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Theory of Ultrasonic Cyclotron Resonance in Metals at Low Temperatures*
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The extent to which measurement of the propagation characteristics of circularly polarized acoustic
shear waves as a function of a magnetic Geld applied parallel to the direction of propagation can reveal
information about the band structure of metals is investigated theoretically. The interaction between the
electrons and sound waves is treated classically and is viewed as taking place via an internal electric 6eld
and by scattering modihed by the sound wave. The treatment is based on the combined solution of
Boltzmann's and Maxwell's equations for a free-electron model. A simple physical picture involving
cyclotron resonance is developed by means of which the treatment is extended to more general band models.
The most striking results are obtained in case the mean free path is larger than the wavelength. Under
these conditions, it is found that subject to certain restrictions, (1) absorption edges exist, the measurement
of which can be related to the curvature of the Fermi-surface; (2) the shape of the Fermi-surface may be
determinable from the shape of attenuation and dispersion curves within the absorption region; and (3) the
cyclotron frequency may be measured. The results (2) and (3) may be dependent upon the simplifying
assumption regarding the electron sound wave interaction.

I. INTRODUCTION

~VCI.OTRON resonance experiments have been of~ great value in exploring the band structure of
semiconductors. When applied to metals, however, such
experiments are faced with great difFiculties mainly
associated with the metallic skin eRects. It thus seems
natural to inquire to what extent the internal electric
field associated with a high-frequency sound wave can
be used for such experiments.

The magnitude of these internal fields was calculated
by Pippard in his treatment of the attenuation of high-
frequency sound waves in pure metals at low tem-
peratures. His treatment demonstrates that the very
large attenuations encountered under such conditions
are in fact due to interaction with conduction electrons.
On this basis, one would expect any magnetic Geld
dependence of the energy absorption by the conduction
electrons to be rejected directly in the attenuation.
Such a strong magnetic Geld dependence of the attenu-
ation was Grst found in experiments on tin by Bommel. '
The curve he obtained of the attenuation, A, versus the
applied magnetic field, H, for the case of H perpendi-
cular to the sound wave propagation vector, q, exhibits
structure, which it has been suggested' is caused by a
spatial resonance involving equality of the diameter of
the electron orbit and one-half the sound wavelength,
Similar results have since been obtained by others4 and
similarly interpreted.

In the present work, a theory is developed in more
detail than reported previously' for a configuration
more closely re1ated to the ordinary cyclotron resonance
situation. The situation considered involves a shear

wave with q parallel to H. (Their common direction is
taken to be the s direction. ) The lattice displacement, S,
and the resulting internal electric field, E, are thus
perpendicular to the magnetic field. Except when
otherwise stated, the entire discussion concerns circu-
larly polarized waves.

The main physical feature which characterizes the
proposed experiment and distinguishes it from the
usual cyclotron resonance experiment is the fact that
the velocity of the electrons, v, on the Fermi surface is
much larger than the speed of sound, c,. As a result of
this, the time rate of change of electric Geld experienced
by a conduction electron depends strongly on its ve-
locity component in the direction of propagation of the
sound wave; in fact the eRective frequency, co„ is
given by

&u.=oi(u, /c, +1),
where cv is the applied frequency. It was shown by
Pippard' that in the absence of a magnetic Geld, and
for the electron mean free path, l, substantially larger
than the sound wavelength, the attenuation of the
sound wave is due to a group of electrons having a value
of v, in a narrow range such that the electric field to
which they are subjected is always in a given direction,
i.e., such that co.=0. In the presence of a magnetic field
the projection of electron orbits on the xy plane are
closed and repeated at an angular frequency, co„called
the cyclotron frequency. For electrons describable by
an effective mass, m*, one has oi, =eH/m*c. At a given
value of magnetic field, there now will again be a group
of electrons with a definite value of e, which can gain

th b tt d t th U t f P'tt b h energy continuously from the electric field, namely* Based on a thesis submitted to the University of Pittsburgh,
in partial ful6llment of the requirements for the degree of Doctor those for which
of Philosophy. c ~i' A. Pippard, PhiL Mag. 46, 1104 (1955).' H. K. Bommel, Phys. Rev. 100, 758 (1955).

3 A. B.Pippard, Phil. Mag. 2, 1147 (1957). unless the magnetic field is so large that Eq. (2) cannot
'M~~~~, Bohm, and Gavenda, Bull. Am. Phys. Soc. Ser. II, be satisfied for any value of ~, on the Fermi surface.

3, 44 (1958).
'T. Kjeldaas, Jr., Bull. Am. Phys. Soc. Ser. II, 3, 180 (1958). Thus attenuation of the sound wave may be expected
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for values of magnetic field such that

or( —vo/c, +1)(cu,&oi(sp/c, +1), (3)

where vp is the Fermi velocity. Moreover, from the
nature of the variation with magnetic field in this
region, information about the distribution of electron
states over the Fermi surface should be obtainable.

In Sec. III, we return to a demonstration of the
utility of the absorption edges implied by Eq. (3) for
determining the Fermi surface. In order to put the
intuitive ideas discussed on a more substantial basis and
to determine the sample purity required to obtain ade-
quate resolution, we examine quantitatively in Sec. II
the magnetic field dependence of the attenuation and
dispersion of the sound waves for a free-electron model.

II. FREE-ELECTRON MODEL

The magnetic Q.eld dependence of the propagation
characteristics is calculated by a procedure in which
the electron-sound wave interaction is treated com-
pletely classically. The calculation proceeds in three
steps:

(a) By means of the Boltzmann equation for the
electron distribution function f, the electron current j
is obtained as a function of the internal electric field, K,
the lattice displacement velocity U (or lattice current
density J), and the external magnetic field.

(b) Maxwell's equations are then used to eliminate
the electron current, yielding a relation between E
and J.

(c) A force per unit mass, Fd, arises from the reaction
of the electric 6eld on the lattice and calls forth the
attenuated and dispersion in question.

The results obtained reduce at zero field to those of
Pippard, who obtained his results by kinetic considera-
tions. In using a Boltzmann equation, we are extending
to a magnetic field a procedure used by Holstein' who
rederived Pippard's results by this more generally
understood technique.

(a) The distribution function f equals fp+ fi, where

fp is the Fermi distribution. The lattice displacement
and quantities dependent upon it are taken to behave
like e'«* "'), so that B/R~ ipse, B/Bs ——+iq The re-.
laxation is taken to be by impurities with a charac-
teristic time, r, depending only on electron energy, and
the collision term is written as

~
Bf i (f fpUi—

(B1),.„
where fpU is a Fermi distribution centered on the lattice
velocity U. One may make the expansion fpU fp—mv U(Bfp/Be). In the region ql))1, which is the one
discussed in Sec. I, the more interesting physical results

6 T. Holstein, Westinghouse Research Memo 60-94698-3-M17,
1956 (unpublished).

are independent of r and of the postulate that the
relaxation is to a Fermi distribution centered on the
lattice velocity. Because the present interest is in
effects independent of intensity, the Boltzmann equa-
tion is linearized and becomes

8 p

i(of—i+v, (iq) fi e—(E,n, +E„n„)
f96

.II& Bf, Bf,) I ( Bfo)
I= —-] f+mv U ), (5)

mc & "Bv, Bp& Be )

Going to polar coordinates in velocity space, integrating
over azimuth and magnitude, and using the relation
between Fermi velocity and electron density, one
obtains i'= G'L&' —(1/ oV'3,
where

d0 sin'8p zl

Gk—
4 ~ p 1 zr(pi&pi, qsp cosB)—

and
~p ne'r/m- —

(b) Maxwell's equations become

4zri ~c, &'

E c) (10)

Eliminating j+ between Eqs. (8) and (10), one obtains

J+p 1

~, EG+ )
where

1+z (o~/4ro pG~) (c/c,)'

(c) The force on the ions per unit mass is

m (1I'.+=- — U+~ —1 ~P+~zn, V+.
EG+ )

' R. Gans, Ann. Physik 20, 293 (1906).

which may be rewritten

z7'(~ & q) ( Bfi Bfz'l Bfo
fi ~.(

—v, ——v. l=s—v &, (6)
T E Bv~ Bvs) Be

where F= E—(m/er) U. Making the standard postulate
of Gansz that fi= v,Xi(s,n„s,t)+n„Xz(n, s„s,t) and going
to circularly polarized components

X~=X&+iX2, F+=F &iF„, etc.,

one obtains the pair of equations

er(Bfp/Be) I'+

1 ir (oo—a pi, s,q)—
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Here the last term arises from the action of the external
magnetic field on the ions, Q,=eH, /Mc, where M is
the mass of the ion. Since F~+ is proportional to the ion
velocity, the original assumption that the spatial de-
pendence is of the form e'" is in fact satisfied. Strictly
speaking, the force on the lattice caused by the electron
impurity scattering should be included. This can easily
be done; however, it turns out to be negligible mainly
because it depends on the diRerence of the electron and
ion current. In the region of interest these currents
almost cancel (P 1); outside of this region, moreover,
the electric field force is dominant. In the interest of
simplicity of presentation we therefore drop this term
from the beginning. Upon substitution in the sound
wave equation

one finds
O'S+/8t' = c(PO'S"/Bs2+ Fg+,

0, moo (1 qP~ ~

g =gIl 1% +'L
l

1
~go LG+ )

(12)

where n= q/. Direct evaluation of Eq. (9) yields

3-p 1 q 2q 1-
G+= — rl 1+ y' I+p——

where

(13)

1 (1+&'(1+q)'q
p= —inl

4a ( 1+a'(1—y)')

Figure 1 is a plot of the variation with y of the real
part of (1/G+ —1) for several values of n. The most
striking feature is the existence of an absorption edge
for large e, occurring at y= 1. The value of the field at
the absorption edge will be denoted by II&. Under con-
ditions of present experimental interest P 1. In the
case of sodium, for example, for ~= 10' sec ' a magnetic
field of about 30 000 gauss would be required to change
P by 1%%u~; while the absorption edges would occur at
about 2500 gauss. ' According to Eq. (12), Fig. 1 is
therefore a plot of the attenuation as a function of the
magnetic field, provided the attenuation per wavelength
is small.

In obtaining Eq. (13) we have taken q=co/c„which
again is a good approximation only if the attenuation
per wavelength is small. The maximum of Re(1/G+ —1)

At a certain large magnetic 6eld ~10 oersteds, the real part
of the denominator of p goes through zero. According to our
equations this results in a resonant attenuation for one of the
polarizations.

.S—

0.0 .2

a=3

~a =10

Q =100

.8 1.0 l,2 1.4
cs ((p&c )

l.6

I''io. 1. Variation of Re(1/G~ —1) as a function of y in the
high-frequency region. This is equivalent to a plot of the attenu-
ation versus magnetic field.

~ca 1 pro 1
Max

co 2 ~co3

which in the example of sodium equals 1/600. It should
be noted that the change in speed for a (+)-polarized
wave is very nearly oppositely equal to that for a
(—)-polarized wave.

For a plane polarized wave, this leads to a rotation
of the plane of polarization by half the phase diRerence
of its circularly polarized components. The eRect is
completely analogous to the Faraday eRect, the direc-
tion of rotation being independent of whether the

occurs at y=0, and for this value of y, 1/G+ 4n/3~,
for n))1. The maximum attenuation per wavelength
thus depends mainly on ion mass. In the case of sodium,
q+ qo(1+i/470) under these conditions. Inspection of
Eq. (9) indicates that if the imaginary part of q multi-
plied by / is substantially less than unity, no important
corrections to Eq. (13) occur. Thus in Fig. 1 only the
curve for m=100 requires any modification in the case
of sodium. Actually Eq. (9) may be integrated in terms
of elementary transcendental functions for arbitrary g.
From Eq. (12), q can then be determined by an iterative
procedure in any case of interest. The validity of this
correction is subject, to some doubt, however, because
when the attenuation per mean free path becomes large,
surface conditions might be extraordinarily important.
In particular, the eRect of imposing surface boundary
conditions on fi should be investigated to determine if
there is anything "anomalous" occurring. Actually the
main interest in the acoustic technique centers on the
possibility of avoiding surface eRects; therefore it is
desirable to have o, (100.

The dispersion arising from the electron interaction
is an odd function of y, while the dispersion arising from
the action of the external field on the ions is an odd
function of B.The maximum change in c, occurs in the
vicinity of the absorption edges. From Eqs. (12) and
(13), one obtains, for n))1,
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direction of propagation is parallel or antiparallel to H.
Thus, upon reRection back to an original transducer,
the change in polarization angle is doubled. In the
example of sodium for co=10 sec ', one finds in the
case H Bg that in a path length of one centimeter a
phase change of 7r/2 takes place. The change in
polarization is a function of H, being small for
~H~&&~H~~, and for ~H~&&~H~~. Depending upon the
directional sensitivity at the transducer, extraneous
"wiggles" may therefore be produced in curves of A
eersls II unless the change in the plane of polarization
is specifically taken into account. Actually the attenua-
tion of a (+)-polarized wave differs by a very slight
amount from that for a (—)-polarized one, the frac-
tional difference being c,/ep. Thus, for extremely long
path lengths the description in terms of plane polarized
waves with a rotating plane of polarization breaks
down; the polarization becomes elliptical and eventually
circular. In practice this effect may be neglected, since
the amplitude is reduced by a huge factor before it
becomes significant. The propagation characteristics of
the (rotating) plane-polarized waves may be found
from suitable combinations of Eq. (8). The attenuation
now depends on the Re(1/G++1/G —2) and is sym-
metric in II, its value is essentially the same as for a
circularly polarized wave. ' The dispersion depends on
Im/1/G++1/G $; thus the change in velocity with
field is smaller than for circularly polarized waves, by
a factor of ~c,/ep. The maximum fractional change with
field of the speed is thus 10 '.

Returning to the discussion of circularly polarized
waves, one finds from Eq. (12) that by measuring the
attenuation and the speed of sound waves as a function
of magnetic field, it may be solved for

0, pep f'1 qP

Mcp &G+) n

and for (ewp/Mcp) Re(1/G+ —1)(P/n) as a function of
magnetic field. From the latter quantity the magnetic
field at which y= 0 can be determined, i.e., co, measured.
It is possible, however, that this result is sensitive to
the assumption that the electron-phonon interaction
may be treated as taking place entirely via a macro-
scopic electric field. In any case, a very high precision
of measurement would be required. In the next section
an examination is made of the information obtainable
from absorption edge measurements, which according
to Eq. (3) occur at y=&1.

The preceding results require important qualifica-
tions and extensions before they can be applied to

'M. S. Steinberg (Phys. Rev. 110, 772 (1958)] hes inde-
pendently calculated an attenuation coefficient for plane-polarized
waves in a magnetic 6eld. His value appears to be in agreement
with ours.

analysis of measurements on real metals. The most
important point to settle is the question of the extent
to which the electron-impressed phonon interaction can
in fact be viewed as taking place via a macroscopic
electric field. The answer depends on the details of the
electron-phonon interaction and will vary from metal
to metal. No attempt will be made in this paper to
investigate this problem from a theoretical viewpoint.
From the fact that the measured" attenuation in tin
agrees within a factor of 3 with that predicted by
Pippard, ' it appears plausible to conclude that for most
normal metals at least a substantial fraction of the
interaction takes place via the type of field treated. On
this basis one expects that the absorption edges of the
entirely free-electron theory will appear in most cases
at least as regions of rapid change in attenuation with
field. Hereafter we shall assume that the entire inter-
action is of the electric field type and examine the con-
sequences for somewhat more general band structures.
The object is to obtain an understanding of the extent
to which details of the field variation of A and c, may be
related to details of the Fermi surface, and to provide
a procedure for predicting results based on more general
band models for cases where the assumption is satisfied
well enough. The present discussion will be limited to
the "absorption region, " i.e., ~

H
~

&
~

H~ ~, and to the
case n))1. Actually we wish to put an upper limit on n
of about 100 to avoid any complications of the type
discussed following Eq. (13).When these conditions are
satisfied, Re(1/G)»1; thus collision drag effects may
be neglected, and we may write instead of Eq. (8)

j+—p +p&+ (14)

The quantity Z+ will be called the transverse magneto-
acoustic conductivity, and the basic task of the present
section is to calculate it. The discussion will be limited
to the case of P = 1, which means that j+= —J+, so that
Eq. (14) becomes 8+= —(1/Z+)J+. Taking account
also of the force of the external magnetic field on the
ions, one obtains in the same manner as before

(15)

Here Ze is the ionic charge, and the electron density n
equals Z times the ion density (0,=eH, /Sic as before).
From measurement of A (H) and c,(H), Z+(H) may be
determined via Eq. (15).As will be indicated, the rela-
tionship of Z+ to the band structure can in some im-
portant cases be understood in detail by the intuitive
methods of the introduction.

To explain these more fully, Eq. (9) is 6rst rederived

by this procedure. In the entirely free-electron case
2+=OOG+. For a group of free electrons, the field- and

"W. P. Mason and H. E. Bommel, J. Acoust. Soc. Am. 28, 930
('l956).



ULTRASON I C C YCLOTRON RESONAN CE I N METALS 1477

frequency-dependent conductivity is given by of v, . The element of area is now taken to be that
formed on the surface between two such planes infini-
tesimally separated. Accordingly one may write

zrt 1+i(to+to,)r dS rv(1 —P)
(21)In the acoustic case the frequency observed by an

electron is Doppler-shifted as given by Eq. (2); ac-
cordingly the conductivity due to a group of electrons,
dzz in number, having v, between v, and o,+do„ is

8zrstrt ~c r 1+i(qzi, +pi+to, )r

Integration over azimuth yields

e' t' d( k,kr(1 P—)ter
Z~=

4zr 5 i 1+z(qog+oi&Me) r
(22)827 1

d(o.pG") =dzz-
zzz 1+i(ro,+to,) r

or the sum of such expressions if more than one closed
is involved. Here k„'=k,'+k„', and k, is the radius of
curvature of the curve formed by the intersection of
the Fermi surface and any plane containing the axis
of revolution. In (22), the quantities k„, k„e, ro„and
r are regarded as functions of $. Let $p be the value of
$ a,t which the imaginary part of the denominator
vanishes. The integrand is sharply peaked at $p, and

From the relation dzz= etz(1 —tz)d$, where $= o,/op, and
from Eq. (2), this may be rewritten

(1—e)«3ee7
d(o-oG+) =——

4 zl 1+z((ovog/ce+M+Coe) r
(17)

OI
3 r' (1—V)dkG+=-

~l
4 i 1+i (qpp$+toKto, ) r

(18)

(23)
& „1+(qzi(+to+to)srs qzi(&p)r(gp, H)for q=co/c, . Equation (18) is of course ident, ical to Eq.

(9).
In the region of magnetic field in which the equation

qop$+co&eo, =0 has a solution, the solution is $=y. The
denominator has a strong minimum at this point for
n))1. In evaluating Re(G+) the reciprocal denomi-
nator may be treated as a 8-like function of con-
stant area zr/n, centered at $=y, and of width 1/rr.
Thus Re(G+) ~(3zr/4n) (1—y') for 1—

~ y ~
)1/rr, in

agreement with Eq. (13).Now y =H/H~, thus

provided the variation of ~w may be neglected in a
range of ( equal to 1/qvr(&1. Thus

Re (Z+) = (e'/4zrqk) k„((o)kr ($o) (1—$o') ', (24)

(or the sum of such expressions). Calculating ro. by the
Shockley" procedure, one obtains

(o eH 1
cot(cos '(p) =

(1—Pos) & lzqc k„
(25)

3zr( H' &

Re(G+) —
~

1—
~

for H'(Hg'.
4cr l H~')

(19)
The main point to be made is that the variation with

field in the absorption region of Re(Z+) is independent
of any moderate variation of 7. with position on the
Fermi surface or with magnetic field. The Fermi surface
can be reconstructed from Eqs. (24) and (25) provided
it consists of a single surface. The measurements yield

By the same procedure which led to Eq. (19), Z+
may now be rederived for more general Fermi surfaces.
We consider Fermi surfaces which consist of one or
more surfaces of revolution about axes parallel to the
k, axis. This is somewhat more general than is necessary
to include overlapping bands each with spherical energy
surfaces. Consider the expression" for the conductivity, ( tk„kqc )

k, k, (1 e)' =f(»—=fl-
&(1—8)-: e )e'

I
d5 rv;v,

U
4~3 J

&/(1 —P) = dk, /dk,

Substituting ke= L(1—P)~/$jdk, /d$, this becomes a
first-order linear differential equation which may be

Here dS is an element of area, of the Fermi surface solved for ( as a function of k„. Noting that
E(k) = f', and v, = (1/A) (r)E/r)k;). Thus

g2

o..=o„p=oo= d5 rp(1 —P), where (=o,/zi.
8~'A ~E t

The electrons on a plane perpendicular to the k, axis
have the same cyclotron frequency and the same value

» A. H. Wilson, The Theory of iVetols (Cambridge University
Press, Cambridge, 1953), second edition, Eq. (g 2 6).

it is seen that an additional quadrature will yield k„as
a function of k, .

A serious reservation must now be made in addition
to the one made at the beginning of this section. Equa-
tion (22) has been derived by a method which is equiva-
lent to a wave-packet-Boltzmann equation treatment.

"W, Shockley, Phys. Rev. 79, 191 (1950).
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The use of a Boltzmann equation treatment is question-
able in the presence of a magnetic Geld, when co,r)1.
The transverse magnetoresistivity predicted by such
techniques is incorrect for large fields. "This failure can
conceivably be attributed" to a magnetic field de-
pendence of ~ however, and does not necessarily reflect
on the applicability of the Boltzmann equation. It is
possible that the main error from this source is simply
the neglect of specific quantum eGects.

The case of completely general Fermi surfaces is not
treated. It is easy, however, to gain a general idea of the
results to be expected on a wave-packet picture if the
surface is not one of revolution. In this case ~. may vary
along the orbit, and so may the rate at which the orbit.
is traversed. In general no electron on the surface can
follow the direction of the electric field in detail. The
internal electric field will not have a purely sinusoidal
space dependence since its magnitude is almost exactly
such as to cause the electron current to balance the
positive-ion current. %hen all these nonsinusoidal
effects are subjected to a spatial Fourier analysis,
short-wavelength components are found. These lead to
attenuation outside the fundamental absorption region,
to a change in the details of the absorption inside this
region, and to an increased diGuseness of the absorption
edge.

The general tenor of these remarks indicates that
detailed interpretation of Z+ will have value only when
the deviation from a free-electron model is small or for
gross band overlap. Reasonably well defined absorption
edges probably exist somewhat more generally, and we
now proceed to examine what one may hope to learn
from their measurements.

At the absorption edge cv,/e, =co/c„according to
Eqs. (2) and (3). If now the Fermi surface is convex,
and if v, is an increasing function of k, up to the surface,
the measured value of cu, /e, is characteristic of a par-
ticular point on the Fermi surface, namely the point
whose normal is parallel to the field. Here co, is the
limiting cyclotron frequency as orbits in k space shrink

down to the point in question. The quantity co,/n,

depends on the difIerential properties of the surface at

~3 See, for example, R. G. Chambers, Can. J. Phys. 34, 1396
(&956).

'

this point, and it may be demonstrated that

c2 u, )2 f' ketch )2

e'H~' e. ) l c,eH, g I
(26)
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Here E is the Gaussian curvature, i.e., the reciprocal of
the products of the principal radii of curvature at the
point in question. Perhaps the simplest method of
deriving Eq. (26) is to calculate the cyclotron frequency
by the Shockley" procedure for an arbitrary field direc-
tion for a general ellipsoidal energy surface, and to
calculate E for this surface at the point where the
normal is parallel to the field. An arbitrary surface is
locally equivalent to an ellipsoid as far as second
derivatives are concerned; therefore Eq. (26) follows
generally from its validity for the ellipsoidal case.

If it were possible to make the measurements for a
variety of crystalline directions, it would be possible to
map out the Fermi surface in some detail. Unfor-
tunately, circularly polarized waves can propagate only
along a fourfold (or higher) axis (or one with accidental
shear-wave degenera, cy). Thus in a cubic crystal the
measurement is generally limited to propagation in the
$100) direction. In this case the principal radii of
curvature are equal and the measurement of H& yields
the radius of curvature. If the value obtained. divers
only by a small amount from the value of the Fermi
momentum on a spherical-band picture, an idea of the
shape of the Fermi surface should be obtainable by
6tting the discrepancy to the lowest order Kubic har-
monic. Measurement of E in some additional directions
should be possible with the judicious use of plane-
polarized waves. The main precaution to observe is
that the distance of propagation be sufficiently small
so that the phase deviation of the (+)- and (—)-polar-
ized components remains very small compared to A,

The modes of a sound wave propagating in an arbitrary
direction are not pure shear modes; thus analysis of the
magnetic effects on longitudinal propagation charac-
teristic will also be required to interpret measurements
with such waves,


