)

t& eel
xf(1—f')i 1+ l~(E' —E+Ii~). (13')

EE')

Changing now from sums over k and k' to integrals
over E and E' and introducing dnk p, (E)dE an——d
dnk p, (E')dE', on——e obtains the final results, Eq.
(45) of part VI for W„s:

2~ (niI, im) (miI, in) t-
W =—A'Q ) p (E)p (Eg)

k 2

x
I

1+ if(E.)[1-(Ef)jdE, (14')
E,Efl

where Er— ,E= „pIIiee adnp, is given in Eq. (46) of
part VI.

tistical factors giving the probability of occurrence of
the initial state of the matrix element; the weighting
factors can be written down directly in terms of s, P,
and g, and substitution in terms of f can be made
using Eqs. (8') and (9'). The weighted, squared matrix
elements for each operator, XBI.„BC81.+, and 3Cgl. ,
must then be added in two groups, one for E~f—E;
=E—E' and the other for Ef—E;=E'—E, as previ-
ously commented.

All the squared matrix elements have in common
the term

[hk hk '+(1—hk)z(1 —hk )z$'.

Using Eq. (10') and the symmetry of electrons and holes,
this contributes a factor 1+e&&'/EE'.

The nuclear matrix elements previously obtained (in
part V) were in terms of I, I„, and I, rather that
I+, I, and I, which were more natural in the second
quantized calculation; a change back to I, I„, and I,
will now be made to facilitate comparison with previous
results. When all the additions are performed, one
obtains for 8'„~


