
' 'TH I N F I L M
' ' EXPERI MENT

all determinations of critical currents for thin films'
are in disagreement (an exception is reference 20) with
the theoretically expected temperature dependences
Lsee reference 9, p. 114, Eq. (18-11); reference 10,
p. 183, Eq. (4.38); and reference 22, Eq. (2)). In the
theoretical calculations it has not been taken into
account that the transition might go via a domain
structure. (For very thin films the transition usually
proceeds almost instantaneously from complete super-
conductivity to complete normal conductivity; see,
however, reference 23.) Such a coagulation into a
domain structure (and subsequent complete break-
down of superconductivity) might completely change

"A. L. Shalnikov, Nature 142, 74 (1938}.
'9 A. L. Shalnikov, J. Exptl. Theoret. Phys. (U.S.S.R.}10, 630

(1940).
"W. F. Brucksch, Jr., and W. T. Ziegler, Phys. Rev. 62, 348

(1942).' N. E. Alekseevski and M. N. Mikheeva, J. Exptl. Theoret.
Phys. (U.S.S.R.) 31, 951 (1956) /Soviet Phys. JETP 4, 810
(1956).3"L. A. Feigin and A. I. Shalnikov, Doklady Akad. Nauk
S.S.S.R. 108, 823 (1956) (Soviet Phys. Doklady 1, 375 (1957)g.

"W. Buckel and R. Hilsch, Z. Physik 149, 1 (1957).

the criteria to be applied for the breakdown of
superconductivity.

It should be noted that von Laue (see reference 9)
and Ginsburg (see reference 10) apply different criteria
for the breakdown of superconductivity under the
influence of an externally supplied current. von Laue's
treatment (as well as our simple "droplet" model above)
is objectionable because the transition is treated by
equilibrium thermodynamics while the thermodynamics
of irreversible processes should be used. The treatment
by Ginsburg seems to be free of such an objection. Both
von Laue and Ginsburg use a local theory of supercon-
ductivity, while it is now certain that a nonlocal theory
is necessary to properly describe superconductivity. ""

X. ACKNOW'LEDGMENTS

The authors are indebted to Professor G. H. Dieke
for the provision of the liquid helium. They wish to
thank the National Science Foundation for supporting
this work by a grant. Thanks are also due Mr. R. Sarup
for the help with the drawings of this report.

P H YSI CAL REV I EW VOLUME 113, NUMBER 6 MARCH 15, 1959

Influence of Solutes on Self-Diffusion in the Face-Centered Cubic Lattice

HOWARD REISS
Bell Telephone Laboratories, Murray Hil/, Sex Jersey

(Received July 16, 1958; revised manuscript received November 13, 1958)

A theory is given for the influence of substitutional solutes on
self-diffusion in the face-centered cubic lattice. The theory is
limited to cases in which the concentration of solute is low enough
so that only one solute atom at a time can interact with a given
tracer atom.

Two different kinds of approximation are employed, one in
which the processes of association and dissociation of vacancies
and solute atoms do not themselves contribute to transport, and
one in which they do but the frequency of exchange between
solute and vacancy is considered to be infinite.

From data on the diffusion coeKcient of the solute as well as
on the self-diffusion coeS,cient in its dependence on solute con-
centration the ratio of the frequency with which a vacancy

exchanges with a solute atom to that with which it exchanges
with a host atom in the first coordination shell of a solute can be
estimated. This ratio appears to lie between 0.1 and 0,5 for
solutes in silver which increase self-diffusion and for which ex-
perimental data are available.

An analysis is given which shows that a good estimate of the
in6uence of a given solute on self-diffusion can be made when
only the diffusion coe%cient of that solute is known.

Finally the effect which Pd in silver has on the self-diffusion
coefficient (Pd reduces the self-diffusion coeflicient) is calculated
on the basis of the theory. Agreement between theory and experi-
ment is satisfactory.

1. INTRODUCTION

NUMBER of investigations dealing with the
inhuence of solutes on self-diffusion in silver have

recently been published. ' ' Although the experimental
work is very thorough no truly detailed theoretical
analysis of the data has been given. The present article
represents an attempt to supply such an analysis.

'R. E. Hoffman and D. Turnbull, J. Appl. Phys. 2B, j.409
(1952).' Hoffman, Turnbull, and Hart, Acta Met. 3, 417 (1955}.' Hart, Hoffman, and Turnbull, Acta Met. 5, 74 (1957}.' R. E. Hoffman, Acta Met. 6, 95 (1958).' E. Sonder, Phys. Rev. 100, 1662 (1955).

6 Nachtrieb, Petit, and Wehrenberg, J. Chem. Phys. 26, 106
(1957).

Our investigation will be concerned with the more or
less correlated motion of three lattice particles:

(1) a tracer atom isotopic to the host lattice;

(2) a solute atom occupying a substitutional position
in the lattice;

(3) a lattice vacancy.

It will be assumed that the diffusion of both the
tracer and the solute involves a vacancy mechanism.
In general the vacancy will exhibit different perferences
for diGerent sites, e.g., in the neighborhood of a solute
atom or otherwise and we shall eventually treat the
general situation. However, the problem is very
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Fio. 1. Cell indicating tracer (Glled circle) in face-centered
cubic lattice and its first shell of coordinated sites. The important
directions are numbered.

complex and it is better to begin with the simplest case.
Therefore our inquiry will be limited at first to the
circumstance in which the vacancy exhibits so great a
preference for a site adjacent to a solute atom that
for all intents and purposes it may be regarded as per-
manently bound to the solute. Furthermore we shall
assume that every solute has a vacancy. This means
that the concentration of vacancies just equals the con-
centration of solute atoms.

With these restrictions we shall really deal with the
correlated motion of but two lattice particles; tracer
atoms and solute-vacancy complexes, the latter facili-
tating not only its own motion but the motion of the
tracer as well.

Figure 2(a) depicts a configuration which can facilitate
the motion of the tracer, for here the tracer can exchange
with the vacancy without requiring the latter to dis-
sociate from the solute; a process which for the time
being is forbidden by hypothesis. The configuration
illustrated in Fig. 2(b) cannot promote movement of
the tracer since the vacancy does not occupy a position
adjacent to the former. However, it will prove im-
portant in our development because it is the precursor
of a configuration which can promote tracer diffusion.
Thus the vacancy can move to a position adjacent to
the tracer without dissociating from the solute.

If in Fig. 2(b) the vacancy and solute atom are
interchanged, the vacancy would then be adjacent to
the tracer but the resulting configuration would still be
unable to cause motion of the tracer. En this case, place
exchange between the tracer and vacancy would require
dissociation of the complex. Nevertheless, the con-
figuration in question is still of interest because by
place exchange between the solute and vacancy the
arrangement shown in Fig. 2(a) is achieved and this
can be the precursor of a configuration which can
promote motion.

The symbolism V&, 6 and 5&, & appearing in Fig. 2
requires explanation. Ke adopt the convention that any
configuration which places the vacancy on one of the
twelve nearest neighbor sites is described by V with
certain subscripts, while a configuration which places
the so/ate (but not the vacancy) on a nearest neighbor
site is described by 5 with certain subscripts. (Note
that a configuration having both the solute atom and
vacancy on nearest neighbor sites has the symbol V.)
The subscripts refer in order to the directions traversed
in going from the tracer to the vacancy to the solute

2. APPLICATION OF LIDIARD'8 METHOD

The problem will be attacked using an extension of a
method devised by Lidiard' for the study of the cor-
related motion of solute atoms and vacancies. The
discussion will be facilitated by reference to Figs. 1
and 2. Figure 1 shows a tracer atom (filled circle) on a
site in a face-centered cubic lattice surrounde'd by its
6rst coordination shell of twelve nearest neighbor sites
(open circles). Various directions leading to different
nearest neighbors are identified by numbers running
from 1 to 6. Although not shown, the reverse of each
direction will be speci6ed by the negative of the corre-
sponding number. The x direction is seen to lie along
the [100j axis of the crystal and without loss of gener-
ality we can choose the x axis to pass through the
tracer atom. The interval a is also clearly shown in
Fig. 1.

Figure 2 illustrates certain important configurations
of tracer atoms and solute vacancy complexes. Tracers
are again represented by 6lled circles while vacancies
are symbolized by squares and solute atoms by x's.

' A. B. Lidiard, Phil. Mag. 46, 1218 (1955).
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FIG. 2. Drawings showing two configurations required for the
discussion of correlation in the bound vacancy problem. Tracers
are represented by filled circles, vacancies by squares, and solute
atoms by X's.
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in case of V configurations and from the tracer to the
solute to the vacancy in the case of 5 con6gurations.
The directions are specified in Fig. 1.

Thus it is obvious why the configuration in Fig. 2(a)
is Vi, s while in Fig. 2 (b) it is 5~, i. Notice that inversion
through the center of symmetry at the tracer produces
the con6guration described by merely taking the nega-
tives of the subscripts in the original. Thus inversion
of V&, 6 through the center of symmetry would produce
V g 6. Similarly inversion, say of V2, 6, would produce
U 2, 6.

In the preceding discussion two different elementary
processes have been mentioned. These are:

(1) An exchange between a tracer and a vacancy
both of which lie in the first coordination shell of a
solute atom. The frequency with which this process
occurs will be denoted by co&. Notice that co& may be,
and probably is, diferent from the frequency co which
characterizes an exchange between a tracer and vacancy
when both particles are far from a solute atom. The
frequency co determines the self-diffusion coeKcient in
the absence of solute.

(2) An exchange between a solute atom and its
bound vacancy. The frequency associated with this
process will be denoted by ~8.

%e have seen that certain con6gurations such as
V~, 6 are able to facilitate the motion of tracer atoms. It
is, therefore, obvious that the Qux of tracers depends in
some way upon the probabilities of occurrence of the
relevant configurations. In fact it is not dificult to see
that if all the probabilities were known, the Qux and
hence the diffusion coeKcient of the tracer could be
computed by multiplying each by the corresponding
frequency with which the con6guration it pertains to is
able to promote tracer motion, and summing the
separate contributions. If it were imagined that in the
neighborhood of a diffusing tracer the solute-vacancy
complexes were randomly distributed, the computation
of the required probabilities would be greatly simplified.
In this circumstance, each probability would be simply
proportional to the known uniform concentration of
complexes.

Unfortunately the assumption of randomness is
invalid in view of correlation. To understand this effect
consider configuration Vi 6 in Fig. 2(a) and V 3, 6, its
mirror image (not shown) in the plane normal to the
x axis. If it is assumed that the concentration gradient
lies along the x axis, so that the Qow of tracer is in the
positive x direction, then V 3 6 may be referred to as
an "upstream" configuration, while V~, 6 is a "down-
stream" configuration. One method by which V 3, 6

could have arisen is to have had the tracer originally
in the position occupied by the vacancy in V 3, 6 and
to have had place exchange between the two, In this
way the tracer would have jumped in the downstream

direction. On the other hand, V~, 6 could have occurred
because the tracer was originally at the site of the
vacancy and exchanged places with the latter by jump-
ing upstream. Since the concentration gradient lies in
the downstream direction, at any instant, more tracers
will have jumped downstream to produce V 3 6 than
upstream to produce V~ 6. As a result, the chance of 6nd-
ing V 3, 6 will be greater than the chance of 6nding V~, 6.
If these chances had been computed from considerations
of randomness, they would have appeared equal.

It is evident that the exact computation of the
required probabilities must be a fairly dificult task in
view of the several diferent ways in which a given
configuration can be produced, and the over-all inter-
action of many configurations resulting from this fact.
Nevertheless, progress can be made by use of the
method introduced by Lidiard, ~ which we are now in a
position to describe.

We begin by formulating the flux j(x) associated
with a single lattice site located at x. In accomplishing
this, it is necessary to compute the net Qux to the site
at x (for example the one shown in Fig. 1) from all

contributing sites at x—a, as well as the net Qow from
the site at x to all receiving sites at x+a, and to average
the two Quxes so obtained. In what follows, the symbol
which has been used to denote a configuration will also

be used to designate its probability. For example,
Vi 6(x) indicates the probability of finding configuration

V~, 6 with its tracer located on a site in the plane at x.
Similarly, V&, 6(x+a) stands for the chance of finding

the same configuration shifted a distance a in the
positive x direction, i.e., with its tracer in the plane at
x+a. No confusion should result from this usage.

Speaking of Vi 6 it contributes a component ~r V1, 6(x)
to the flow from x to x+a. Inspection reveals that there
are seven other con6gurations V2, 6, V~, ~, V4, 5, V4, 6,

V3, 6 and V2, ~ which contribute to the Qow from x to
x+a and which are symmetrical to Vi, 6 in respect to
the x axis. Because of this symmetry, the entire con-
tribution of the class can be represented by Sco~V~, 6. In
addition, there are S mutually symmetric configurations
of the type V&, 4 which contribute to the Qow from x to
x+a. Thus we obtain another component 8~+Vi, 4.

Further inspection will show that V ~, 6 centered at
x+a and 7 of its symmetrically equivalent counterparts
promote flow from x+a to x. These yield a component
—8&or V i 6(x+a). Inspection also reveals another
component —ScopV ~, 4. Thus the net Qow between x
and x+a is

8a)r{V, ,+V, ,—V i,(x+a) —V i 4(x+a)}. (2.1)

An exactly similar analysis yields the net Qow

between x—a and x. This is

8a&r{Vi, 6(x—a)+Vi, 4(x—u) —V i 6
—V i, 4}. (2.2)
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The average of (2.1) and (2.2) is j(x):

j(x) =4(vT 2[V1 6
—V 1 6]+2[V1, 4

—V 1, 4]

8 8
[Vl., 6+ V—1, —6] 43 [Ul, —4+ U—1, 4] (2 3)

BX

In deriving (2.3), not only have (2.1) and (2.2) been
added and divided by 2, but the functions with argu-
ments x+45 and x—45 have been expanded in a Taylor's
series and the linear terms retained. Since j(x) is the
flux per site, to get the Aux density J(x), it must be
multiplied by the number of sites per unit area in the
plane normal to the x direction. This number is 1/2as.
Thus

2') ylJ—
28 8

2[V1 6
—V 1, 6]+2[V1, 4

—V 1, 4]

8—a—[Vl, s V—1,—6] 0 [Vl, —4+V—1, 4] ~ (2.4)
BX BX

4l Vl, 6/ejt ~8Ul, 6+40T[Vs, 4+51,2+51, 3

+V 1, 4(x+45))—Pars+MT]U1, 6~ (2.5)

where t stands for time.
All in all, 30 simultaneous equations can be written

for 30 arbitrarily chosen independent V and 5 variables.
These are derived by methods analogous to those used
for obtaining (2.5), and are listed below.

In (2.4) terms like [Vl, 6 V 1, 6]involving differences
represent the eGects of correlation. Under the condition
of pure randomness, V~ 6 and V ~, 6 would be equal by
symmetry and such terms would vanish. However,
since correlation exists, they do not vanish and in fact
they reduce the flow expressed by (2.4).

Further progress depends upon the evaluation of
V~, 6, V ~, 6, V~, 4, and V ~, 4. This can be accomplished
only by a detailed formulation of the over-all kinetics
of the process. Consider, for example, the equation for
the rate of change with time of V~, 6. Con6guration V~, 6

can be made from V2, 6 through an exchange of solute
and vacancy at the frequency co&. Thus, in the expres-
sion for the rate of change of Vl, s(x) with time, we
must include the term 468U2, 6(x). By symmetry,
V2, 6= V~, 6, so that it is possible to write the contri-
bution as 4dsV1, 6(x). Vl, s(x) can also be produced from
V5, 4(x), but at the frequency 40T. Also, it can be
produced from S1,2(x), 51, 3(x), and V 1, 2(x+45) at the
frequency co&. It can be destroyed by the inverse
processes. Thus the expression must also include the
term —[408+446T]vl, s(x). Collecting all these terms
and writing V 1, 2(x+43) as V 1, 4(x+a) by symmetry,
we have

6355 1/Bt=63svs 1+MT[55, 6+Vi, —4+S5, 5+Ss, l]
—055, g,

tlS 5, 1/&t=ldsv 5, 1+—~T[5 5, 6+—V 1, 4—
+S 5, 5+S 5, 1]—05 s, 1,

851, 5/6I t ~8Ul, 5+~T[51,2+51 1+V5 4

+Sl, 3]—051 5,

BS 1 5/Bt=(A&sv 1, 5+46T[5 1,—2+—5—1,—1

+V 5, 4+5 1, 3]—05 1, 5,

aS,, 3/Bt=(osvl, 3+(dT[vs 4+51,5+S1,5

+V5, 4] 051,—3

4lS 1, 3/&t=~sv —1, 3+ldT[v —5, —4+5 1, 5

+5 1, 5+V s, 4]—85 1, 3,

8V1, 2/4lt 46851, 2+4dT[vl, 2+ (3/12)PB 8]
—~Vi, ~,

av, ,/at= 5, + T[V, +(3/U)pP'8]
—~V~, ~,

&51,1/&t =~sVl, 1+46T[51,s+Sl, 2+51,5+51,2]
—~5i, ~,

~5—1,—1/4lt 46 8U—1, 1+46T[5 1—, —5+5—1,——2

+5—1, —5+5—1,—2]—85—1.—1,

tlvl 3/Bt=u851 3+coT[vl 3+Ul 3

+(2/12) p, lVS]—&V1, 3,

ejv 1 3/&t=4685 1, 3+46T[U 1, 3+U 1, 3

+ (2/12)p, xs]—ev, , „
& V 1, 6/& t =&8Vl, 6+~T[Us, 4+51,2+Sl, 3

+V—1, 4 (x+45)]—Ovl, 6,

4lv —1;—6/6jt —4tlsv 1, 6+4dT[v 5, —4+5—1, —2—
+5 1, 3+ Vl, —4(x—43)]—9V 1, —6,

4lv14/4lt —(OS, —V.5, 4+67T[V1, 4+55, —6+55,1—
+V 1, 6(x+45)] eV1, —4

4tv 1 4/Bt=usv 54+4dT[-V ,-4+15—5, 6+S—5, —1

+Vl, s(x—a)]—OV 1, 4,

4l Vs, 4/6jt ~SV1, 4+46T[V1,6+51,s-
+Sl, 3+Vs, 4]—&V5, 4,

4l V—5, —4/6I t 46 8U—1, 4+4dT[U—1, —6+5—1,—5

+5 1 3+V 5, 4]—OV-s, —4,

4l51, 2/C1t 46SVl, 2+46T[vl, 6+51, 3+51,5+51,1]
—OSg, 2,

1,—2/4lt ~8V—1, —2+1sT[V—1,—6+5—1, —.3+S—1, —5

+5—1,—1]—95—1,—2,

6l51, 3/4lt stl 8U 1, 3+4d T[Ul, 6+51,2+51,2+ Vl, 6]
—kg, 3,

&5 1 3/Bt=468V 1, 3+46T[V 1, 6+5 1,

+S 1, 2+V 1, 6]—95 1,

4l Vs, 1/&t =~855, ,+1sT[V1, 5+ (3/12) p8'8]
—OVg, y,

(2.6)
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8V s i/8t=~~S s i+~rfV i-s,
+ (3/12)P'Es] —8V s, —i,

8 Vi, s/8& =~sSq, s+&vr L Vs, i+ (3/12) P'Xs]
—

OVAL, s,
8V—I', 5/8 3——M sS $ s+Qlr (V

+ (3/12)P,Xs]—8V i, —s,

8 Vl, —3/8& =~&5&,+, ~r[Vs,+, (2/12)P, X&

+Vs, s]—8Vi,

8V y, s/BI=a)sS y, s+MrkV s, s+(2/12)P, iVs

+V—s, —s]—8V—i, s,

8Vg,/8t= ~,5, ,+~r[(4/12) P,cVg] 8V, , „—
8V ~ ~/Bt=(vsS ~ ~+(ur/(4/12)P, Ns] 8V ), —

In the foregoing equations we have used

8=~s+~r. (2 7)

At this point, it is important to mention that the
Lidiard technique considers correlation between nearest
neighbors only. Thus a solute-vacancy complex, neither
end of which is on one of the bearest neighbor sites
shown in Fig. 1, would be regarded as completely un-
correlated with the tracer. The error committed by
neglecting such second order correlations is not large
and has been investigated by Lidiard. '

Even so, the number of correlated V and S con-
figurations totals 216, as inspection will reveal. Of
these 216 variables, we notice that only 30 appear in
Eqs. (2.6). These 30 are the collection of operands of
the operator 8/Bt in (2.6). The reduction has been
possible through considerations of symmetry of the
sort applied to (2.5). Even so, we would have been
left with a set of variables which included V5, 6, V ~, 6,

V5, 6, V 5, 6, S~, 5, V~, ~, etc., corresponding to con-
figurations lying entirely in the plane perpendicular to
x, i.e., perpendicular to the concentration gradient.
These variables do not appear in. Eqs. (2.6). The reason
is that the set included is closed and sufhcient for the
computation of the V's which appear in (2.5). In any
event, Vq, 6 and V 5, 6, lying normal to the gradient,
would not be subject to correlation eGects, and so,
besides being calculable from considerations of random-
ness, would be equal to one another. The same can be
said about other pairs of mutual images by inversion
through the center of symmetry which lie in the plane
normal to x.

It is instructive to compute V&, 6 say, assuming
complete randomness. To do this we denote the atom
fraction of "independent" tracer atoms by p, . By
"independent" tracers we mean those, none of whose
12 nearest neighbor sites are occupied by either a
vacancy or solute atom. Then part of the probability
of V6,, 6 is accounted for by the product of the chance
that the central site is occupied by an independent
tracer and the chance that the next nearest neighbor
in the sequence of directions 5 and —6 is occupied by
a solute atom. If the atom fraction of solute is Xq, then

2+B+C D 4E= —a(BD—*/—8x),
(4+y)B C E G yI —J=—O, — — —

2B—(4+y)C+2E+pE= o,

~g —(3+y) D E+F= —a(8I~'*/8x)—,
(3+y)A yD E G —H=—0, — —

D (3+y)P+yL—=O,
A+B (4+y)G+H—+J+yM=O,

2A+2G —(4+y) H+yX=0,
pB (3+y)I= 0, —

2B+2G—(4+y)J+yI' =0,
yC —(2+y)E=O,
(4+p)L+M =—0,

yG+L (4+y) M =0, —
yH (4+y)X=0, —
yJ—(4+y)P=O,

(2 9)

A=V54 —V 5, 4,

B=Sg, 2
—S g, 2,

C=Sg, 3
—S g,

V~, 4
—Vi, 4,

Vi, 6
—V i, -6,

F=Sg g
—S 5

G=Sgs —S g, 5,

H=Sg 3
—S g3,

J=Sg, g
—S g,

E= Vg, e
—U g,

I.= Ug, g
—V 5,

M= Ug, g
—V g

&= Vx, -3—V-i, s,

(2.10)

This is possible because we can always assume that steady-
state diffusion is occurring and that the diffusion coeKcient
possesses only second-order dependence on whether diffusion is
steady or time-dependent. I idiard' elaborates on this point.

this product is p;Xq. Now the vacancy associated with
the solute atom in question can occupy at random any
of the 12 nearest neighbor sites to the solute. But in

Vs, 6 only that site which is nearest to the tracer in
the direction 5 from the latter can be occupied. There-
fore, the chance of getting the correct configuration is
obtained by reducing p;XB by 1/12.

Vs, s=P Xs/12. (2.8)

The appearance of p,Es/12 multiplied by various
small integers in (2.6) has its origin in this type of
argument. It represents the probability or probabilities
of uncorrelated configurations. These are uncorrelated
either because they lie in the 5,6 plane, like V5 6 above,
or because they are arrangements in which the solute-
vacancy complex does not occupy a nearest neighbor
site to the tracer.

Following Lidiard, we expand the variables which
contain x+a and x—a as arguments in (2.6) and set
the time derivative on the left of each equation equal
to zero. ' We then subtract the equations in pairs,
subtracting from a given equation the one corresponding
to what is obtained by inverting each of its variables
through the center of symmetry. Thus the equation
for V ~, 6 is subtracted from the one for U~, 6. In the
end, the following set of 15 equations in the 15 unknowns

3, 8, C, etc. , is obtained:
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while
V=~s/~r, (2.11)

Vi, —4 V—i, 4 —p Es/ 11, ' (2.13)

assuming, of course, complete randomness. This time
the product p,iVs is divided by 11 rather than 12 as in
(2.8). The reason is that in the Ui, 4 configuration one
of the 12 neighbors to the solute atom is already
occupied by a tracer atom so that the vacancy only has
11 positions to choose from.

Of course, due to correlation neither V~, 4 or V ~, 4

is given by (2.13) but their sung is still given by twice
the quantity at the right of (2.13). Thus

D*=Vi, 4+ V i, 4
——2p, iVs/11. (2.14)

By similar reasoning one can show that

E*=Vi, 6+V i, 6
——2p, lVs/11. (2.15)

Both (2.14) and (2.15) can be used in (2.5) and (2.9).
The set (2.9), can be solved for D and E, which,

along with D* and E~, are required for use in (2.5).
This is best accomplished by using determinantal
methods. However, since fifteenth order determinants
are involved, it is desirable to have the assistance of a
large computer.

In view of the fact that only aBD*/Bx and aBE*/Bx
appear on the right of (2.9), and that these derivatives
are both equal, according to (2.14) and (2.15), to the
same quantity as follows:

~D* eE* 2aN s ~p'
=8 =— —

) (2.16)
Bx Bx 11 Bx

the sum D+E must have the form

2sXs Bp,
D+E= Q(y)

11 I9x
(2.17)

D Vi, —4+ V i, 4) E"=Ui, 6+ V i 6. (2.12)

From (2.10) it is evident that the variables without
asterisks are the diGerences between the probabilities
corresponding to configurations related by inversion
through the center of symmetry while from (2.12) it is
clear that the variables with asterisks involve the sums.
The 30 sums and diGerences so obtained represent a
transformation of variables which is particularly conven-
ient, for it is easy to show by writing down the equation
for Bp,/Bt, in addition to (2.6), that when all time deriva-
tives are set equal to zero, the 15 quantities with
asterisks (the sums) can be assigned their proper values.
This leaves only the diBerences, so that from 216 vari-
ables initially, the problem is reduced to one involving
15, i.e., the ones listed in (2.10).

The rule for a sum is that its value is that which
would be obtained if each component term, e.g. , V~, 4

and t/ g, 4 in D*, were evaluated on the assumption of
randomness. Thus, by the argument leading to (2.8),
we 6nd

where 0(y) is some constant depending on y which is
derived from the proper solution of (2.9). Substituting
(2.16) and (2.17) into (2.5), after taking notice of the
definitions of D, E, D*, and E* in terms of the V's,
leads to the expression

8(vz iVg Bp~—[1—n(y)]
118 Bx

(2.ig)

Until now, only configurations involving at the most
one solute-vacancy complex have been considered. This
restriction is valid only when the solid solution is dilute
in respect to solute, so that the chance of a given tracer
interacting simultaneously with more than one solute
atom is small. We are therefore computing the limiting
dependence of the self-diffusion coefFicient on solute
concentration when the latter goes to zero.

If the solid solution is dilute with respect to solute,
then we expect that p;, the chance of finding an

independent tracer on a site at x, is substantially the
same as p, the chance of finding any tracer at x. In the
first approximation,

p, =p(1 —13Xs), (2.19)

(2.20)p=28 c.

Substitution of (2.20) into (2.19) and the latter into
(2.18) yields

16coz 8"il' 8' Bc
(i—13Xs)[1—n(&))—, (2.21)

11 8$

from which it is apparent that D, the diffusion coef-
ficient of the tracer, is

16cora'S a
D= (1—13Xs)[1—n(y)]. (2.22)

Now Q(y) can be evaluated as a function of y by the
solution of the set of Eqs. (2.9). We have done this for
various values of y using determinantal methods and
the IBM 704 computer installation at Bell Laboratories.
If the term 1—13K& is taken to be unity, one can list
values of h(y) =D(y)/&era'Xs. Table I consists of such
a listing. As expected, we see that when cog=0, i.e.,

which shows that p, =p for small Es. The origin of
(2.19) is simple. Each solute, together with its first
coordination shell, occupies 13 sites. By definition,
independent tracers are excluded from these sites. If
the fraction of solute atoms is Eg, then the fraction. of
sites inaccessible to independent tracers must be 13E8.
The fraction of sites available is (1—131Vs). As a
result, p, is reduced from p by the factor (1—13Es),
which explains (2.19).

To convert from probability p to concentration c of
tracer, p must be multiplied by the number of sites per
cubic centimeter. For the face-centered cubic lattice
this is 1/2a' so that
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when y =0, then D=0. For very small values of y, i.e.,
for co8«~&, it is physically reasonable to expect co 8 to
be the rate-controlling frequency, so that

D/a'Ns K's——~s, (2.23)

where Ksis 'a constant. Dividing both sides of (2.23)
by co& yields

D (y)/cora. 'Xs=K,n' (2.24)

Comparing (2.24) with the data for small p in Table I
reveals that

1.60

1.20

z
0.80—3

V

0.40

Thus, for coq«~~,
Es =6.60. (2.25)

D=6.60 cosa'Es, p small. (2.26) 001 O.I 10 100 1000

D=0.744 a'&V, ~ large. (2.29)

%hen cog «co8, i.e., for large values of y, it is expected
that orp will be rate controlling. Under these circum-
stances

D/s Ps=Kg'cur. (2.27)

Comparison with Table l for large values of y shows
that

(2.28)
so that

FIG. 3. Plot of the tracer diffusion coefficient against p cal-
culated on the basis of various approximations. Curve 1 shows
the true curve, curve 2 corresponds to the assumption y = oo,
curve 3 to y =0, and curve 4 to y = 1.

two independent variables will be necessary. One such
variable is the diffusion coeKcient D8 of the solute,
which Lidiard" has shown to be (for the case of bound
vacancies in the face-centered cubic lattice)

3. COMPUTATION OF D WHEN ONLY THE
DIFFUSION COEFFICIENT OF THE

SOLUTE IS KNOWN

u ( &astor ) a (&gay )
3 EMs+Mr3 3 (1++)

(3.1)

TxnLz l. Dependence of h(y} upon y. '

p =cog/o)g

0.00
0.00001
0.0001
0.001
0.002
0.003
0.004
0.005
0.006
0.008
0.01
0.03
0.05
0.08
0.10
0.20
0.30
0.40
0.50
n.m
0.70
0.80
0.90
1.00

k(y) =D(y)/cv2, a2N8

0.00
0.0000659
0.000654
0.00648
0.01282
0.01905
0.02513
0.03109
0.03693
0.04828
0.0592
0.1491
0.2142
0.2845
0.3197
0.4267
0.4828
0.5184
0.5437
0.5628
0.5780
0.5903
0.6007
0.6096

1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
3.00
4.00
5.00
8.00

10.00
50.00

100.00
1000.00

10 000.00
100 000.00

1 000 000,00

~(v) =D(v)/ ra'NB

0.6173
0.6241
0.6301
0.6355
0.6404
0.6448
0.6488
0.6525
0.6559
0.6590
0.6810
0.6937
0.7021
0.7 159
0.7209
0.7386
0.7410
0.7432
0.7435
0.7437
0.7442

a Note added im proof.—It has come to the author's attention that Com-
paan and Haven t Trans. Faraday Soc. 52, 786 (1956)j have in effect
evaluated h (y) for several values of ~ by a different method. Their technique
involved analog computation and the results are in agreement with those
in Table I.

The computation of D according to Table |pre-
supposes a knowledge of y as well as cup. This prompts
us to seek other measurable variables which are them-
selves functions of y and cur (or cos and car). At least

Since other easily measurable variables are difficult to
find, it is of interest to see how far one can go using
knowledge of Dq and some broad assumption con-
cerning y. The hope is that over wide ranges of y, D
will depend primarily on Dz, and on p only in a
secondary fashion.

Three modes of procedure are suggested:
(1) Assume that ~zeros(y))1) so that coy becomes

the rate-controlling frequency. Then according to (3.1)
we have a frequency

Q)z' =3Ds/Q', (3.2)

where we use coz
' instead of coy to indicate that coy' is

a formal frequency obtained on the basis of the assump-
tion that cop «~z. Only if the assumption is known to
be true can we equate ~p' with co~. On the basis of the
same assumption, we are forced to use (2.29) with ~r'
substituted for co~. The final result is then

D= 2.23 S8D8= D~, (3.3)

»'= Lv/(1+&) 3~' (3.4)

Substituting &or' in this form into (2.29), we obtain D2

where D2 is used for D in the current approximation.
The question arises as to how much error is intro-

duced by the indiscriminate use of (3.3) without con-
cern for the real value of y. An answer can be given as
follows. By substituting Ds(p) from (3.1) into (3.2), the
dependence of coy' on y can be expressed:
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D/D4 i

2—
Op/D Dg/D

0
0.01 0.1 &00 1000

FIG. 4. Curves showing the factors of error inherent in the
approximations according to which the curves of Fig. 3 were
computed.

(os =3Ds/a ) (3.6)

and this substituted now into (3.26) rather than (2.29)
gives, in place of (3.3),

D= &9.8 EBDB=Ds, (3.7)

where D~ indicates D in this approximation. As the
counterpart of (3.5), we obtain by the same method

D„(y)/~ra'. Vs 6.60 p/(1+ y). —— (3.8)

This ratio is plotted as curve 3 in Fig. 3.
(3) A third assumption which can be made is cus=~r

(y= 1). With this assumption, (3.1) suggests the
formal frequency

&sr' 6Ds/a'. ——

Furthermore, according to Table I, for y=1,

D =0.610 (era'E8.

(3.9)

(3.10)

Substituting car' from (3.9) for ~r in (3.10) gives us

D= 3.66 Ã8D8= D4, (3.11)

where D4 stands for D in this new approximation. The
counterpart of (3.5) and (3.8) is

D4/cora'cVs=1. 22 p/(1+y). (3.12)

This plotted in Fig. 3 as curve 4.
In order to display the errors possible in the three

approximations just introduced, we have plotted the
ratios D/D2, D~/D, D4/D for y) 1, and D/D4 for p &1
in Fig. 4. The particular form of the ratio (whether D

expressed in terms of ~z and p rather than D8 as in

(3 3):
Dg(y)/cora'iVs 0;744 y/(——1+y). (3.5)

Thus using (3.5) and Table I, D2/cora'Ns can be com-
pared with the true value of D/ura'Xs for all values
of y. Curves 1 and 2 of Fig. 3 are plots of D/&era'A s
and D2/~ra'Es against y. It should be noted that over
quite a range of y the disparity between the two is not
great. This question will be discussed more quanti-
tatively in connection with Fig. 4.

(2) Assume that sos«~r (7«1) so that us becomes
the rate-controlling factor. Now (3.1) suggests the
introduction of the formal frequency

appears in the numerator or the denominator) is chosen
so that numbers greater than unity will be involved,
giving the factor of error directly. The ratios are
obtained from Fig. 3 by taking the ratios of ordinates
at the same value of y.

A heavy line shows the low limit of error possible by
assuming that one of the three approximations is valid,
and selecting that one which comes closest to experi-
mental result. Thus we see that the error is maximized
at &=0.15, but only over a narrow range, and even here
it is only about a factor of 2. Over most of the range
of p, only small errors occur.

By referring to the curves for D//D4 and D4/D, we
see that if one assumes (3.11), then an error of less
than a factor of 2 is assured over the entire range
y=0.2 to y= ~, and in fact over the entire range of y
no more than an error of a factor of 5 could be intro-
duced; this occurring for y below 0.03. Our later
analysis of experimental data will suggest it to be
unlikely that p is much less than 0.2, so that (3.11) may
be used as a fairly safe approximation. If we are sure
that y) 1, then (3.3) should be used, for the curve of
D/D2 in Fig. 4 indicates a very small error in this range.

It is clear from Fig. 4 that co8 exerts less control over
D than ~r, for D&/D does not approach unity until ~s
is 0.01 cur or y=0.01, while D/D2 is almost unity when
cv& is only 0.1 co8 or p= 10.

Finally, we note that given D and D8 as experi-
mental values, both cv8 and coy, or ~~ and y, can be
computed without any approximation.

e. DISSOCIATING COMPLEXES

The results of the preceding analysis, although useful
and instructive, are not general enough to include a
wide variety of physical situations. One of the most
serious restrictions to which they are subject is the
hypothesis of the nondissociating solute-vacancy com-
plex. In this section we shall extend the treatment so
as to be applicable to the case of dissociating complexes.

As soon as dissociation is permitted, the analysis
becomes far more complex. For example, three more
frequencies in addition to co8 and co&, the two already
considered, must be dealt with:

(1) The first of these was mentioned in Sec. 2. It is

~, the frequency of exchange between a tracer atom
and a vacancy, neither of which is in the erst coor-
dination shell of a solute. As mentioned, ~ determines
the self-diffusion coeScient in the absence of solute.
It is the jumping frequency of a free vacancy.

(2) Another is co&, the frequency with which a free
vacancy associates with a solute atom, i.e., the fre-
quency with which a free vacancy exchanges with a
host atom lying in the erst coordination shell of a solute
atom.

(3) Finally we have ~n, the frequency with which a
solute-vacancy complex dissociates, i.e., the frequency
with which a vacancy bound to a solute atom exchanges
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with a host atom not lying in the 6rst coordination
shell of a solute.

Each of the three new processes to which the above
frequencies correspond can be responsible for the
transport of tracer. Furthermore, they inhuence the
correlation phenomenon in such a way that the number
of configurations, and hence, simultaneous equations,
which must be dealt with increases astronomically. As
a result an exact solution, although possible in prin-
ciple, is impractical. Fortunately certain reasonable
approximations can be introduced which greatly lessen
the complexity of the problem. One such approximation
is useful if processes taking place with some frequencies
are rare events compared to those associated with other
frequencies.

For example, if a solute-vacancy complex persists as
a recognizable unit over a period large compared to
a&&

' and &or
—' (i.e., over many jumps for the complex

as a whole), then it may be possible to ignore the
process of dissociation and the corresponding frequency
co&. Similarly co& can be ignored if the lifetime of a free
vacancy is long compared to cu '. Both these conditions
can be met simultaneously. Thus the fact that the
lifetime of a complex (bound vacancy) is long, need not
imply that every solute atom binds a vacancy and that
therefore the lifetime of a free vacancy is short. The
degree of association into complexes depends upon two
factors, (1) the binding energy, and (2) the concentra-
tion of free vacancies and solute atoms. If the binding
energy is high, any solute atom and vacancy which
encounter one another will remain together for a long
time, but if the concentrations are simultaneously low,
the chance of such an encounter is small and the equi-
librium fraction of vacancies which are bound may
still be small. Thus the lifetime of a free vacancy may
also be long.

Many physical situations (and we shall have reference
to these later) meet the conditions just enunciated. In
such instances the total self-diffusion problem can be
solved by a linear superposition of two simpler problems,
one dealing with free vacancies and the frequency co,

and the other only with bound vacancies, as in the
preceding sections, and the frequencies cog and cop. In
this way an approximate solution for the case of dis-
sociating complexes can be arrived at.

Assume that dynamic equilibrium exists between
free and associated vacancies, so that the chance lV, '

that a site adjacent to a solute is occupied by a vacancy
is given by Boltzmann's law

neighbors do not interact. It should be noted that S„
is merely the equilibrium atom fraction of vacancies
found in pure host crystal at the temperature in
question.

Since each solute atom has 12 nearest neighbors, the
fraction of solute atoms bound to vacancies is

COp))COD. (43)
The lifetime of a free vacancy is (1Vscu~) ', so that con-
dition (2) becomes

~0)(+s~a)

Now detailed balance requires

S,cog =E, coD.

We digress here for a moment to describe an approxi-
mation, which although not assuredly good, will be
used in a later discussion where the explicit eGects of
association-dissociation are treated. We do this here in
order to be able to compare the formulas of this
treatment with those of the later one. It is emphasized
that the approximation is not necessary for the current
development nor does the latter depend upon it. The
approximation is illustrated by Fig. 5.

This 6gure shows the region about a part of the
potential well near a solute atom. For simplicity the
well is viewed as a square well of depth 8'. The drop
occurs midway between the first and second nearest
neighbor sites. We assume that this drop is merely
superposed upon the normal activation energy picture
for the jumping of a free vacancy with activation
energy E„.Thus as the 6gure makes clear the activation
energy for association is E~& and equals E„—8'. Thus,

(4.2)

In accordance with the plan enunciated above, the
problem for the case of dissociable complexes will be
solved by approximating the diffusion Aux by summing
the contributions due to bound and free vacancies after
both have been evaluated separately. The conditions
under which this procedure is valid are as follows: (1)
the complex is long-lived compared to its jump time

&ar ', and (2) the free vacancy is long-lived compared
to its jump time &u '. Actually condition (2) can be
relaxed if the lifetime of the complex is so long and the
concentration so high that most of the diGusion
involves bound vacancies; but then we have the bound
case which has been solved exactly. The lifetime of a
complex is essentially ~D ', so that condition (1)
becomes

p7 ~ + ~
—TF/kT (4 1) ~g = co and ~~ =&o exp(W/kT). (4.6)

Here E, is the chance that a site not adjacent to a
solute is occupied by a vacancy while 8' is the potential
energy of a vacancy on a site next to a solute. The zero

of energy is referred to a site removed from a solute.
In the present model we assume this zero to occur at
the next nearest neighbor site so that next nearest

According to (4.1) and (4.2)

exp(W/kT) =12K,/a=12/P,
where

P =n/cV„,
so that

(4 &)

(4.g)

(4 9)
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= D,{1+%8I 0. 306h(q) p~&/~ —13]), (4.17)
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D=D,L1+t»,j,

b =0.306 h (y)P(or/(o —13.
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'g or sites to a solute atom. where

(4.19)
If we use the first of relations (4.9~ in 4
annd use (4.4) in (4.3), then 4.5, t en 4.5) yields in place of (4.2) 5. ANALYSIS OF EXPERIMIMENTAL DATA
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~V$&&1.
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From the various available data for each solute, we
have chosen for Ds(les) and Q(X&) the values quoted
at the smallest value of S8 so that the best approxi-
mation to the limiting slope would be achieved. This
was the case in all instances, except for Sb where data
at the next to lowest value of Xg were used because it
was felt that not enough data existed in the most dilute
case to yield reliable values of Ds and Q. Values of fz

computed by using (5.3) are to be found in Table II.
There exists a certain discrepancy between the values
of D+ for Ag measured by different authors. The dis-
crepancy, however, is not prohibitive and whenever
possible the value of D+ used is that measured by the
author who measured the D leading to a given b.

To proceed further it is necessary to have measure-
ments of D8, the diffusion coefficient of the solute. If
the contribution of association and dissociation to
transport is ignored (in keeping with the spirit of the
superposition of eGects embodied in the previous
analysis), then Lidiardt has effectively shown that

(5.4)

Solving for Poz, from (5.4) and for oz in (4.12) and
substituting these into (4.19) yields

(3+13) )D~~ f1+yq

&Ds) E p i (5.5)

From Table I we obtain values of h(y), and are therefore
able to plot in Fig. 6 the quantity h(y)L(1+&)/p]
against y. Using experimental values of b, D+, and D~,
the left side of (5.5) can be evaluated This qu.antity
can then be used in connection with Fig. 6 to locate y.

The quantity Dz has been measured for Pb by
Hoffman et al. ,

' and for Ge and Tl by Hoffman. 4 It has
been measured for Sb by Sonder, Slifkin, and Tornizuka'
and for Cu by Sawatsky and Jaumot (according to
Hoffman in reference 4). These values of Ds also appear
in Table II.

Values of y determined through use of (5.5) and

TABLE II. D~, D8, b taken from experimental data, and values of
y and y' computed from them.

Ele- Temp. D~ &8
ment ('K) (cm2/sec) (cm2/sec) b

Tl
Tl
Pb
Pb
Sb
sb
sb
Ge
Ge
Cu

900 6.74)&10 '2
1100 6.78 )(10 1o

973 4.55 X10»
1098 6 33 )(10-1o
841 1.44 X10 12

990 7.48 &(10»
1163 2.11 )(10 o

973 4.55 X10»
1098 6 57 )(10-io
1000 9.5)&10 "

9.68)(10»
4.56&(10 o

6.57)&10 'o
5.86)&10 o

1.88 &(10»
5 98 )&10-io
1.09)&10 o

5.53 )(10 'o

4.7 )&10 o

1.19)(10 'o

71
41

120
108
89
64
46
43
35
11.4

0.34
0.18
0.14
0.05
0.19
0.12
0.08
0.57
0.26
0.001

(b +13)
16

1.16 5.3
0.76 3.4
0.43 8.3
0.28 7.6
0.62 6.4
0.52 4.8
0.46 3.7
2.4 3.5
1.2 3.0
0 54 1.5

' Sonder, Slifkin, and Tomizuka, Phys. Rev. 93, 970 (1954).

a Note added in proof.—The value of y in Table II is always less than.
unity. Recently Watkins t Phys. Rev. 113, 79 and 91 (1959)g showed by
spin resonance techniques that y for Mn in NaCl is less than unity.

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

'l

FIG. 6. Plot of the function Iz(y)t (1+i')jp against y.

Fig. 6 appear after the corresponding values of b, D+,
and Dq in Table II. In our later discussion it will be
shown that the neglect of associative and dissociative
processes is justifiable only when the first term on the
right of (4.19) is large compared to a number of the
order of 16. From (4.19) it is evident that this first term
is given by (6+13). For this reason, the last column
of Table II lists the value of (b+13)/16 in each case.

The values of y listed in Table II are all less than
unity but not very much so. With the exception of Cu,
it might be said that all values of y are of the order of
0.1 or greater. Reference to Fig. 4 then suggests that
the approximation ozr=ozs (i.e., that leading to D4) is
probably the best of the three alternatives.

The exceptional status of Cu (y=0.001) must be
regarded with caution, since the last column shows
(9+13)/16 for Cu to be only 1.5, and the neglect of
association-dissociation is probably not justified. In
fact, later it will be shown that an approximate treat-
ment of association-dissociation yields a value for p
which falls in line with the others.

It will be noted that some values of (b+13)/16 are
in the neighborhood of 3. It might seem as though this
is not very different from 1.5, certainly not large enough
to lead to so much more spurious a value of y for copper.
An analysis of the mechanics of getting at y using (5.5)
and Fig. 5 shows that the difference between 3 and
1.5 is sufFicient to invalidate the use of the current ap-
proximation. This is associated with the sensitivity of
h(y) L(1+y)/y j to y when y becomes small (see Fig. 6).

In closing, attention is drawn to the fact that the
current approximation which depends upon Po&r/oz being
very large would very likely be well suited to the self-
diffusion of something like sodium in sodium chloride,
the latter being doped with a divalent cationic impurity.
The lattice of sodium ions in this salt is face-centered
cubic, and the cation vacancies introduced with the
divalent impurities are bound to the latter with energies
of the order of S'= —0.5 ev.' Introduction of this
value into (4.7) at temperatures of 600'K (where Na
diffusion can be measured) yields

P=2X10', (5.6)

which is very high. If we assume cv8 =co, then this is
the value of Pore/o& and is to be compared with the

1o Harrison, Morrison, and Rudham, Trans. Faraday Soc. S4,
&06 (&958).
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value of just a few hundred typical for the solutes in
silver dealt with in Table II.

0. CONTRIBUTION OF ASSOCIATION
AND DISSOCIATION

Although it is possible to neglect the associative and
dissociative process in many systems, there remain
important cases in which this cannot be done. In addi-
tion to the example of Cu in silver discussed in the last
section, the entire class of systems for which b is nega-
tive cannot be treated in the previous approximation.
Therefore, in this section, an attempt will be made to
take account of association-dissociation.

As discussed in Sec. 4, the exact treatment of
association-dissociation is very di%cult and approxi-
mations will have to be made. The results derived from
this approximation will be equally valid for all systems
(i.e., to those in which association-dissociation can be
neglected as well as to those in which it cannot), but,
where it is known that association-dissociation can be
ignored, it is more desirable to use the approximation
developed earlier in this paper as it is more exact.

The first step involves the assumption that co8= ~
(p= ~). We know from the last section that a typical
average for y is something like 0.3 so that this is not
correct. On the other hand, the curve for D/D2 in

Fig. 4 shows that at the most we can expect about a
factor of 2 error. An error of this size is acceptable when

the reduction in complexity which it permits is con-
sidered.

If ~8 is taken to be infinite, then a solute-vacancy
complex may be regarded as a short of divacancy, i.e.,
the solute and vacancy exchange positions so rapidly
relative to other occurrences that to all intents and
purposes the vacancy may be regarded as permanently
smeared over the two sites spanned by the complex.
However, the tumbling frequency of the complex must
now be taken to be a&r/2 rather than ~r because the
vacancy spends only half the time at either end of the
complex. With this point of view, many S and V con-
figurations can be equated to one another and the
number of simultaneous equations of the type (2.6)
which need to be solved is reduced.

Another assumption which shall be made is the fol-
lowing. Consider all configurations in which a divacancy
has one end on a given one of the twelve first shell sites.
Then all of the configurations belonging to this cluster
will be regarded as equivalent even though they occur
in reality with different probabilities. It is evident that
this device also reduces the number of simultaneous
equations which need to be considered.

Both assumptions act to reduce the e8ect of corre-
lation, and therefore both introduce errors in the same
direction. This means that the total error should be
somewhat greater than the factor of 2 quoted above.

The frequencies ~~ and co~ for association and dis-
sociation must now be included in the development.
Figure 7 will be helpful in understanding the various

x-g x x+a
X DIRECTION ~

(8) v&

x-a x x+a
X DIRECTION

(b) v,

x —a x x —a
X DIRECTION ~

(C) S)

x-a x x+a
X DIRECTION ~

FIG. 7. Configurations in the face-centered cubic lattice. The
filled circle is a host lattice tracer. Vacancies are represented by
squares and solute atoms by X 's. Filled-in narrow rectangles are
effective divacancies.

configurations which need to be considered in treating
the present problem. Parts (a), (b), (c), and (d) are
four difFerent representations of a tracer atom (solid
circle) in the face-centered cubic lattice and its 12
nearest neighbors. The tracer concentration gradient is
still taken to lie in the x direction which in Fig. 7 is the
[100$ direction as shown. All configurations which are
symmetrical with respect to the x axis can therefore be
regarded as equivalent, i.e., they will all have the same
probability of occurrence.

In Fig. 7 the open circles are normal host atoms, the
squares are free vacancies, the cross is a solute atom,
and the thin solid rectangle is a vacancy-solute diva-
cancy of the sort mentioned above. The meaning of a
remains the same as before. All the con6gurations
shown in Fig. 7 are capable of promoting the motion of
the tracer. Figure 7(a) shows a free vacancy on the
plane at x+a into which the tracer atom can jump at
the frequency co. Since all positions on the x+a plane
are symmetrical with respect to the x direction, they
are all equivalent and shall be denoted by the symbol ~.
All positions for the free vacancy on the planes at x
and x—u, respectively, are mutually equivalent for the
same reason, and shall be denoted by e. and n3. These
are not shown in Fig. 7.

Figure 7(b) shows a divacancy spanning two posi-
tions on the x+a plane. In this configuration, motion
of the tracer is possible when either end of the divacancy
exchanges position with the tracer. The frequency
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associated with this motion is &uz/2. The factor of —,

appears because, as discussed, the vacancy is regarded
as smeared over the two sites of the divacancy, spending
half of its time at each end. All positions of the diva-
cancy on the x+a plane are symmetrically equivalent,
and are assigned the symbol V&. Similarly, all positions
of the divacancy in which it spans two sites on the
x+a and x planes, respectively, are assigned the symbol
V2. Configurations between the x and x—a planes are
given the symbol V3, and con6gurations on the x—a
plane, the symbol U4.

Figure 7(c) illustrates a configuration in which only
one end of a divacancy occupies a site among the
tracer's shell of nearest neighbors. In this case the site
occupied lies on the x+a plane. Obviously there are 7
other orientations for the divacancy in which it can
remain attached to the same first shell site and not
have its other end in the first shell also. These 7 orien-
tations are really not symmetrically equivalent but,
nevertheless, by our assumption we regard them as so.
As the prototype of all seven orientations, we choose the
one shown (directed radially away from the tracer) and
assign it the symbol S&. There are 3 other symmetrically
equivalent clusters associated with the x+a plane, and
all of them are assigned the symbol S&. When the
attachment is on plane at x the symbol 52 applies, and
when it is on plane x—a we use S3.

Con6guration S~ can facilitate the motion of the
tracer only through dissociation of the divacancy, i.e., by
escape of the vacancy from the erst coordination shell
of the solute atom. The frequency ~D is associated with
this motion. The factor -', must also be included as the
vacancy spends half its time at either end of the
complex. Thus the equivalent frequency is &oii/2.

Figure 7(d) illustrates a fourth kind of configuration.
Here the vacancy and solute atom both occupy nearest
neighbor sites but are not adjacent to one another.
Such configurations are denoted by the general symbol
P'. Independent of where the solute atom is located
(except that it cannot be adjacent to the vacancy), the
symbol P& is given to arrangements which have the
vacancy on the x+a plane. J'2 is assigned when the
vacancy is on the x plane and P3 when it is on the x—a
plane. To each location of the vacancy there corre-
sponds, as in the case of the S configurations, a cluster
of 7 distinct orientations all of which are treated as
equivalent. As in the case of the 5's, correlation is also
lost by this device. The assumed prototype of P& is the
one shown in the figure, i.e., all three particles lie in a
straight line. The prototypes of P'2 and P3 are deter-
mined by the same condition.

Configuration P~ can contribute to the motion of the
tracer by having the vacancy jump to the center of the
diagram. In so doing it enters the coordination shell of
the solute atom and forms a divacancy. The frequency
associated with this motion is ~g.

From the foregoing it is evident that when we come
to discuss the net rates of formation of the various ~„

V, 5, and P con6gurations, several frequencies are
liable to be involved in any one equation. For example,
a particular V configuration can be destroyed or created
at the tumbling frequency a&z/2. In addition it can be
created at the tumbling frequency &u&/2. In addition
it can be created by association at the frequency cv&

and destroyed by dissociation at the frequency &dz/2.
Similar considerations hold for S and P configurations.

We now want to derive the counterpart of Kq. (2.4),
i.e., the equation for the flux density J(x) at the central
site on plane x shown in all four parts of Fig. 7. Con-
siderations of the same sort as those leading to (2.4)
yield the following result, in which the necessary
Taylor's expansions have been carried out and in which
the symbols denoting the various configurations have
also been used to denote the probabilities of their
occurrence.

2m Qg
J(x) =—(vi-v3)—

g' cvg j

2coy 40!ag+—( Vi —V4) + ( Vg —V3)—
a 11K,

7(d D 4o.ag
+ (Si—S3)—

2a' 11%,.

where n, S8, and N retain the same significances they
had before and

g= (8/Bx) (p,NsN. ), (6.2)

where, as before, p, is the fraction of sites occupied by
independent tracers.

Some discussion as to the manner in which g finds
its way into (6.1) is worthwhile. Consider —ag/N8
which appears in the erst brackets. By the earlier
arguments of this paper, the sum of the probabilities
of a given downstream conlguration and its upstream
counterparts is the sum of the probabilities of each
computed from considerations of randomness, as though
no correlation existed. Thus,

vi+vg=2p, N„, (6.3)
since p;N„ is the random probability of vi or v3. As in
(2.4), the terms in J(x) contain differences between the
probabilities of upstream and downstream counterparts
less a times the derivatives of the sums of these respec-
tive probabilities. On this basis it is understandable
that in (2.1) the 6rst brackets contain the derivative

——,'a(B/Bx) (vi+va). (6.4)

Upon using (6.3) and (6.2), this is obviously

a a 0———(v,+v,) = ———(2p;N„)
2 Bx 2 ax

a (3 Qg= ———(p,N, N.) = ——.(6.5)3, 8x .Y„
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The appearance of g in other brackets of (6.1) is
based on similar considerations. The further counter-
parts of (6.3) are

Vi+ Vc——(4/11)p;N, n,

V2+ Va ——(4/11)p;N, n,
(6.6)Si+53——(4/11)p;N, n,

Pi+Pa= 2p,N, N. .

The factor 4/11 appears for reasons similar to those for
the appearance of 1/12 in Eq. (2.8). The chance of one
end of a divacancy being placed on a given site equals the
fraction of associated solutes. This is obviously g,n
The other end of the divacancy has a choice of 11 other
sites (one of the 12 neighbors is occupied by a tracer),
so the chance of having the divacancy in just the
required orientation is N, n/11. But the orientation
could have been achieved starting with either end of
the divacancy, so that its probability is 2iV,n/11
Summing two such probabilities leads to 4N, n/11.

Closer inspection will reveal that the sum Si+53 in
(6.6) should really be set equal to (2/11+2/12)N, n,
because in starting with one end of the divacancy rather
than the other, in this case, a site already occupied by
a tracer does not appear. However, in the interest of
symmetry and in view of the smallness of the error in
comparison to those created by the approximations
already made, we have elected to ignore this refinement.

Careful inspection now leads to a set of kinetic equa-
tions similar to (2.6). The resulting equations are

Bvi/Bt=(o[7p, N„+2vi+2v2+v3(x+a) 12vij)—
Bv,/Bt =c0L7p;N„+ 2va+2v2+ vi (x—a) —12v3),

BVi/Bt=2cor(2V2+2V3(x+a)+4Si 8Vij-
+cdg (2Pi+2P2+ 10p,N, N, ) 2~D (14V,), —

BVc/Bt= ,'(ur/2V3+2V2(x a-)+4S3 8Vc]— —
+~g (2P,+2P,+10p;N,N, )—2ND (14V4),

BV2/Bt= 2(er/Vi+2V2-+V4(x+a)+25i
+2S2 8V2)+cog (10p,N—,N, +Pi+P2

+2Pg) —-', &un (14Vg),

BVa/Bt = 2(ur)V c+2V3-+ Vi(x a)+2S3— (6.7)

+252—8V3$+cog (10p,N,N.+Pa
+P2+2Pi) —-', (oi) (14V~),

BSi/Bt = -,'cd r t 45i+ (8/12) p,N.n —85i)
+s» 59p,N,N.+2v iN, +2v 2',

+Pa(x+a) 7——,'a&n (145,),
BS3/Bt= ,'u)r j453+ (8/12) p,3—',n —853j

+~&h9p;N, N„+2v3N, +2v2N,
+Pi(x—a) 7——,'cog) (1453),

BPi/Bt =a)(2Pg+2Pi+7p, sV,tV. 11Pi)—
+2COii53(x+a) —GliPi,

BPg/Bt= a&(2Pg+2P3+7p, N,N„—11P3)
+gcoDSi(x —a)—McPa.

co~/cd'& =n/12'„= P/12, (6.9)

which is contained in (4.9). However, (4.9), being two
equations, says more than (6.9). It is based on the
barrier scheme shown in Fig. 5. The same scheme will
be employed in the current problem. Only the part of
(4.9) contained in (6.9) is exact. We accept the remain-
ing part because no further information is available
and because it is a more or less traditional approxi-
mation. Besides it is consistent with detailed balancing.

If, as seems to be the case, the main force between a
solute and vacancy is that due to the screened Coulomb
potential, " the approximation in Fig. 5 will have more
validity. In any event, since it enters only into that
part of the argument dealing with association anddis-
sociation and since the latter process is only responsible
for part of the over-all phenomenon, it can only intro-
duce a partial error.

Upon using (4.9) in (6.8) and defining

8=2PN. (era',

G=2E,cou2,

X=ag/11,

(6.10)

(6.11)

(6.12)

Eqs. (6.8) can be solved for (Vi—V4), (V,—V',),
(Si—53), and (Pc—P3). The results are

V&—Vc P(58+6G) (8+84G)+ (58—3G) (8+13G)]
P& (8+21G) (108+417G)

(6.13)

"L.C. R. Alfred and N. H. March, Phil. Mag. 2, 985 (1957).

The time derivatives are set equal to zero and the
functions with arguments x+a and x—a are expanded
in a Taylor's series about x, only the linear term being
retained. Then the second equation is subtracted from
the erst, the fourth from the third and so on. The
results are

vi 'V3 =2ag/1 1N8,
—(%or+ 7ori)) (Vi —V4) +2&or (Si—S3)

+2cog (Pi—P3) = —4v inag/11N„,
—(3~r+ 7~a) (V2 Vs)+~—r(Si—53)

—~g (Pi —P3) = 2cuinag—/11%„) (6.8)
—(2cdr+7cdn) (Si 53) Q7g (Pi P3)

+2%~N8(vi —va) = —2cogag,

—,'(oD (Si—53)—(9(o+(o~)

X (Pi—Pg) = 2cuDn—ag/11N„

The frequencies coD and ~~ refer to processes which
are the inverse of one another, and since no gradient of
solute exists, the net process must be in equilibrium.
Thus coD and co& are related by the principle of detailed
balance. The rate at which vacancies jump into a site
in the coordination shell of an impurity is co;S,S, while
the rate at which they leave this shell is co&nN, /12.
Equating these rates gives
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V2 —V3 2$(58—6G) (38+84G)+ (58+3G) (13G—8)i
(38+84G) (108+417G)

(6.14)

Si—S3 1186

108+417G
(6.15)

P& P& 6—L48+155G3

108+417G
(6.16)

Furthermore, using (6.10), (6.11), and the 6rst of
equations (6.8), it is possible to express (6.1) as

J(x)=-I —
II

—
I

1+~.(9q )Gy
&11) & a')

8 ( (Vi—V4)

9G( pX

(V2—V3) l 7 ( 2(Si—S3
I+ 4

PX ) 3 k PX

Also, using (4.12), we get

D~ = (18/11)G. (6.18)

Using (2.19), (2.20), and (6.18) in (6.17) yields finally

J(x)= D~ 1+E,—
-8

t (Vi—V4) (V2—V3)~

9G E PX PX )
7

t 2(Si—S3)q
!+-I 4-

3( PX )
(Pi —P3) ) OC

(6.19)
Bx

8/G= pcs'/co))1, (6.21)

a condition which merits comparison with (5.1) which

where terms in S,' have been neglected. It is evident
from (6.19) that the diffusion coefficient D of the tracer
is given by D+ multiplied by the expression in curly
brackets preceding the concentration gradient. Thus,
comparing with (4.18), we have

8( (V,—V4-) (V2—Vg) )

9G ~ pX pX

7 ( 2(Si—S,,)~ 7 ( (P,—P,)y+-I 4— I+-I 11—
I
—13 . (6.20)

3E pZ ) 9L X )
The terms in (6.20) which do not contain 8/G as a

factor are those in which the inQuence of co~ and ~~
appear. These will obviously be a small part of the
whole when

also specifies the conditions under which association-
dissociation can be ignored.

The inequality (6.21) can be subjected to more
quantitative consideration as follows. Numerical in-
spection of the values of (Vi —V4)/P), etc. , given by
(6.13) to (6.16) shows that they are quite insensitive
to the choice of 8 and G when the latter are in the
range of interest for the present phenomenon. Thus,
when 8 varies from 10 '0 to 10 ' and G from 10 "to
10—', the variables (Vi—V4)/pX, etc. , hardly vary. In
fact the following is an excellent approximation:

(Vi—V4+ V2—V3)/pX = 1.5,

2 (Si—S3)/pX =0.10,

(Pi—Pg)/PX =2.36.

Introduction of (6.22) into (6.12) yields

(6.22)

0.306 h(~) =0.23, (6.24)

which compares favorably with the 0.28 in (6.23). The
diGerence between the two is a result of the loss of cor-
relation inherent in the approximation made in (6.23)
that the various configurations of a cluster are equally
probable. Loss of correlation leads to a higher value of
D and hence of b.

The origin of the factor (6+13)/16 used in Table II
should also be clear from (6.23).

V. TREATMENT OF EXPERIMENTAL DATA USING
THE RESULTS OF SEC. 6

Using our notation, Lidiard s result" for Ds including
association-dissociation can be put in the form

yB 8+42G
D„s——

g (y+1)8+42G

From this, we have

6Ds (8+42G)
7=

8'+68 (7G—D.s)

(7.1)

(7.2)

The procedure now involves determining G from D+
and (6.18), and then 8 from measured values of b and
(6.20). These values of 8 and G are then to be inserted
in (7.2) along with the values of Ds for the determina-

b = L0.28(Po)p/cu)+ 16j—13. (6.23)

The terms in square brackets are the ones which need
to be compared, since the 13 is merely a consequence of
geometry. It can be seen that if Pion/&o begins to exceed
100 by very much, the 16 begins to be unimportant.
Results computed using Table II and (4.19) indicate
that P~z/~d usually lies between 200 and 400.

If the 16 in (6.23) can be neglected, e.g. , when (5.1)
holds, then (6.23) reduces to a form identical with
(4.19). In fact, if we set y= ~ in (4.19) )since (6.23)
has been derived on this assumption), the numerical
coefficient becomes
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tion of y. In connection with (6.23), t.he point was
made that the values of (Vi—V4)/PX, (V2—V3)/PP,
(Si—S3)/PX, and (Pi—E3)/X were insensitive to change
over the range of 8 and 6, typical of the phenomenon.
The almost steady values of (Ui —V4)/pX, etc. , given
in (6.22) are very helpful in solving for B in (6.20) when

5 and 6 are known. One merely substitutes them in that
equation and calculates an approximate 8, and then
substitutes the latter in (6.13) through (6.16) to get
refined values of (Vi —V4)/PX, etc. These can be used
again in (6.2) to produce a more exact value of B.Then
(7.2) can be used to obtain y. The results of y obtained
this way are listed in Table II as p'.

The values of y' are about three times as great as
those for y. Our previous discussion had estimated an
error of this sort- due to the neglect of correlation in the
current approximation. The average value of y' seems
to be about 0.5. It is to be noticed that now the value
for Cu falls into line with the others. This lends support
to the thesis that its exceptional behavior in the original

p column was due to the inapplicability of the approxi-
mation neglecting association-dissociation.

CO~jj' M
&

(8.3)

vacancies as apply to the loosening or tightening which
hastens or hinders melting. In this case the solute
provides the tightening in both instances.

The present author is inclined to agree with this
view, and as a matter of fact a fairly quantitative
argument can be given on the basis of special models for
the solution. The pursuit of this topic is not however
within the domain of the present paper. It suffices to
notice that if the conclusion is true, the key to the
mechanism by which D is reduced with increasing E8
must lie mainly with the manner in which P/12 = e ~~"

differs from unity, rather than upon the ratio &uz/~.

That is, the phenomenon must be controlled by 8',
which is the work required for the formation of a
vacancy next to a solute atom relative to the work
required for its formation far from a solute. This
quantity is an equilibrium parameter, and is connected
at least qualitatively to the heat of melting. On the
other hand, a&r/a& depends on kinetic considerations and
~eed not have any thermodynamic relevance.

We therefore assume that

8. SOLUTES WITH NEGATIVE VALUES OF b
and that

P/12 &1. (8 4)

b= —8.2, (8.1)

apparently without any dependence on temperature. In
addition, they noticed as an experimental fact that D
could be expressed in a form independent of E8 as

D= D(T,~/T), (8.2)

where T~ is the melting temperature of the alloy of
Ag and Pd for which the atom fraction of Pd is E~.
Xachtrieb et al. suggest that this relation stems from
the fact that the same energetic considerations must be
applied to those processes which loosen or tighten the
lattice to produce greater or lesser concentrations of

Nachtrieb, Petit, and Wehrenberg' have measured
the self-diffusion coeKcient of silver using Pd as a
solute. They discovered that D satisfied a relation of
the kind (4.18) with

MD =co, QpA =coP/12. (8 5)

This invalidates (6.13) to (6.16); returning to (6.8)
and inserting (8.5), we obtain

The first relation is necessary if the addition of solute
is not to change D by frequency considerations, and the
second is demanded in view of (8.3) if b is to be negative,
i.e., the addition of solute must reduce the concen-
tration of vacancies. Equation (8.3) as indicated is to
be regarded as approximate. No very significant change
in our conclusions would occur if it failed to be exact
by as much as 50%.

In view of (8.4), W is now positive, so that the coor-
dination shell of a solute is now the region of a potential
plateau for vacancies rather than a well. Instead of
(4.9) we must now use (on the basis of the same addi-
tion of energies) the relations

Vi —V4 2(24[108arr+P (co+(vz) ]((sr+ 7co)+[216(oz+P (2(ur —u))] (12cuz +Pcs) )

px (24(or+42(o) [(4(or+14~) (108+P)—P~]
(8.6)

V&—V& ( 12[216coz +2P (~i —co)](3coz+7~)+ [216~r+P (2cur —co)](13co—12(or) )

(18(or+42(u) [4a)z +14(u) (108+P)—Pcs]
(8.7)

Sg—S3

'a— 2[48COT+ 155M]

[4~,+14~][108+P]—P~

(1404(u+p(v)

PX (12(vi+42m&) (108+P)—3MP
(8.8)

(8.9)

Because of (8.8), Eq. (6.20) must also be changed.
The first term in brackets remains unchanged because
it stemmed from a term in o&z. However, here we write

Pa&r/cu in place of B/G since we are not using B, G

terminology. The second term arose from a term in

~D and, since &vD has now gone from 12'/P to ~, it must,
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p~r (Vi —V4) (V2—V3)

9oi PX px

7Pt 2(Si—Sg) i+—
36. pX

7p p(Pi —P3)
11—-

108 PX

—13. (8.10)

The use of (8.5) in Lidiard s' expression for Ds yields

piV, a' ois[cor+7oi/2]
Ds=

3 ois+[oir+7oi/2j
(8.11)

If in this relation we use (8.3) and, furthermore, make
use of the information available in Table II which
places ops =o&r/2i2 on the average, (8.11) can be reduced
to

Ds =3P1V,a2oir/20. (8.12)

This relation is hardly dependent on the validity of (8.3),
because o&r+7oi/2 is in any event considerably larger
than ois, and this almost exactly cancels out of (8.11).
In that case, the 3/20 in (8.12) would simply be replaced
by 1/6, which is almost the same number.

Combining (8.12) and (4.12) leads to the relation

be multiplied by P/12. In the same way the third term,
since it arose from a term in ~&, must be multiplied by
p/12 since oi~ has gone from oi to o&p/12. As a result,
we obtain

(Vi—V4)/PA =0.41,

(Vp —Vg)/PA= 0.22,

(Si—S3)/p)~ =0.24,

(Pi P3)/p). =—0.21.

(8.16)

Substitution of (8.16), (8.15), and (8.14) into (8.10)
yields

b = —8.3, (8.17)

which agrees with (8.1). The apparent lack of tem-
perature dependence of b is partially explained on the
basis of the present model. In the 6rst place, most of b

comes from the —13 in (8.10) which has no temperature
dependence. The remainder of b depends on P= 12e ~~~r.

If W is sufficiently small, then P will not change much
with temperature over the small range 988—1215'K
investigated. Using (8.15) and assuming it, applied to
1000'K, we get

Upon this assumption (8.3), this yields

P =2.68.

Equations (8.6) through (8.9) can now be evaluated
using (8.3) and (8.15). As a matter of fact, since P is
so small, negligible error is introduced by ignoring all
terms in (8.6) through (8.9) which contain it as a factor.
In passing, it should be remarked that in the present
instance also, (Vi—V4)/PX, etc. , are not too sensitive
to the values of ~T and co, just as in the case of Sec. VI
where insensitivity to 8 and 6 was illustrated. Thus,
any approximation contained in (8.3) will not quickly
invalidate the following evaluation of (V,—V4)/PX, etc.
We obtain

Pair/oi= (21.8)Ds/D„. (8.13)
W=RT ln(12/P) =3.0 kcal. (8.18)

P~or/oi = 2.68. (8.14)

"We use the average of y' rather than y although the latter
is considered more accurate. This is because in the present section,
we are using the same approximation used in deriving y from
experimental data. Thus, use of y' may lead to cancellation of
errors.

"N. H. Nachtrieb (private communication).

Nachtrieb" has measured the ratio Ds/D~ between
1124'K and 1169'K for Pd in Ag and finds it to be
0.123 with no apparent dependence on temperature.
Introducing this figure into (8.13) gives us

With this value of W, P at 1200'I would be 3.41 if it
were 2.68 at 1000'K, and b would only range from 8.3
at 1000'K to 7.0 at 1200'K.
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