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Relativistic Hydrodynamics for a Charged Nonviscous Fluid
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The equations of relativistic hydrodynamics are derived from an alternative variational method and
a generalized vorticity equation is obtained.

HE equations of relativistic hydrodynamics can
be derived by the application of a variational

principle. ' In this note it will be shown that an alterna-
tive variational method, which closely resembles that
of held dynamics, can describe the behavior of an ideal
compressible Quid.

Let us consider relativistic hydrodynamics in the
Minkowski space with coordinates x„and metric g„„.

The variational principle can be expressed

8 i I.d4x=o,

where we dehne I as follows with a slight modification
of the nonrelativistic Lagrangian density. '
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where p, u„, m, and e are the density and four-velocity
of the Quid, and the mass and charge of a particle,
respectively. q is a scalar potential, p is the compres-
sional energy per unit mass, and J is the heat content
per unit mass (rest).

First, variation of n and P give, respectively,
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where A„means the vector potential.
Finally, the variation of p gives the equation of

motion which can be written by means of a certain
rearrangement in the form
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where we assume n=P=O, and F» stands for the
generalized held tensor.

Equations (3), (4), (6), (7), and (8) describe the
relativistic motion of a charged Quid with the equation
of thermodynamics and equation of state. For example,
we adopt

TdS=dJ p'dP—
as the equation of thermodynamics, where T is the
temperature, 5 is the entropy, and we assume the
state to be barotropic. Then, from (8) we have

and

where

—(n) =0,
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where we have utilized Eq. (6).
By means of (9), Eq. (10) becomes

ci I' clS 8J) e
(Ju.)=i T — (+ uF„„. —

clx" ( cix" clx") m

By differentiation of u&u„= —1, we see that

denotes the substantial derivative. Equations (3) and
(4) indicate the persistence of vorticity and imply that
n= const, P= const, represent a generalized vortex line.

Varying P, we have the equation of continuity
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Hence, combining (11) and (12), we have

(12)

(pu„) =0.
t9xp

(6)
BS e

(Ju.)— (Ju„) = T + u~F I, (13)—
Bx" Bx" (jlx„m

or

cl p e q lt ce y clS

(
Ju,+—a. )

—
( Ju„+—a„) =J . (14)

tlx&i ~ ) clx E m ) rix„
' I. M. Halatnikov, Zhur. Eksptl. ' i Teoret. Fiz. 27, 529 (1954),
~ N. Mikoshiba, Progr. Theoret. Phys. (Kyoto) 13, 627 (1955).' For example, H. Lamb, Hydrodyaaraics (Dover Publication

Inc. , New York, 1945), sixth edition, p. 248. This is the generalization of the vorticity equation,

$414

Next we obtain, varying u„, the Clebsch transforma-
tion

u~


