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Low-Temperature Behavior of a Dilute Bose System of Hard Spheres.
II. NoIMquilibrium Properties*
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The calculation of a previous paper is extended to cover nonequilibrium properties. The phenomena of
superfluidity, critical velocity, and "in6nite heat conductivity" are given natural explanations. By using
classical kinetic theory on the wave packets, hydrodynamical equations for reversible Row are derived and
the dependence of the two "sound velocities" on the temperature studied. The relationship between macro-
scopic sound vibrations and microscopic excitations is analyzed. The work is con6ned to the model of a
dilute hard-sphere Bose system.

l. INTRODUCTION

t 'N the present paper we continue the study of a
~- dilute hard-sphere Bose system by the pseudo-
potential method. The energy level calculation of the
previous paper' is erst extended to those levels for
which there is macroscopic but incomplete occupation
of a free-particle state with nonvanishing momentum.
Such an extension leads to the concept of quasi-equi-
librium states, the thermodynamical behavior of which
is discussed. The separation into two components, the
superQuid component and the normal Quid component,
in this discussion is a natural and explicit ma/hematical
notion, and not based on physical or heuristic argu-
ments. SuperQuidity and the existence of heat transfer
in the absence of a temperature gradient are also
natural consequences.

To discuss the hyerodynamics of the system, classical
kinetic theory concepts are borrowed for the wave
packets formed out of the quantum mechanical energy
levels. Reversible Qow is discussed in such a picture
and hydrodynamical equations of motion obtained.
The dependence of the "sound velocities" on tempera-
ture is then analyzed. The question of whether the
superQuid Qow is irrotational is not resolved in this
paper. Also, it is to be emphasized that the general
problem of transport phenomena in quantum mechanics
is not discussed in this paper.

In each of these eigenstates only the occupation number
for the unperturbed individual (free) particle state
with k=0 is of the order of 1V .

Sy applying a Galilean transformation to the whole
system, we can easily obtain a new eigenstate in which
there is a macroscopic occupation of a free-particle
state with k&0. Such an eigenstate can also be explicitly
generated by using a unitary transformation with the
unitary operator

exp t', P k, r,

on an eigenstate of paper I. In the new e~genstate the
occupation number for the free-particle state k=k, is
$1V )neglecting terms proportional to (pa') *]. The
corresponding energy and momentum for the new
eigenstate are

E(&,mt„k, ) =1Vk.'+ Q m, (co,+2q. k,)
q+0

+4m.aptV[1+ (1—$)'], (3)

P=1Vk,+ g m, q, (4)
q+0

where q is the momentum of the phonons relative to k„
q=k —k„

2. GALILEAN TRANSFORMATION AND
QUASI-EQUILIBRIUM STATES

In paper I,' the energy spectrum of a dilute Bose
system of hard spheres is found to be

to, = q (q'+ 167r asap) *.

The m, 's are positive integers that satisfy

1V 'P m =(1—$)+0(1V—')
q&0

(6)

Z(g, m,) =4~ap1VP+ (I—P)']

+ P mt, k(k'+16sratp) l, (1)
k&0

where
1V 'Q mt, ——(1—$)+O(1V ')

* Work supported in part by the U.
mission.

'T. D. I.ee and C, N. Yang, Phys.
referred to as I in this paper.

and $ is a parameter between 0 and 1.
The parameters g, m„and k, are, in essence, quantum

numbers describing the various energy states of the
whole macroscopic system. (The states discussed in
paper I correspond to those with k, =0.) lt is important
to recognize, however, that they are not absolute

S. Atomic Energy Com- quantum numbers. For example, as discussed in paper

Re 112 1419 (1958). I, each phonon can decay into two phonons of longer
wavelengths with a mean life r and two phonons can

i.40$
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scatter each other, changing into other phonons of
different wavelengths. It is only when these sects can
be treated as small perturbations that $, m„and k,
become quantum numbers. In such an approximation
one can calculate the thermodynamical equilibrium of
the system at a given density p, a given temperature T,
and a given total momentum P, and obtain the equi-
librium values of $, nt~, and k, . The calculation of the
equilibrium properties made in paper I was exactly
such a calculation for the special case of P=O. (One
can prove that for P=O, the equilibrium value of k,
vanishes. Now by the method of steepest descent, one
can neglect the nonequilibrium values of such param-
eters as k, in a calculation of the equilibrium properties.
Therefore it was legitimate to neglect altogether states
with k, WO in paper I.) For the case PQO the equilibrium
values of the parameters g, rn~, and k, can be directly
obtained from (3) and (4) or can be obtained by a
Galilean transformation applied to the case P=O dis-
cussed in paper I. The most probable value of k, is
thus seen to be

states with a value of k, not necessarily equal to the
k, & of (8).

3. THERMODYNAMICAL FUNCTIONS FOR THE
QUASI-EQUILIBRIUM STATES

In this section we shall derive the thermodynamical
functions for these quasi-equilibrium states. Through-
out the present paper we shall be concerned only with
the degenerate phase, i.e., T(T,.

The partition function Q(k„P) for the quasi-equi-
librium system with k, and total momentum P can be
defined as

Q(k„P) = dg Q exp[ —PE(g,m„k,)j, (9)
dp mg

where the sum extends over all m~ that satisfy (4) and
(7). Using the method of steepest descent, it is straight-
forward to find the most probable values of g and m, .
These values are given by

k m, p. ill—iP (8) (1—$)p= (8m') ' m, d'q,

In this paper we turn our attention to states which
are not in equilibrium. Because of the existence of a
mean life 7. for the phonons, it is clear that any deviation
of P and m~ from their equilibrium values would
disappear over a relaxation time which is of the order
of 7. or maybe smaller. On the other hand, by its very
nature the quantity k, is a long-range-order parameter.
It is much more difficult to have transitions between
states with different values of k, . In order to have such
transitions it is necessary to have a cohereeI, change
involving simultaneously $X particles. We may,
therefore, expect states with k, different from its most
probable value to exist as quasi-equilibrium systems,
and we shall discuss their thermodynamical behavior
in the next section.

It may be emphasized that the application of thermo-
dynamics to a macroscopic system in quasi-equilibrium
is a familiar subject in physics. The entire subject of
static problems in elasticity deals with systems in
quasi-equilibrium. To see this, we notice that for an
infinite solid in absolute thermodynamical equilibrium
the statistical average value of any shearing strain must
be zero, independently of the amount of stress applied
on the surface. (We do not consider here the stress
produced by an external gravitational field. ) This state
of absolute equilibrium can usually be achieved by
developing slips or cracks in the solid to relieve the
system of the applied stress. However, because of the
long time-interval required to attain such absolute
thermodynamical equilibrium, it is usual practice to
extend the application of thermodynamics to the
quasi-equilibrium system of an elastic solid under strain.

Similarly, for a system of Bose particles with the
total momentum P, we shall consider quasi-equilibrium

1 expL —P(~~ q'u)]
mQ (q&0) (11)

1—f exp[—P((eq —q. u)]

where the parameters 1 and u are determined by

, f
~T lni = —m=' d'q m, [1—q(q'+16iragp) '], (12)

0—'P=pk, +(8ir') ' Id'qm, q.

p-=—(1-&)p (14)

Pa= EP)

vn: vs+up

v, =—2k, .

(16)

(17)

The factor 2 in (17) occurs because we had chosen units
such that 2m=1.

By using (10) and (11), we find that p„and v„are

'L. Tisza, J. phys. radium 1, 164 (1940).' See F. London, SNperglids (John Wiley and Sons, Inc. , Ne~v
York, 1954).

Kith the aid of these parameters it is convenient to
describe the present system as composed of two separate
components, the "superQuid" and the "normal" Quid
[similar to the two-fluid model first proposed by
Tisza' 'j. We introduce, as purely formal terminologies,
the following definitions for the normal Quid density p„,
superQuid density p„ the normal Quid velocity v„, and
the superQuid velocity v, :
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related to m~ by

p„= (8m') ' d'q rm„

v„=v,+(8~'p„) ' ' d'qrn, p', (u„

(18)

It is of interest to notice that both 0 'F and 0 'E
are functions depending on the four independent
variables T, 0, k„and P. However, because of Galilean
invariance it is possible to construct other functions
which depend only on three independent variables. If,
for example, we define the Gibbs free-energy function
per particle, p, by

where V, is the partial diQ'erential operator with respect
to q. To derive the second equation of (18) use has been then
made of the fact that

pp= O'F—+p (k„——k,)p„v —pk s

dp, = sdT+p—'dP (k—„—k—,) du,

(25)

(26)

t' —,L-v...—jd q=o. where s is the average entropy per particle,

s=S—'S. (27)

(28)

4. SUPERFLUIDITY AND CRITICAL VELOCITY

Thus, p„ is the average number of phonons per unit
volume and v„ the average group velocity of these For our present system the exphcit form of p is

phonons. Similarly, we define the superQuid momentum p=KT 1ni'+8sa(p+p„).
per particle as k, and the normal Quid momentum per
particle as k„where

k„=k,+(87r'p ) ' ns, qdsq, (19)

so that
0-'P= p,k,+p„k„.

The Helmholtz free energy for this quasi-equilibrium
system is related to Q(k„P) by

F= KT lnQ(k„—P). (20)

In terms of the above-defined parameters, Ii can be
written as

0 ~F=p,k,s+p„t k,s+(k —k,) v„f+KTp„ lnt

+KT(8ss)—' d'q ln(1 —f exp' —P(rds —q u)3)

+4m a(p'+p. '). (21)

These functions can be explicitly written as

0-'E=pk, '+(8s') —' rn, (ru, +q v,)d'q

+4s-a(p'+p„'), (22)

Q 'S= —Kp„ in''+(S~sT) ' t m, ,(ar, —q u)d'q —K(87Ps) '

The other thermodynamical functions for this quasi-
equilibrium system can be defined in terms of F by the
familiar relations

The existence of quasi-equilibrium states is directly
related to the phenomena of superQuidity. We shall
discuss some general aspects of these relationships:

(i) In these quasi-equilibrium systems, k, is not de-
termined by the total momentum of the system. This
additional freedom allows for, for example, heat Qow

(i.e., entropy transfer) in the absence of a temperature
gradient. (The detail of these transport problems will
be treated in the next section. )

(ii) From (11), we see that there must be an upper
limit to the relative velocity u between the superQuid
component and the normal Quid component. Since m~
must be positive, we determine this upper limit to be

~ u) —
I
v„—v, ) ( (16vragp)l. (29)

i
v,

i
((16na(p)'. (30)

(iii) The existence of a superfluid Qow and its lack of
viscosity can be understood from a mechanical point of
view by examining the energy spectrum of the system.
The following simple argument, due to Landau, 4 is
particularly instructive in this connection.

For simplicity, let us suppose the superQuid velocity
to vanish (k,= s'v, =0). Consider now an external
object with velocity v, moving through this system.
We shall show that due to the nature of the energy
spectrum (3) and (4), this external object cannot
transfer momentum and energy to the system through
pure excitation of any finite number of phonons,
provided

X~ 1n(1—
1 expL —P(cu, —q u)g)d'q, (23)

tP= —KT(8m') ' ln(1 —i exPP P(~s q'u) j)dsq

+sr 'ap, rn, ~P'q+4m a(p'+p„'). (24)

To see this, let us assume the external object can
excite a certain number of phonons, say, rn~ (m~~0);
the amount of energy exchange and momentum ex-
change must then be given by

8E=P rnsns, 8P=Q ask.

4 L. D. Landau, J. Phys. U.S.S.R. 5, 71 (1940&
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BE~ (16nagp)l[BP [.

From (6), and the fact that m& 0, we have the in- where p is the gas pressure given by (24) and 8,, is the
equality Kronecker 5-symbol. Combining these two e6ects, we

(31) find

On the other hand, we have the relation

58=v, bp.

Consequently, for
t
v,

~

smaller than the critical velocity
(16m asap) s, the only way to have energy and momentum
transfer is through scatterings between the external
object and the existing phonons. The amount of
viscosity experienced by the external object thus
depends on the number of phonons present which
vanishes at zero temperature.

It may be emphasized that the present system be-
haves very diGerently from a free Bose system. In
particular, from (29) and (30) it is clear that the
phenomena of superQuidity depends critically on the
fact that there are interactions (a&0) between these
Bose particles.

S. APPLICATION OF KINETIC THEORY TO THE
QUASI-EQUILIBRIUM SYSTEMS

In a quasi-equilibrium state for which v„—v, /0,
there exists a steady Row of mass, entropy, and energy
relative to each other. To calculate quantitatively the
amount of these Quxes, pure thermodynamical con-
siderations become inadequate. In the following we
shall extend the concepts used in ordinary kinetic
theory to the present problem.

(i) We first visualize each phonon of momentum k
(k= q+k, ) as a wave packet which moves with a group
velocity

Vs+ V si(d q.

Through any small plane surface A in the system, there
is, then, a steady Row of these phonons at the rate of

bm, =Q 'm, (v,+V~(u,).A (32)

per unit time. Similarly, there is also a steady Qow of
superQuid particles at the rate of

where

0 'S= (8il') '~t m~s~d'q, (38)

s,= —
i~ lnt+T '(~, qu—)

—i~(m, )
—' ln(1 —

1 expL —P(~d, —q u) 1&. (39)

Again from kinetic considerations we expect that
accompanying any change 5m~ there is also a change 8S
in entropy, with

Combining with (32), we obtain the expression for J, as

J,= (8m') ') m,s, (v,+V,a),)d'q. (40)

Using (40) and (11), J, can be written in a very simple
form,

J,= pSVns (41)

where s is defined in (27). This equation shows that in
the absence of a temperature gradient and a mass Aux

(i.e., T= constant, J,=O), there could be maintained a
steady quasi-stationary entropy Aux.

(iv) In a similar way we can also try to obtain the
expression for the energy flux Jz. Consider a virtual
variation of 6m~ and 6p, in the expression of energy
density given by (22). We find

II '8E= e,bp, + (8ir') ' e,lm, d'q, (42)

T"=~' P+p. (&.) (') +p-(&-)'(v-) (37)

(iii) To calculate the entropy flux J„we recall that
according to (23) the entropy function 5 can be written
as

(33) where5ps= p, Vs' A

cs=gmap+ks2+am-' 1q'co, 'm, d'q,

(34)

per unit time passing through A. Using (18) we find (43)
that J„defined as the average flux of particles per unit
area, is given by ~~=(oq+q vs+ks'+8ma(p+pn). (44)

Jp= pnVn+psVs ~

Substituting (32) and (33) into (42), we find. the energy
(ii) Next, let us define T,, to be the jth component

of the average Aux of the ith component of momentum
Qux g to e

per unit area. We should expect T,; to be composed of J~——p, e,v,+ (8ir') —' m, e, (v,+V,co,)d'q, (45)
two parts: one that is due to the average motion of the
two Quids

p. (&.)'(v.)i+p-(&-)'(v-) i,

and the other due to the mutual interactions between
particles and the relative motions of the phonons
which, according to kinetic theory, is simply

Jz= «-(p~+ p) u(p.~+p.k—'),
where y is given by (25) and

(46)

which, with the aid of (43), (44), and (11), can also be
written as

(36) pe= Q
—'E. (47)
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Bp—= —v J (4g)

6. TRANSPORT EQUATIONS

In preceding sections we considered various quantities
such as the thermodynamic functions and mass Rux,
momentum Qux, etc., for a quasi-equilibrium system in
which p„p„, k„and k„are constant parameters char-
acterizing the system. We shall now extend our con-
siderations to a system in which these parameters may
be slowly varying functions in space.

We shall assume that there exists a length, say I,
which is much longer than the mean free path of the
phonon. Yet, over this length l any variation of p„p„,
k„and k„can be neglected. The entire volume 0 can
then be subdivided into smaller volumes of linear size
~/. We may apply our previous considerations to each
of these small volumes and treat these small systems
as in quasi-equilibrium. In the language of ordinary
kinetic theory, the neglect of any spatial variation
over a length long compare to the mean free path
means that only reversible processes are being con-
sidered.

The transport equations for this problem are, then,
simply the equations for conservation of mass, momen-
tum, entropy, and energy. These equations can be
written as

a,nd serves as a measure of the difference of inertia
between a phonon and a free hard sphere.

It should be remarked that unlike the thermo-
dynamical discussions of the quasi-equilibrium states,
the validity of these transport equations rests heavily
on a rather heuristic extension of kinetic considerations
to the present system.

If one puts b= 0 in (52)—(55), the resultant equations
are consistent~ with the usual two-Quid hydrodynamical
equations. '

~&n
p= —

pn.
-

t98

t958

ps
Bs

(57)

Bv„
ps+ p8= —ps

ties

(5g)

'7. SOUND VELOCITIES

Let us consider a simple one-dimensional motion in
which v„, v, are all parallel to the s axis and all the
dynamical variables p„, p„v, v, are functions of s
and t only. Furthermore, we shall consider only small
deviations from the state v„=0, v, =0. Equations
(52)—(55), then, become the following linear differential
equations:

8 8—(p„k„+p,k,) = — T...
Bt 8$;

(49)

Bp BT
II+b(p./p. )3&.= p' +s- —

BG 8s

p.k +p,.A:, = —Bp/Bs,

(59)

(6o)
a

(ps) = &—J., —
Bt

(50)

8—(pe)= —& J~
Bt

(51)

t9

(p-+p.) = &—(p.v-+ p.v.)—,
Bt

(52)

8—(p„k„+p,k,)+ Lp„k„(v„),+p,k, (v,),j=—vp, (53)
Bt Bx;

8—(ps) = —& (psv„),
Bt

(54)

In (49) we adopt the convention of summing over the
repeated. index j (j=x, y, s).

Using the explicit forms of J„J„J~,and T... these
transport equations can be reduced to

where the dot means partial derivative with respect to t.
Except for the term bp„/p, in (59), these equations are
the same as the usual equations' for small oscillations
in the two-fIuid model. In the present case, however,
the thermodynamical functions are explicitly known,
as displayed in Sec. 3.

For small oscillations we keep only terms linear in
the disturbances. Now the scalar quantities p, T, p„, p„
and s depend on the ~ectors v„and v, at least quadrati-
cally. In the approximation here, therefore, they must
be regs, rded as independent of v„and v, . Using (17)
and (56) and using the linear approximation, one
reduces (57)—(60) to a set of four homogeneous linear
equations in bp, 6T, v„, and v, with coefFicients which
are given by the thermodynamical functions (and the
function b) for the case v„=v, =0, i.e. , for absolute
equilibrium, a case discussed in paper I.

The eigensolutions of these equations have a periodic
space-time dependence of the form

where b is defined by

= —p,U Qp,

(1—b) (v„—v, )= 2 (k„—k, )

elk, 8
u p, +(v, p')k, +bp„+(v„v)k,

Bt . Bt

(55)

(56)

expgfX (s—Ct)], (61)

' The usual equations, however, are more strict than (52)—(55)
in the approximation b=0 in two ways. First, while (55) asserts
that n is perpendicular to A=p, [sk,/et+ iv, .&)k„7+p,&p, the
usual equation asserts that A=O. Second, the usual equations3
include &Xv,=0, which is not one of the equa.'ions (52)—(55)
expressing the conservation of mass, momentum, entropy, and
energy.
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p (ap't

p„(ap),
L(1—b)C' —Aii]v„=A ism„

A2, o„=([1+b(p„/ps))C' A—oo) ns
(62)

A 12 32K'Cp~

A 2g =32~up,

A 22= 16m.aP„

The elements A;, are given by

p„(ap) ps2 (s T) (ps) (ap ) (ST)t
A =2—

I

—I+2—I I+4I —
II

p lap) PP„L c„) 0p2) EaT) Ec„)
b =OL(e»')')

where the sound velocities C are determined hy the Lneglecting terms of higher orders in (ap»'))
algebraic equations

(69)

ps (ap t ( ps) ( Tlt
A»=2—

I

—
I +2I —

I I

p (api, Ep) Lc„)

(Ps) (aP ) (ST~

(p') (aT), & c„)

p, (ap) p o (soT)'

p (apt ~ pp~ ( c. )
P & (sTl (ap&

I
E p') ( p„) 4c„) EaT) s

(p & ("T)
p Cap), (p) (c„i

(P P.'t (sT) —(ap )
p' ) (c„) i.aT),

where c„ is the specific heat per particle.
Equation (62) yields two sound velocities C:

(63)

The two sound velocities Ci and Ciz are, then, given by

Cr2= (1.713)&T Crz2= 16orcps. (70)

(2) At much lower temperature, ap»' 1, the coefFi-
cients A, , and b are found. to be Lneglecting terms of
higher orders in (pa') l)

dB~'«'B&-'
=16 ~pI t-'B—pp„c„( dt ) & dP)

( dB& ( , , dB
A =167rap 1+I B t

I I

——'-B+-'t
dt ) E dt

d2B) ( d2B)
—1- (71)

+t'
dto) E dt2)

A oi=oL~p(p~') *')

A22= 16map„

(1-b) =
I ~(t)/~(t)),

where

where

Cr'= (2E) 'I L+ (L' 4')')—
Czr2= (2E) 'I L—(L' 4EM)*], —

E= (1-b)I 1+b(p./p. )),

L=AiiI 1+b(p /p. ))+Aoo(1 —b),

(64)

(65)

(66)

(67) B(t)=—2 p" (x'+1)l—1 -'

xln(1 —e 's) — dx
Qm &o . x'+1

28pX

2 t
" x (x'+1)-*—1—

r(t) = dx)
+7r~o c"—1 x'+1

p, s T (ap'l
M=AiiAoo —Ai2Aoi=4-

p„c„&ap),
(6g) 2 r

" dx (x'+1)'—1
x(t) =

Qm-"o e"—1 x'+1
I:o(1+x') ''

Following the usual definitions, we call the normal mode
which has the larger velocity, Cz, the erst sound, and
the mode which has the smaller velocity, C~~, the second
sound.

In the following we shall give the explicit values of
Cz and Czz for this dilute system at moderate ternpera-
ture ap»'«1 [case (i)), at fairly low temperature
ap»' 1 Lease (ii)), and at very low temperature
ap&'»1 )case (iii)]. The thermodynamical functions
for these cases have been given explicitly in reference 1.

(1) At any moderate temperature, i.e., ap»'«1, the
coefficients A;, and the parameter b are found to be

T= Ti 21.7 (ap/~). ——

For temperature T)T~, we have

Cr2=Aii(1 —b) ', Crr'=16maps.

(72)

(73)

—
o (1+*') '+x'(1+x') ').

Using (62), we find that the two sound velocities
become degenerate,

Ci2= Cz~2= 1.6mup„

at a temperature
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TABLE I. Sound velocities in a region ep'A' 1 where the two eigensolutjons p and p for the first sound vibration to
velocities are nearly degenerate.

satisfy

E =2epV CI2j(16mape) Czz~j(i6~ap, ) (v„/v, )z = (135/2v 4) (1.202apX2), (79)

1.20
1.16
1.10
1.00
0.80

1.00
1.00
1.00
1.05
1.13
1.35

For the temperature range T& T~, we find

0.978
1.00
1.00
1.00
1.00

and for the second sound to satisfy

(v /v. )zz= —3p/p'

Correspondingly, if we denote by bp„and bp, the
Quctuations of p„and p„ then for the first sound
vibrations we have

Cz'=16v-ap„Czz2=A))(1 —b) '. (74)
(~p„/b, ,),=0.565(a/Z) (a,Z )-», (80)

The numerical values of Cz' and Czz' at diGerent
temperatures (apX' 1) are tabulated in Table I.

(3) At extremely low temperature, apX'&)1, the A; s
and b become

A zz
——(16/135)v'(1.202K') '

A gg= 16'-ap,

Agg ——16rap„,

322= 16n-ap,

b = 1—(1/45) v-4(1.202apX') '

Thus, the two sound velocities are given Lneglecting
0(7 ')3 by

Cz' ——16&ap, Czz'= -'Cz' (76)

Figure 1 illustrates the variations of these two sound
velocities in diferent temperature ranges.

8. COMPARISONS BETWEEN VELOCITIES OF
SOUND VIBRATIONS AND PHONONS

In the previous paper it is shown LEq. (85) of
reference 1j that at any temperature 2' below the
transition point the velocities of long-wavelength
phonons have a statistical value

while for the second sound vibration we have

(&p-/&p, )zz= —-' (81)

Equations (80) and (81) show that at very lozo tempera
tures the first sound represents a density guctuatiog of
the superguid alone while the second sound represents
an oscillation together with the normal Quid (or
phonons). Thus, we expect the phonon velocity to be
the same as the 6rst sound velocity which is, in turn,
identical with

L2(dp/dp)jr o'= (16=ap)»

since the density p consists of essentially only p, at very
low temperature. Furthermore, if we regard these
phonons as "molecules" then, as was pointed out' by
Landau and others, the macroscopic oscillations of the
thermal excitations of these phonons should travel
with a velocity equal to (1/v3) times the first sound
velocity. All these expectations are confirmed by (78)
and (76).

On the other hand, at moderate temperatures
(apX'«1), the physical characteristics of these two
sound vibrations seem to be reversed. Using (62) and
(69), we find for the first sound

vphonon = (167rapq) * (77) (bp„/8p, )z ——0.214(ap, X')—'))1, (82)

While the phonons represent microscopic excitations,
it is nevertheless expected that by superimposing
together a large number of phonons of the same wave
number we should obtain a corresponding macroscopic
vibration. Thus, v~h, „,„must also be the same as one
of the macroscopic sound velocities. A direct com-
parison of (77) with (70), (73), (74), and (76) shows
indeed that

at T& T~, H, h,„,„——Czz,

and at T&TI, 8 I„„,„——Cz,

where Tz is given by (72).
This result throws new light on the relations between

microscopic and macroscopic excitations. In the present
case, (78) can be understood physically by examining
the diGerent characteristics of these two macroscopic
sound vibrations.

Let us consider first the extremely-low-temperature
region: apX2&)1. Using (62) and (75), we find the

C
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0
TI Tc

Fzo. 1. Sound velocities as functions of T.



D ILUTE BOSE SYSTEM OF HARD SPHERES

while for the second sound

—(8p„/8p, )rr = 12.2 (a/X)((1. (83)

O. REMARKS

A dilute system of hard spheres is, of course, quite
di6erent from a real system such as liquid He. They
differ in two main aspects: that liquid He has a positive
binding energy per particle and that liquid He is not a
dilute system. Qualitatively, however, there are many
similarities between these two systems. In particular,

Thus at moderate temperatures the second sound represents
the oscillation of the superguid; instead, the first sound
is essentially the oscillations of the normal fluid (or
phonons). Consequently, one expects the velocity of
phonons, 8~~o,„, to be the same as Cii, and not Cz.

It may be emphasized that the customary definition
of first and second sound is quite arbitrary. The above
apparent change of the physical characteristics of these
two sound vibrations at very low temperatures and at
moderate temperatures is essentially due to this choice
of definition. For the present dilute system, at any
temperature below the. transition point there are two
sound vibrations: one represents the oscillations of the
density fluctuation of the superRuid alone and is directly
related to the microscopic phonon excitations, while
the other is connected with the macroscopic oscillations
of the density fluctuations of the phonons. The velocity
of the former type of oscillation (or long-wavelength
phonon velocity) is

(16n ap, )',

and the oscillation is called first sound for T&T~ and
second sound for T& T~.

the explicit solution of the dilute system of hard spheres
clarifies some of the physical concepts underlying the
low-temperature behavior of liquid He and enables
one to ga, in new understa, ndings concerning the phe-
nomena of superAuidity.

For example, both the binary collision method and
the pseudopotential method can be applied to study
the low-temperature behavior of a dilute system of
hard spheres obeying Fermi statistics. These results
show that such a system does not undergo any phase
transition and it exhibits no superRuidity. Thus, these
results confirm I.ondon's proposal that superQuidity is
a result of Bose-Einstein statistics.

As remarked before, the explicit solution of the
present dilute system of Bose hard spheres shows some
interesting and somewhat unexpected relations between
the velocity of phonons and the macroscopic sound
velocities. While a direct extrapolation of these details
to a dense and strongly interacting system such as
liquid He II is not permissible, these results, even in
their general outlines, do stimulate new thoughts as to
the corresponding relations in He.

The dispersion relation of phonons in He has been
measured by scattering experiments using slow neu-
trons. It would be of particular interest to know
whether the phonon velocity in He II varies with
temperature and to study the relationship between the
phonon velocity and the sound velocities.
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