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Coulomb Scattering in a Very Strong Magnetic Field
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The spiralling of charged particles in an intense magnetic 6eld is taken into account in the description of
their collisions involving small fractional momentum transfer. The transition probability to the continuum
of possible states is given. In addition, the transition probability is given for a particle s orbit center to be
displaced from one magnetic line of force to another, with accompanying momentum change, as a result of
scattering by a &red charge. The equivalent results are derived for the scattering of two identical particles
in their relative coordinate system.

As the result of scattering, the momentum change along the magnetic 6eld in a uniform, collimated beam
of spiralling particles is found to be very much smaller than the sum of the magnitudes of the individual
momentum changes in that direction. In contrast to ordinary Coulomb scattering, one 6nds that there is a
lower limit to the momentum transfer to individual particles and that there is an adiabatic cuto8 distance
associated with the interaction which, in some plasma situations, can be shorter than the value of the Debye
distance.

The %KB approximation for generalized Laguerre polynomials is appended.

I. INTRODUCTION

'HE scattering problems that will be described in
this work can be outlined, as it is commonly done,

by ordering their collisions according to the fractional
momentum and energy transfer. For large fractional
transfer, in probably all so far realizable situations, an
imposed magnetic field can only play an unimportant
role in Coulomb scattering of charged particles —even
for (transient) fields of around 10s gauss that are now

coming into use. However, for small fractional mo-
mentum transfers, the role of the magnetic field becomes
increasingly significant with increasing distances of
closest approach.

The spiralling of charged particles, being a form of
binding, causes their energy values to be quantized. It
should therefore be investigated what conditions must
exist for the consequences of this e8ect to become
observable. A quantum-Ioechanical treatment of the
scattering is therefore desirable.

Although it is not the aim of this paper to emphasize
applications, it should be noted that knowledge of the
transition probabilities for encounters involving small
fractional momentum and energy transfer is essential,
for example, to the computation of transport properties
of a highly ionized plasma; there such encounters pre-
dominate over the more violet ones because the long
range of the Coulomb force makes the former much
more probable. '

Wherever the presently available literature of the
Boltzmann and Fokker-Planck equations deals with
the transport properties of plasmas in very strong
magnetic fields, no account is taken of the spiralling
of the charged particles in computing the relevant
transition probabilities; the Rutherford formula is
always used, even though in many interesting situations
the reliability of this procedure is problematical. But
even if it does turn out, contrary to doubts expressed

' See L. Landau, Physik. Z. Sowjetunion 10, 154 (1956).

in what follows, that the spiralling does not have eBects
worth exploring further, then one may still find the set
of transition probabilities presented in this paper to be
more natural to the description of the problem than the
one resulting from the Rutherford cross section.

Apart from its applicability to plasma physics, a
large part of the calculation is an instructive example
of a situation where it is undoubtedly advantageous'
(and in general necessary') to find physical observables
(certain transition probabilities, orbit centers, etc.)
independent of k, via the Schrodinger equation. There
are two reasons for this; the basis of both are in distinct
contrast to what is the case in ordinary Coulomb
scattering. The first reason is the difficulty of integrating
the classical equations of motion even after making
small momentum transfer approximations. The second
one is the much greater ease with which the expression
for the transition probability can be evaluated using
quantum mechanics instead of classical mechanics.

This problem, moreover, has the characteristic
feature that (orbit centers of) particles approach and
recede from the scattering center along magnetic lines
of force. Therefore, the next section contains infor-
mation about the properties of a free particle in a
magnetic 6eld which are needed to calculate the
scattering phenomenon by means of the first Born
approximation.

In Sec. III, various transition probabilities will be
given that are applicable either to the scattering of one

spiralling particle by a arbitrary Axed charge, or to the
scattering of two identical particles as described in their
relative coordinate system.

Possible implications of the results of Sec. III are
discussed in Sec. IV. A by-product of Sec. II is the

2Before this work was begun, William M. MacDonald con-
jectured that this would turn out to be true.

'Analogous to e'/ hv1«case in ordinary Coulomb scattering
where quantum effects cannot be disregarded.
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WEB approximation for generalized I.aguerre poly- with
nomials which is given in an Appendix.

II. UNPERTURBED PROBLEM

The Hamiltonian of a free particle of mass m and
charge e in a uniform magnetic field B parallel to the s
direction can be taken to have the form

E,= (n+-,')kQ,

Ei, =p"h'/2'= ~ip'hQ,

p(—p') -"(p') (3)

&' (8' 1 8 1 8' c!') eB e'B'
+ +, ,+, i

— L.+
2m (Bp p jp p' By Bs ~ 2mc Smc'

where
pn+ni (—x)'

L.i-&(*)= Z I.=o (n —o-) 0. !
in cylindrical coordinates {p,y,s}.The vector potential
associated with this Xo is

A p=0, A „=-,'Bp, A, =O.

L, is the s component of the angular momentum
operator, which (unlike L') commutes with %0, another
constant of the motion is the momentum p, .

The Hamiltonian BCO('& for the unperturbed system
of two identical particles (mass ni, charge e) in a mag-
netic field is expressible in terms of BCp ln the following
way:

are the generalized Laguerre polynomials, and

C„.'= 2(n!/(n+n)! j.
It is evident from Eq. (2) that n determines the particle
energy perpendicular to the magnetic field. In most
problems of interest e))1;for example, a 10-kev electron
(with p=0) in a field of 10' gauss has n 10'. The
physical meaning of e is that it determines the radial
position of the orbit (center), for fixed E,. This can be
expressed by

~0 (xi)x2)' ~0(2 (xi+x2)r 2Nip 2B)
+SCO(x, —x„-,'m, -', B). or classically by

(nni p'inn) =2n+n+1,

Without loss of generality, all analysis in this section
can, therefore, be limited to 3'.0. It may be noted here
that the introduction of relative coordinates is in general
not a useful step in achieving the solution to two-particle
problems involving a magnetic field.

Taking the eigenvalues of L, and p, to be nb and p'h,
respectively, one is led to the equation'

dv f n —
g i dv—p' ~.= +C(p—').=0,

for p' times the radial wave function if the unit of length
is chosen to be

po ——(2bc/eB)&=3. 6X10 'B *'.

It will be convenient, moreover, to introduce a dimen-
sionless quantum number for p„related to it by
p, =pl/po. The necessary and sufficient condition for
Eq. (1) to have a polynomial (factor) solution and thus
keep v(~) finite is

4 ~
p'%'

+-',nQA,
i

fiQ E 2ni )

with m=0, 1- . Therefore,

E=Ki+K,

4 Leigh Page, Phys. Rev. 36, 444 (1930).

With
xC(x)=(x+—x)(x—x ),

x+=pq ~45+2n+ 2+ ' '

x =p '=(n' ,')/4n+——

(6)

if n))1 and n)) ~n ~; similarly, if n))n))1, then

x~ n+2n+1+2[—n (n+n) ]*'+. . .. -

p'= (4E,+2QL,)/mQ'= po2(2n+n+1), (4')

where p is the square root of the time average of the
square of the particle radius. For n, much smaller values
than n are usually the more significant (see Sec. III).

It will be suAicient to describe the charge density of
a particular

~
pnn) eigenstate as being confined within a

cylindrical shell that is the locus of all cyclotron orbits
having the orbit center coordinate, p. In this quantum-
mechanical treatment one is therefore left with an
averaging over the phase angle by which a classical
calculation identifies the initial position of the spiralling
particle in some reference plane; it is felt that this is a
very significant feature of the quantum-mechanical
approach.

The (two) classical turning points of the motion are
where

C (p') =4n+2n+2 —(n' —-')/p' —p'=0. (&)

The classical values of p' possessed by the points on the
cyclotron orbit furtherest from and nearest to the p
origin are taken to be, respectively, p+~ and p '. The
distance of closest approach is, therefore, at p= p, s=O.
If e WO, C may be written as
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From (3) it follows that n~& n—; n= —N is the angular
momentum of a positive particle centered at the origin;
for a=0 the particles will spend more time near the
origin than for any other angular momentum. For
negatively charged particles e&- e. All formulas inde-
pendent of the sense of rotation remain unchanged in
value if e and n are simultaneously replaced by (—e)
and (—n).

Before going on to the scattering problem, it appears
necessary to simplify the solution of the BCO problem
somewhat further so that the perturbation calculation
becomes tractable. One of the apparently few ways to
find a simpler expression for the solution of Eq. (1) is
to note that I.aguerre polynomials have the asymptotic
expansion"

L„i &(x)= v. 'n& lx ' —'e—'* c—o-sI 2(ex)&——,'v-(n+-', )j, (g)

in the limit e —+ av Ltherefore
I
n

I
«e in (8)j.From the

behavior of v„LEq. (3)j it is clear that relation (8)
must not be trusted to represent the wave function
outside its classical region, vis'. , p&e & and p&p+ if
ca=0, and p&p and p&p+. otherwise. Moreover, if
n~ N, rela—tion (8) is again not applicable.

For nWO (a+n»1) the solution of Eq, (1) by means
of the WKB method is presumably more accurate than
the one obtained from (8) because it takes a more
detailed account of the variation of C; numerical work
supporting this statement is given in an Appendix. In
the classical region of C, i.e. C»0, the WKB approxi-
mation for ~ is

v = (2/v')4 „'cos[S..——,'v.$,

particle (charge e and mass m) by a fixed charge Ze (at
the origin), and the scattering of two identical particles
will be described.

In analogy with situations without magnetic fields,
one may expect t.'he reliability of the Born approxi-
mation to improve with increasing values of iv and p.
The range over which the Born approximation is
expected to be useful appears to become larger with
increasing strength of the external magnetic field. This
idea suggests itself because the motion at large distances
from the scattering center then becomes less and less
determined by the perturbing Coulomb held.

A restriction to what follows is met in the limit of
adiabatic behavior; this fact has as a consequence that
there will exist an upper limit to o., beyond which the
expression for the transition probability should not be
assumed to be valid. Moreover, as is almost implied by
the previous paragraph, taking the limit 8 —+ 0 is to
be eschewed. The necessity for this exists already in the
corresponding classical treatment.

The matrix element of interest is

M=Ze'(++Ac, P+AP, nI (p'+s') &I epn). (12)

The final state has been characterized by ii'=e+Ae,
p+i1P, and n; the initial state by e, p, and n. M reduces
to 2' f'

M= il dpv„. (p)Ev(I aPI p)v„(p), (12')
J 60

after integration over s and q. The former integration
contributes 2EO because

I'(n+-', ) (2q " ~" cos(xs)
E„(x)= ds.

I'(-', ) (x) ~o (s'+1)"+l
(13)

It turns out that in the evaluation of the relevant matrix
elements for our problem, only differences S„—S
will be needed with IN' nI«e. T—herefore, it is sufFi-

cient to give the value of

BS ('p —p
(11)

(py p )
Nevertheless, S is calculated in the Appendix because
with it one can immediately obtain, over a wide range
of x, what seems to be a better approximation to
L„i '(x) (for n/0) than expression (8). For use in Sec.
III, other expressions for L„&~i(x) cited in the mathe-
matical literature" do not appear as tractable as the
WKB result.

III. SCATTERING PROBLEM

This section gives the first Born approximation of
various transition probabilities. The scattering of one

5 G. Szego, Orthogonal Polynomials (Am. Math Soc. Coll. Pub.
Vol. XXIII, 1939).

'A. Krdelyi et al. , Higher Transcersdeetal Fgnctioes (McGraw-
Hill Book Company, New York, 1953), Vol. 2.

or
I &PI p=1,

p —(e'/
I
hn

I ) (E„,/E, )'.
The last relation delineates the onset of adiabatic

conditions. In our units, it is the same, well-known

7 G. N. Watson, Theory of Besse/ Factions (Cambridge Uni-
versity Press, Cambridge, 1952).

E„(x)is a Bessel function of purely imaginary argument
related to the Hankel function H '"(ix) L, in . (12'),
is the length of the cylindrical quantization volume, V,
of radius R whose axis is along the direction of the
magnetic 6eld.

Two important general features of the scattering can
be inferred already from the form (12') for M. Firstly,
the oscillatory nature of the eigenfunctions (3) in M
cause it to be relatively small unless

I
De

I
«n Secondly, .

M will become extremely small if there is little overlap
between the region where both v„are essentially local-
ized (p &p&p~), and the interval where Ev(IhpIp) is
large (IhpIp&1). The interaction will therefore cease
rapidly beyond where
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relation that one finds by saying that if the closest
distance of approach between an oscillator, having a
natural frequency 0, and a particle moving with velocity
v (parallel to 8) is greater than b,„=t~/I»IQ, then
the interaction will cease to induce transitions between
levels heQ apart.

For electrons (mass ns.) moving with a velocity t~

corresponding to E ev in a field of 8 gauss, one Ands

f...=3 4(z. ):/I-»Ia,
and the corresponding expressions for heavier particles
of mass slII is

3.4 (AH

f»Islam,

the largest contribution to the integrand. Finally one
gets

Mt= 41a-(I» I rs)Ea-(I» I rr), (»)
after putting (11) and (5) into (16). In (17), Ia„(g) is
the Bessel function of purely imaginary argument and

rr~rs ——
I Ap/AnI p~(rr, n) 2—p~/p

Relation (17) follows from (16) in a straightforward
manner after one changes variables from p to

/=2 arc tailI
„sj

This substitution allows one to write

because

Ze' 1 f' E„q
M=-', ir -

I
1+I n-:I~pI l, z, )

(14')

One can easily show from the general expression for
p (o.,n)/nl that if one deals with n, »)&1, then the
onset of the adiabatic phenomenon already occurs at
InI«n unless (An)'E, &E„.Therefore, in a plasma at
high temperatures the collisions involving In I(&n will
be by far the most significant; this is the erst and main
reason why the 0.))e case will be treated in less detail.

Combining (8), (3), and (12') gives

M = -'ir(Ze'/1. ) (nn ) I (Ap)'+4(n': —nl)'] —'* (14)

to a first approximation, provided, as is very often the
case, ' IhpI p+&)1 and IhpI p (&1. It is necessary that
p+))p and»(Er/E„)l))1 for these inequalities to be
satished. M may be simplified to

M, =— t dP cos(hnP)Eo(I An
I (,'y, '

—2rirs cosP) f). (16')

Replacement of Eo in (16') by an equivalent expression
obtained from the addition theorem of Bessel functions, ~

'VZS. )

Eo( I pr +ps 2pips cos0
I
')
s=oo

= 2 1.( s)E'(pi)~", (pt&ps)

then yields (17).
Most of the information in this paper comes from

use of (14) or (17) in special cases, but additional
knowledge will be obtained by giving a discussion of
the behavior of Mi, as it depends on rt(rr, n) and rs(n, n)

A general decrease in Mi can be demonstrated by
proving* that, for all T,

Dn+ 'pDp 0. — —(15) Mi 41a„(IanI (r———Sr))Ea„(I»I r)

M 8 f&+
Mi=

Ze

XEo(I Ap I p) cos(S„—sor) cos(S„—s~)

t

P+ ( r}S
dpi'„.—'*Eo(IapIp) cosI sn I,r~p (f}n )

(16)

by substituting (9) into (12), and then retaining only

8 For p+ and p one takes, in principle, min{p+(n'), p+(n) } and
max(p (a'),p (I)}, respectively. For the case of small rrN/n
treated in this paper, the (p+(n'), p+(n) } difference is usually not
important.

The expressions (14) and (14') are of special value for
n=0 because for only this eigenvalue is C +p ' as
p

—+ 0, which implies in turn, that no WEB treatment
exists for Eq. (1). For 0( Ict I&(n (14') will serve as a
comparison to the corresponding results found by means
of the WEB method that are given next.

One finds for IhnI«n that

decreases monotonically with increasing 8r(&0), which
is related to p by

s =Imp/»Ip

The power series representation' of Ig„makes the
proof of its monotonic behavior self-evident. Part of
this fall-oR is of classical origin, but for sufficiently
large p values, it is always a quantum-mechanical
phenomenon.

It will be shown next that there can be a range of p
(and n) values, where M decreases relatively slowly at
erst with increasing p . One may, therefore, refer to M
as staying rather close to a certain "plateau" value.
Outside of this region, one expects and finds that the
scattering decreases rapidly as the minimum distance
of closest approach, p, increases beyond the outer edge
of the "plateau. " This, it will be seen, can occur at
distances much less than p I 2pI

~ Note added in proof.—The proof given is only appropriate if
o.&0. However, the proof for n&0 is nearly the same. One must
then merely consider variations r+bv. in E; instead of variations
T 57' ln I.
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"On the plateau, "br is such that

la~ls I,„'(zN.)«z,„(Is&I )

If
I
Ae

I r«1, the foregoing inequality becomes approxi-
mately

Ii~ i-i(l~mlr)
-', lhelB =ldll' / «1,

I~-(I ~~
I r)

2l~ml p-&&p+, i.e., l~l&&2N/I~II for El&E1.
Similarly if ~&&1, one 6nds

hebe&(1;

again it follows that p «p+, i.e., lnl«e for Ei»E~i.
On the other hand, if o,»e, the situation is the fol-

lowing. According to (6) and (7'), one can express Mi
roughly as

Mi=41~-(I ~~
I
2~*'/p) &~-(2

I
~~

I (~+2~)*'/p)

if e»I~II.
First of all, it is interesting to point out again the

asymptotic behavior of 3I~ as a function of o, for

~,= (2/p) (~+2~)~&&1.

Under these conditions M» is proportional to
(Der]) l exp( —delhi) because of the asymptotic be-
havior of Eq„(he x).'

At p distances much less than b (which corre-
sponds to p lhpl ') but still such that cz»e, one
finds M~ is smaller, approximately by a factor

(r ) t~nl ( yz ) l~nl/2

~l
—

I

&ay2e&

than Mi given by (17")if
I
Anl »1.The factor demon-

strates just how rapidly M& falls with increasing dis-
tance of closest approach p (n,n) beyond "the plateau. "

Therefore, except for a relatively brief reference to
M for o.»e in Sec. III 8, we shall confine ourselves to
the In l«N interval; for these values of cz, the cyclotron
radius is much greater than the distance of closest
approach.

One may also, of course, consider hei and Ap as
variable and keep n fixed. Then one can use the above
inequalities as a means of sorting out the set of im-
portant final states

I
a+Ac, p+d p, n). No unique final

state can be expected because we are dealing with an
ensemble of classical particles with the same p~ but
diferent trajectories. The loss of information about
individual trajectories thus swered is of no consequence
in applications to kinetic theory.

The scattering that arises from an incident beam of
spiralling particles, and from an incident beam propa-
gating in the direction of the magnetic field, will be
described in the remainder of this section. The former
is more interesting from the point of view of the kinetic
theory of plasmas. The latter, however, is probably the
only situation where a strict comparision with the 8=0

case is possible because then the initial conditions can
be made identical for the particles' —in particular, the
preferred directions with and without 8 field become
identical; the direction of the magnetic Geld is then
that of the incident beam.

pp=
dE ~~

de dS»,

where 2m%« p'I. . W——ith a change of variable from e
and p to

e= E/AQ =n+ ',p', -

y= arc tan(2(e)&/p),

p p becomes easily convertible into the expression

I test~'
p» ——

I I
sinpdy

~en& 2 &

(18)

dP I s.
2m.k'0

In a uniform beam, the distribution function of the
square of the orbit center, Q(p'), is a constant, Qo.
Therefore, if the beam is also monoenergetic, it follows
from (4') that Pr(n) is constant.

~r (~)= r o'/&'. (19)

Some special cases will now be dealt with —partly in
order to compare the WKB result, (17), with (14').
We note for example thatfor Idpl p+»1 and lhplp «1,
(17) becomes

alid
Mi ——2/Ihple~ if E,&&E„, (17')

Mi ——2/he if E„»E,. (17")

Results equivalent to (17') and (17") found by using
the trial wave functions based on approximation (8)
difI'er, therefore, principally, in that they yield matrix
elements roughly smaller in the ratio ~2m. 2. Such a
di6erence should not be surprising; as already men-
tioned, (9) takes a more detailed account of the spatial
variation of v„ for e/0; for these values of o., the
WKB approximation appears more reliable. (See
Appendix. )

sinydy, the transition probability per unit time

9 Observation of S. Ga, rtenhaus.
"In cgs units.

A. Spiralling Incident Beam of Particles

The density of final states for a given angular mo-
mentum, pp, and the density of initial angular mo-
mentum states for a monoenergetic, collimated, (so as
to obtain particles of only one pitch angle) beam of
particles, Pr(n), are all that remain to be added before
listing various transition probabilities. "
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for going from a single state characterized by (N,p,a) to
a set of states consistent with energy conservation,
having 7 in the interval between y and y+dy, and

(Dp)e~&&1, is

m'Z'e' (2m~ ''

W„n~
4(aP,)'p, 'L ( E )

if n=0, while if n/0 (in i«n) one gets

4Z'e4(2mE) '*

(6p,) 'Eipo2L

(20')

(21')

For a collimated, uniform beam of particles, one com-
putes the transition probability from inpo. ), now con-
sidered part of a continuum of initial states, to be

4m Z'e'(2mE)-**
W„'=W„„.P—r (n) = fi(n), (22')

(Ap, )'EiV

with fi(0)=(n'/16)(E, /E), and f, (n)=1 if n&~1. The
expected absence of separate factors of fi (nor I or 0.)
from (22') should be noted. For E~~&&Ei the formulas
corresponding to the last three are respectively

x'Z'e' (2E ) i
W,p=

2I.(AE,)'pP ( m )
7r'Z'e4 ) 2Eq '

(20")
2I.(AE„)'p02 I m )

SZ'e' ( 2Eq -'*

W.„.= (21")
(AE„)'po'I. 'L m j

Sn.Z'e' )2Ep i

II (o) =
1

—
I f2(~), (22")

(AE, i)'V ( m )
with f2(0)=m'/16, and f2(n)=1 if a~& 1.

Various kinds of transition probabilities may be
derived from (20')—(22"). For example, a transition
probability %d(p') can be defined which gives the
probability for the square of the final orbit center
coordinate to lie between p' and p'+dp', it can be
obtained from the set 8' by the relation

(dp'i ' mQ'
% =sinai

1
W= W,

E dy &, 8(E(,Ei) l

because
p'= po'(a+2' sin'y+1).

In harmony with expectations, the dependence of %'
on the magnetic Geld is inversely proportional to the
square of the magnetic field and

1
hp'i. This result is

seen at once, following replacement of AEll or AE& in
lV, and thus%", with the difference

6p' =4IiEi/mQ' = —4AE„/mQ',

obtainable from (4) or (4'). 'N may be said to be the
transition probability for an orbit-center shift from
one magnetic field line to another because each Geld

line may be labeled with orbit-center coordinates of
the initial or final state.

The interesting absence of ini (&0), to first order,
from the transition probabilities, is undoubtedly related
to the fact that a quantum state with a Gxed n corre-
sponds classically to a set of particle orbits with diGerent
distances of closest approach but the same p and p~.
This helps explain why the dependence of 8'„„on
the minimum distance of closest approach, p, and
thus o., is expected to be not very strong for the angular
momenta considered above, i.e., those on "the plateau. "

Just as the Born approximation to the Rutherford
cross section does not determine the sign of the mo-
mentum change, so do our formulas for 8' leave the.
sign of Ap', AP, An, and other interrelated quantities
undetermined; this is so in spite of the fact that these
differences have a unique sign, except in the 0,=0 case,
depending on that of the charges @nd their relative
angular momenta. If one deals, for example, with two
identical charged particles, then (in their relative
coordinate system) dp'&~0 if n)0; Ap'~&0 if a&0;
and if 0.=0, Ap'&0 or hp'&0. For a fixed positive
charge and spiralling electron the signs of Ap' (An, etc.)
are the opposite of those just listed.

An interesting feature can be inferred from those of
the last paragraph by considering a uniform, collimated,
monoenergetic beam of particles carrying one sign of
the charge. Particles in such a beam may be paired o6
so that they have the same p, which for the range of a
values of greatest interest ( 1

n
i «m) essentially amounts

to pairing particles having opposite signs of 0. and the
same n and p. According to the W formulas, the proba-
bilities for the two components of beam with &n to
have the opposite momentum charge is therefore the
same. Moreover, since the density of states for n&0
and o, &0 is the same, we conclude that the net mo-
mentum change of a beam of particles along the mag-
netic Geld is very much smaller than the sum of the
magnitudes of the individual momentum changes in
that direction. It is not apparent that there should be a
meaningful analogy to this feature in scattering without
a magnetic Geld, though one may remember in this
connection that in ordinary Coulomb scattering the
total momentum change in a beam perpendicular to
the initial direction of motion is zero.

B. Incident Beam Parallel to Magnetic Field

The eigenfunctions of particles which move in the
direction of the magnetic field are those having @=0.
Therefore, for a transition from an initial state having
quantum numbers v=0, p, n to a state with quantum
numbers ii, p+Ap p —2hz/P, n the relevant matrix
element is

( e!
%i=41 I

' exp( p') p'~+'L„i—~) (p')
E(N+n) tn!) "0

&&Ko(i api p)dp,
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because I.p(x) =1.With the use of'

2
exp( —p')p I- "(p') =—)' «p( —s')s'"+ +'J (2sp)ds,

g, 0

and

with b, P„X~, o.(X), and rs being respectively the impact
parameter, the initial momentum, the maximum and
minimum scattering angles, the Rutherford cross
section, and me'/p, . Since we shall only be concerned
with small-angle scattering (in large-angle scattering
the magnetic field is a perturbation), we may approxi-
mate dI', as

dp p +'Ee(!AP!p) Js(2sp) =
4P'+(~~/2) ~--'

one can convert Mi to

e i e A~gt—

& I!(rr+I)!i ~ e (1+/)"+'

where 6 =(hp/2)' (e/p)'; from this form for cVi,
one can readily show that for D„«1, M& decreases as
n increases, and it does this more sharply, the greater
e becomes. This behavior is easily understood in terms
of cancellations in the integrand of 3Ei, introduced by
the sign changes (in number=n) of the final state wave
function.

Later on, we shall be primarily interested in esti-
mating the forward momentum change in situations
where e«0, and therefore we shall work only with

r" ( f )~+'
Mi ——(o.+1) iDi! e "!—! dt

E1+tJ
v' exp{—L( +1)~ j'}(L~ ( +1)3'—~ /2 )"

&~i(~+1)3' ~ &~i(~+1)3'*+~i/2&

&&(1+-f(L& ( +1)3'')),
and the cross section associated with it, which is

o (B)=m. (e'/E) (e'/AQ)! Mi! ' (22"')

Here one obviously deals with a quantum phenomenon.
An important manifestation of this is that iV ~ decreases
exponentially with (rr+1)'* if

L~i(~+1)3'= (~+1)'/p~1.
The onset of adiabatic condition is therefore again
apparent. It should be realized here that in a large
portion of the interval, the o. dependence of M~,
although explicit, is weak. The cross section therefore
shows "plateau behavior" for the corresponding large
interval of impact parameters (just as in Sec. II A).

Now one can compare the forward momentum
transfer, At'„with and without a magnetic 6eld. The
latter is

~
5+

bdb ap, (b)

)X+

= —2n.
J p, (1—cosX)o.(X) sinXdX

(sin(X~/2) )
!= —4~P res ln!

&sin(X /2))

DP.=AP, (B=O)=47rP, re' ln(X /2),

by a suitable choice for X+. X is taken to be the scat-
tering angle associated with the Debye length, " h, for
applications to plasmas —in that case therefore

X /2=re/h.

Because of the aforementioned plateau behavior, the
magnitude of the equivalent result valid in very strong
magnetic fields is roughly the product of the magnitude
of the cross section o (B), the momentum change
rehQ/p„and the width of the cr interval; thus

AP, (B)= 27rp,e'/EAQ.

The ratio of the two AI', 's is therefore

~P.(B) 1(Eq
&P,(0) 2 EAQJ !ln(X /2)!

It decreases, as it must, with increasing 8. The ex-
pression for N. however, should not be assumed to have
validity except as an asymptotic formula in B.

As was already pointed out before, the main value
in having (R is to enable one to make a meaningful
comparison with the 8=0 situation. In addition,
manifestations of quantum phenomenon at very high
field strengths is again shown.

It should be clear that relations (20')—(22'") have
application in those situations where electrons have
such high velocities in comparison to those of the ions
that it is reasonable to consider the ions at rest.

This completes the description of the scattering by
the field of a fixed point charge. The next section will

discuss the identical-particle problem.

C. identical Particles

With simple modifications the previously obtained
transition probabilities may therefore be used to solve
the classical problem of the scattering of two identical
particles in the relative coordinate system; the
quantum-mechanical interference terms will, therefore,
be ignored. Symbols of physical quantities referring to
the laboratory system will now be taken to represent
the equivalent quantities in the relative coordinate
system. The mass m therefore becomes the reduced
mass, and p shall represent the relative momentum.
Therefore 2p= ps —pi, where the momenta pi and ps

"L. Spitzer, Physics of Fully Ionized Gases (Enterscience
Publishers, tnc. , New York, 1956).
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Wnya W—nba(p p ) ~ (24)

The calculation of transition probabilities
W"„,'& ~,„',&',

~ ' between states stipulated by (and not.

just expressed in terms of) individual-particle quantum
numbers will be considered next. The most important
reason for doing this is that, in kinetic theory, changes
in the distribution function are most easily computed
from the type of transition probabilities just mentioned.

Without a magnetic field, in scattering problems
where the wave function obeys the plane-wave
boundary condition at s= —~, a distinction between
transition probabilities involving eigenstates of relative
and center-of-mass momenta, (p and P, respectively)
and those concerning eigenstates of the individual-
particle momenta (pip2) is indeed simple because the
bracket,

(P P IPP)=~(p +P l»~(p —P l» —(»—)
relating the corresponding matrix elements reduces the
sum,

(PiP2I U
I

Pi'P~'&

= 2 (P P IPP&(PI UIP'» (P'P'lP 'P '»
yy'PP'

to a single term, (p2 —pi I'0
I
p~' —pi').

In a magnetic field, however, the unperturbed
eigenstates in relative and center-of-mass coordinates
have their ( I'UI ) matrix elements related to the
corresponding ones of the individual particles by the
sum

O'I'll"&=2-(1'l»(~l Ul~'&(~'ll"& (26)

where I' symbolizes all the individual-particle quantum
numbers {ni,p~, ni, n2, P2,n2), and 6 represents the
quantum numbers {npn; iVPA) for the center-of-mass
and relative coordinate system.

Instead of approaching the calculation of
W"„',&~',„',&*,~,

' ' from (26), one may, perhaps, ac-
complish more by working directly with the wave
functions of the two individual particles; however,
this appears to have no obvious advantages because
one must then deal with sizable difhculties in reliably
evaluating certain types of iterated double integrals
that are needed to find the Born approximation.

Despite the aforementioned difFiculties, the work
presented here still leads one to expect that the quan-
tum-mechanical description of two-particle scattering
in a magnetic field is more tractable than its classical

are those of the individual particles. The transition
probabilities for identical particles are expressible in
terms of the ones given above by means of the relations

W.„.&'~ =W.„.(p p')—+W.„.(p+ p'), (23)

where p and p' respectively represent the relative
momenta along the field, before and after collision,
For small momentum changes (which are the ones of
interest), one has

counterpart. In the case of a slow ion and fast electron,
this has been demonstrated.

IV. DISCUSSION

The interest in the material presented in the preceding
sections will inevitably be related to how nearly correct.
the already published work on plasma properties is in
taking into account the influence of very intense
magnetic fields. Therefore, some comparisons will be
made of quantities which enter into the calculation of
plasma properties insofar as they do or do not ignore
spiralling and (thus) the cutoff in momentum transfer,
etc. At least two basic attributes of plasma must be
kept in mind for this. One already mentioned is that
the so-called long range of the Coulomb interaction
makes the multitude of distant collisions involving
small momentum transfer more inQuential than close,
more violent ones. The second, very characteristic
property of a plasma is the existence of a cutoff length
beyond which the field of a particular (positive) ion is
screened out by the plasma electrons; it is customarily
(even in magnetic fields) taken to be the Debye length

0= (kT/4n Ne') *'=6.9 (T/N) &)

where the symbols k, T, and X are, respectively, the
Boltzman constant=1. 38X10 " erg/'K, the plasma
temperature measured in 'K, and the number of
electrons per cc.

It follows at once, therefore, that b,„can be made
smaller than h in situations which are within the
capabilities of the present day laboratory, e.g. , T&107
'K, N&10'4/cc, E&10' ev and B&10' gauss. From
this alone one may conclude that the concept of
screening distance in a magnetic field deserves careful
investigation.

Furthermore, if one assumes for a moment that the
cutoff phenomenon is the most important consequence
of the external field, which somehow crops up only-
as it does in the 8 field-free case—in a logarithmic
factor, then one may conjecture that there exist at
least logarithmic uncertainties in transport coefficients"
over a range of wide interest.

Three reasons readily suggest themselves why there
are likely to be additional uncertainties in the transport
coefficient. First of all, one does not know whether the
functional dependence on cutoff distance will reside in
a logarithmic factor; because of the innate anisotropy
that stems from the magnetic field, this functional
dependence of at least some tensor components of the
transport coefticients could be stronger than loga-
rithmic. Secondly, the work in Sec. III shows that in
many situations the transition probability already
takes a substantial drop at p values smaller than w/DnQ,
which implies that the cutoG distance of the plasma in
a magnetic field may be considerably shorter than
previously estimated. Lastly, there ought to be ob-

'2 C. L. Longmixe and M. N. Rosenbluth, Phys. Rev. 103, 507
(&956).



servable consequences of the feature that a scattered
beam of particles suffers little net momentum change
in the direction of the magnetic Geld. Because of the
neglect of ion motion in ion-electron collisions, this
phenomenon may, however, turn out to be relatively
somewhat less consequential (by some power of the
mass ratio) in affecting those transport properties of
plasmas which are governed by ion-electron collisions.

The e8ects of quantum phenomenon on individual
scattering events for small n values (initial motion

very nearly parallel to 8), is, on the other hand, of no
consequence in thermal plasmas because states with
very small values of e contain such a small fraction of
the total number of particles.

APPENDIX. THE WEB APPROXIMATION TO
LAGUERRE POLYNOMIALS

In addition to being the solution to Eq. (1), Eq. (3)
yields the WEB approximation to generalized Laguerre
polynomials.
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FIG. 1. Comparison of I aguerre polynomial L20&o to its approximations.
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One obtains

(e+n)! '
L„& ~(x)

where

S(x)=-', (x+—x)&(x—x )'

=
~

—
~
4„ lei*x i 'cos(S„—~s),

7r
(2&)

L„'" was computed for @=15, 20, 30, and 50 up to
values of x where the nesting scheme used by the
UNIVAC to generate the "exact" Laguerre poly-
nomials was suspected of becoming subject to round-oG
error. For higher values of n, the first few osciHations
of L~oo') L200, and Lioo3 were computed by hand.
'„The plots of L~o&" shown in Fig. 1 demonstrate the

typical behavior of the two approximations being
compared for +=1—the value of e apparently least
favorable to the WEB method. To be more quanti-
tative, we have computed

t x~+x —2x—-', (x++x ) arc sin~ ~+-',s.(x~l —x &)'

x+—x

((x~+x )x—2xpx )—(x+x )'* arc sin~ ~, (28)
x(x~—x )

and x4= (x~—x)(x—x ), by combining (3) and (9).
It is useful now to compare the accuracy of the

approximations (8) and (27). The following conclusions
were based on considerable computational work, For
n)1 the WEB approximation for I. & & or e„[see
Eq. (3)) becomes greatly superior to the usual asymp-
totic expression before the second node of L„' &. More-
over, even for o.= 1 there is a strong trend for the WKB
approximation to have more over-all accuracy than

(8); the further away L„'~& is computed from the
classical turning point, the more accurate its WKB
approximation becomes relative to (8).

OP—= P [exactL '"(x)—WKBL~"'(x;)]'y
x1 =d

a P—= P [exactI.„&'& (x,)—asymptoticL~'" (x~)$',

where c,=1, 2 3. and d=0.02, for n= 20, 30, etc.
For m=20, for example, it turns out that individual

cumulative (error) contributions to o.P are less than
those to o.~' except for x; less than the position of the
second node of L20(",. for x; shortly thereafter |7&'&0.2'

remains true.
For n) 1 (and strictly, only for x(1) the values of

L from the WEB approximation were found to be so
much better than those from the asymptotic expansion

(8) that further comparison can add little useful
information.


