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The slope of the Landau expression reaches the
velocity of first sound at momentum. p*, where p*/It
=2.16A '. For p) p*, the excitation spectrum con-
tinues to rise with slope equal to the sound velocity,
rather than rising quadratically. This behavior might
be expected, since for momenta greater than p*, an
excitation of momentum p* plus a phonon of momentum

p —p* have a smaller total energy than an excitation
of momentum p whose energy is given by a continuation
of the roton curve. The change in the appearance of
the wavelength distribution of the scattered neutrons,
mentioned in Sec. IV and shown in Fig. 5, occurs for
momenta greater than p*. We feel that for an unam-
biguous analysis of the processes taking place at higher
momenta, an experiment using monoenergetic incident
neutrons should be performed.

At higher temperatures, the excitation energy for a
given momentum decreased, and a noticeable energy
spread was observed. This indicates that the density of
excitations is great enough at these temperatures that
the eBect of interactions between the excitations can no
longer be neglected. In the roton region, the data may
be represented by the Landau expression fitted at
T 1 1 K7 shifted downward by 0 22 K at T 1 60 K7
and by 0.50'K at T=1.80 K.

The variation of the fitted values of 6 with 1 is
given approximately by the empirical relation

t1/k = 8.68—0.0084T' 'K,

where T is in 'K. This formula is suggested as a guide
for interpolation between the measured values of the
excitation energy at different temperatures; no par-
ticular theoretical significance is implied.

In the following paper, " a comparison is made be-
tween experimental determinations of the specific heat,
entropy, second sound velocity, and normal Quid

density of liquid helium, and values of these quantities
calculated from the measured excitation spectrum.
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The entropy, speci6c heat, normal Quid density, and velocity of second sound in liquid helium II have
been calculated by applying statistical mechanics to the thermal excitations. The calculations were based
on the energy-momentum relation obtained by neutron scattering measurements described by Yarnell,
Arnold, Bendt, and Kerr, and were made on an IBM-704 electronic digital computer by numerical integra-
tions over the observed excitation curve. A better approximation than Landau's has been obtained by ex-
tending Landau's theory to take account of the temperature dependence of the excitation curve. An
expression of the form Z(p, T) =c—d(p„/p) was used to interpolate the excitation energy between tempera-
tures at which it was measured. Results between 0.2 and 1.8'K are not sensitive to the exact form of the
interpolation expression. Agreement of the calculations with experimental measurements is as follows: en-
tropy, +3% in the temperature range 0.2 to 1.8'K; specific heat, &4% between 0.2 and 1.7'K; second
sound velocity, +4% between 0.8 and 1.8'K, and &2% between 1.0 and 1.7'K. The calculated normal
Quid density p„agrees with experimental values derived from second sound velocity and specific heat
measurements within &8% between 0.7 and 2.0'K, and within &5% from 1.1 to 1.9'K. These values are,
however, higher than those obtained from torsion pendulum measurements, which are 27% below the
calculated value at 1.2'K. Also calculated as functions of temperature are the average effective mass (as
defined by Landau) of excitations in four momentum intervals, and values of —lt;/B, the thermal con-
ductivity ~ divided by the average over momentum of the Khalatnikov nonequilibrium kinetic coeScient
—8, and e/C, the viscosity o divided by the average value of the Khalatnikov coeKcient C.

I. INTRODUCTION

AXDAU' proposed that the thermodynamic prop-
s ~ erties of liquid helium II could be calculated by
applying statistical mechanics to the ensemble of excita-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' L. I,andau, J. Phys. (U.S.S.R.) 5, 71 (1941);11, 91 (1947).

tions, which may be treated as a gas. In Landau's
treatment, interactions between the excitations are
neglected. Experimentally, the eGect of interactions is
shown by a dependence of the excitation energy on the
temperature. It is possible to extend Landau's theory
to take account of the temperature dependence of the
excitations, and this is done in Sec. II below. The
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accuracy of calculations can be improved by numeri-
cally integrating the expressions for entropy and normal
Quid density, rather than using analytic expressions in
which the excitation curve has been approximated by a
linear and a parabolic function. Since the whole excita-
tion curve contributes to the integrals, the sharp dis-
tinction between phonons and rotons is lost. However,
the linear portion of the curve at small momentum, and
the minimum of the curve, make the largest contribu-
tions to the integrals, and we refer to these as the
phonon and roton contributions respectively.

Our thermodynamic calculations have made no pro-
vision-for the line width of the excitation curve, which
was appreciable in the measurements made at 1.6 and
1.8'K. We have used the midpoint of the line as the
energy level, and have made the calculations as if the
line had zero width. We believe the width of the line is
due to the uncertainty principle, applied to the short
lifetime between collisions of the excitations.

It is well known that Bose statistics apply to phonons,
which are quantized sound waves. The statistics obeyed
by excitations having larger momenta has not been
settled experimentally. Theoretical work by Feynman
and Cohen' and by Brueckner and Sawada' shows that
the wave function which describes the excitations varies
continuously with increasing momentum, implying that
the statistics are the same for all excitations. Since the
energy of the minimum of the excitation curve is at
least three times as large as kT for temperatures &2'K,
the statistics obeyed by rotons has little effect on the
numerical results. We have, however, chosen to assume
in the derivations that aQ excitations obey Bose
statistics.

The vapor pressure, compressibility, and thermal
coeKcient of expansion also depend on integration of
the excitation curve and its derivatives. However, to
calculated these functions requires knowledge of the
derivative BE/Bp of the excitation energy Ewith change
of liquid helium density p. Neutron scattering measure-
ments from liquid helium under pressure, which will

provide this information, are being made by Henshaw.
Results available at present are not complete, and func-
tions which depend on BE/Bp have not been calculated.

II. THEORY OF ENTROPY AND SPECIFIC HEAT

In general, the thermodynamic properties of a simple
system are functions of two independent variables, such
as temperature T and volume V. In the case of liquid
helium II, however, the excitation curve is known only
for the liquid in equilibrium with the vapor pressure.
Consequently, the theoretical treatment which follows
will be limited to thermodynamic states along the
saturated vapor-pressure curve, and the thermodynamic

s R. P. Feynman, Phys. Rev. 91, 1291, 1301 (1953); 94, 262
(1954); R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189
(1956).' K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1128 (1957).' D. G. Henshaw, Phys. Rev. Letters 1, 127 (1958),

properties will be considered functions of the single
variable T. However, the density of liquid helium varies
so little below 2.1'K that the calculated properties
are practically identical with the constant-volume
properties.

We shall extend Landau's theory' to the situation
where the excitation energy E is a function of tempera-
ture as well as of momentum. The energy required to
add to the system at temperature T one excitation of
momentum p, has been determined by the neutron
scattering experiment. , and will be denoted by E,(T).
The total energy required to add a small number de
of excitations at each momentum p, is thus

d U= Q,E;(T)dtt, .
We assume that the energy required to produce an ex-
citation thermally is identical with that required by
neutron scattering. Then Kq. (1) is just the increase in
internal energy U of the system associated with an
increase in temperature from T to T+dT, provided
each dnj is the correct increase in the number of excita-
tions for the system to remain in thermal equilibrium. '
Because of the dependence of E, on temperature, Eq. (1)
cannot be integrated to the familiar expression U
=Q,E,n;. We must instead write

t' C, p' E; (T) drt;—dT=Q dT.
~0 T i ~0 T 8T

C, is the specific heat along the saturated vapor-pressure
curve, and 5 is the entropy.

In order to calculate values of the thermodynamic
properties from these expressions, ~zj must be known as
a function of p; and T. This can be found by a method
similar to the usual microcanonical-ensemble treatment
of a system of noninteracting particles. If we neglect
the effect of interactions between excitations on the
total wave function of the system (but not on the
energy of the system), then the quantum state is speci-
fied by giving the number of excitations of each mo-
mentum p, . Assuming Bose statistics to be applicable
to excitations of all momenta, the total number of
quantum states of the system corresponding to a dis-

s Strictly speaking, Eq. (1) represents the heat flow d(7 into the
system, rather than the change in internal energy. However, in
the first law of thermodynamics, dU=dp —pd V, the pd V term for
liquid helium II is less than 0.01% of d(t along the saturated
vapor-pressure curve. Thus dg is essentially equal to dU, and we
have used the latter notation to facilitate comparison of Eqs. (2)
and (7) below with the well-known corresponding expressions for
the case E; independent of T.' R. C. Tolman, The PrinciPles of Statistical 3f'echanics (Oxford
$Jniversity Press, London, 1938), Chap. X.
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tribution in which there are n; excitations with mo-
mentum between p; and p,+dp; is given by the usual
expression

(c,+rr, —1)! (c;+n;)!~=n' ' =n'
r rl;!(c; 1)! —

~ n, !c;!
(5)

8 lnQ BU—P =0 for all j.
Bs& Bs&

/=1/kT is a Lagrangian multiplier. Because there is
no requirement that the total number of excitations be
constant, the other Lagrangian multiplier usually pres-
ent is missing. From Kq. (1), r)U/r)rr, =E;(T), so that
Kq. (7) leads to

)s —c (eEr(T)/sT 1)
—1

which is the required functional expression for e,.
Using Kqs. (6) and (8), one obtains

5=k P; fE; (T)n;/kT+c; 1n(1+rr,/c, )}. (9)

This expression for the entropy, with e; given by Eq.
(8), is entirely equivalent to Kq. (4). However, for
computational purposes Kq. (9) has the advantage that
it requires knowledge only of E; (T), whereas direct use
of Kq. (4) requires also knowledge of dE, (T)/dT.

The sum in Kq. (9) can be changed to an integral.
Letting c; equal an element of volume in phase space,

(10)c,=kr Vp'dp/k',

the entropy per unit mass is given by

where c, is the number of individual excitation states
with momentum between P; and P,+dP;. The entropy
S of the system is then

S=k lnQ

=k P;{(c;+ts;) In(c;+rs;) r;s—ln r;s—c; inc, ), (6)

where k is Boltzmann's constant, provided the values
of the rr; are those for which Kq. (5) is a maximum
subject to the restriction that the internal energy
U(mt, ns, ) be constant. This leads in the usual way
to the conditions

the number of particles is Axed. The linear dependence
of energy on momentum in the phonon region assures
that the integrand is well behaved where the momentum
is small, and at large momenta exp[E(p, T)/kTj is
always ))1.

The modification that we have made to Landau's
treatment of liquid helium retains the assumption that
the excitations are normal modes which can be identified
and counted. The addition of a temperature-dependent
excitation energy assumes a weak interaction between
a particular excitation and all the others, which does
not destroy the identity of the individual excitation. It
is to be expected that as the temperature approaches the
lambda point, the interactions become so strong that
the description of the liquid in terms of elementary
excitations (normal modes) breaks down. The line
width is probably a useful indication of how valid the
concept of individual excitations is at any given tem-
perature. The equations derived above are expected to
hold at temperatures at which the line width is small
compared to the total energy of an excitation. Experi-
mentally, for temperatures up to j..8'K, the observed
line width is less than one fourth of the total energy
of an excitation, in the roton region.

III. EXPRESSIONS FOR NORMAL FLUID DENSITY,
EFFECTIVE MASS, AND SECOND

SOUND VELOCITY

Derivations of expressions for normal Quid density
and second sound velocity are given by Landau, ' and
in a review article by Dingle. ' To derive the normal
Quid density, it is assumed the excitations have a drift
velocity v relative to the superQuid, and that the equi-
librium distribution Kq. (8) applies in a coordinate
system moving with the excitations. The distribution
function in a coordinate system in which the superQuid
is at rest differs from Kq. (8) in that E, (T) is replaced
with E, (T) y;. v, where y; is th—e vector momentum of
an excitation. The definition of p„ is obtained by setting
the resultant momentum of all the excitations equal to
p„v. For small v, that is, neglecting terms of order v'
and higher, the integration over the angle between y
and v can be performed, to give

4 k t "t E(p,T)/kT
5=

ks ) I eE(P'T)1sT ].
—ln(1 —e

—E&p '»"') p'dp.
(12)

eE(p, T)/sTp4dp

p7c =
3kTk'" s (eE &p T» "T 1)'—

The usual Bose-Einstein condensation occurs only when

r The form of this expression is of course familiar. However, its
interpretation is somewhat different from the usual case in that
ff in Eq. (7) is given by Eq. (2) rather than by U=Z;E;n.;.E; (T)
is analogous to a chemical potential; it is the "free energy" re-
quired to add oee adChtional excitation to the system at tempera-
ture T, rather than some sort of average energy per excitation, or
the energy of an excitation at zero temperature. The derivation
of Eq. (8) was included to emphasize this distinction, since it
may,"'not be generally appreciated; see G. S. Rushbrooke, Trans.
Faraday Soc. 36, 1055 (1940).

The experimental excitation curve E(P,T) was used in
the numerical integration of Kq. (12) to calculate p„at
each temperature.

Landau' has shown that p„can be written as the
product of the number of excitations Ã and the average
e6'ective mass m* of each excitation. It was in this way
that Landau showed, in his 1941 paper, that the mass of
a roton is given by p, when the energy-momentum rela-
tion is given by E= 6+p'/2p. In his 1947 paper, Landau

' R. Br. Dingle, Suppl. Phil. Mag. 1, 111 (1952).
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pointed out that for arbitrary dependence of the excita-
tion energy on momentum, one can write p„=lV(P')Av/
3kT, where Boltzmann statistics were used. In an
analogous manner, we can divide the integrand of Eq.
(12) into the product of the number of excitations n(p)
and an "effective mass" rm*(p). For ns*(p) we obtain,
using Bose statistics,

ns*(P) = (1—e x&& r&~'r) —'.
3kT

(13)

It should perhaps be emphasized that m* is the effective
mass involved in bulk momentum transfer processes,
and not a quantity which describes the momentum car-
ried by a single excitation. It is associated with the drift
velocity v rather than with the total velocity of a single
excitation.

The derivation of second sound velocity begins with
an expression for conservation of energy in liquid helium
II, valid for reversible processes,

BS Bp
p—+S—+7'. (pSv„) =0,

8$ 83
(14)

where S is the entropy per unit mass, t is time, and v„
is the velocity of the normal Quid component. First
sound is a wave propagation in which BS/Bt is zero, and
second sound is a wave propagation in which Bp/r)t is
zero. If the amplitude of the second sound wave is very
small, so that S is nearly constant, and if the thermal
coeKcient of expansion is small enough that the coup-
ling between 6rst and second sound can be neglected,
then the energy of a second sound wave can be derived,
and is given by

TS' p„(7.x )'+ v„'=constant,
2(P—P-)

(15)

where x„ is the local displacement of normal Quid from
equilibrium. The 6rst term is potential energy and the
second term is kinetic energy. The velocity of propaga-
tion is then given by

t' p 'l TS'

tp„) C„
(16)

has been given by Kramers, and by Kard and Wilks. '
To calculate second sound velocities, we have made the
approximation that C„=C„and put our calculated
values of p, S, and C, into both equations.

'H. A. Kramers, Physica 18, 653 (1952); J. C. Ward and J.
Wilks, Phil. Mag. 42, 314 (1951);43, 48 (1952).

A slightly diGerent equation for the velocity of second
sound,

p TS'
'Vg =—2—

p C„
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FIG. 1. The excitation curve at 1.1 and 1.8'K, and
the momentum intervals.

IV. NUMERICAL METHODS

Equations (11) and (12) were integrated numerically
with the aid of an IBM type 704 digital computer, at
temperature intervals of 0.1'K between 0.2 and 2.1'K.
The integrals were cut off at p/ls equal to 3.08 A ', the
contribution from higher values of p/5 being negligible.
The momentum range was divided into four intervals,
shown in Fig. 1, and the excitation energy curve was
represented in each interval as follows'.

Interval I.—(Phonon region, covering values of p/k
from zero to the boundary of interval 2, designated
p&/h. This boundary varied from 0.43 to 0.60 A ', de-
pending on temperature. ) The energy in the phonon
region was assumed to be given by Z= vrp, where vr is
the velocity of first sound. The measurements by Van
Itterbeek, Forrez, and Teirlinck, " extrapolated to 238
m/sec at zero temperature, were used for the sound
velocity. The value of e& used at each temperature, and
also Pr/It, is given in Table I.

Interval Z.—(Region of the maximum in the excita-
tion curve. Interval 2 extends from Pr/It to 1.58 A '.)
Experimental data for the excitation energy were fitted
with the inverted parabola E/k=a —11.5(P/It —1.113)',
where k is Boltzmann's constant. A complete curve for
this interval was measured only at 1.1'K, for which
temperature the value of a is 13.92'K. The values of u
used at other temperatures are given in Table I. The
value of pr/It at each temperature is the point of inter-
section of the linear relation used in interval 1 and the
quadratic relation used in interval 2.

Interval 3.—(Region of the minimum in the excita-
tion curve. Interval 3 extends from 1.58 to 2.1,8A—'.)
Smooth curves (not parabolas) were drawn by sight
through the experimental measurements of excitation
energy at two temperatures, 1.1 and 1.8'K, and the
excitation energy was read from the curves at mo-

'o A. Van Itterbeek and G. Forrezr Physica 20, 133 (1954);
Van Itterbeek, Forrez, and Teirlinck, Physica 23, 63, 905 (1957).
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TABLE I. Various parameters used in the calculations. the minimum were tried:

Velocity of
Temper- first sound, &

ature PI'K m/sec

Liquid helium
density, b

P
g/cc

Interval 2, Interval 4,
pi/k parameter a parameter b
A-I oK oK

3, (T)/k = 8.68—0.0084T' 'K,

6 (T)/k = 8.69—0.0155T' 'K,
(a)

, 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

238.0
238.0
238.0
238.0
238.0
237.9
237.8
237.7
237.6
237.3
237.0
236.6
236.0
235.2
234.3
233.0
231.5
229.5
226.9
222.2

0.14550
0.14550
0.14550
0.14550
0.14550
0.14549
0.14549
0.14548
0.14547
0.14547
0.14547
0.14548
0.14550
0.14553
0.14557
0.14563
0.14572
0.14584
0.14599
0.14620

0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.59
0.58
0.57
0.56
0.54
0.51
0.43

13.94
13.94
13.94
13.94
13.94
13.94
13.94
13.94
13.93
13.92
13.90
13.87
13.81
13.75
13.67
13.56
13.42
13.24
13.01
12.69

28.38
28.38
28.38
28.38
28.38
28.37
28.35
28.34
28.31
28.28
28.24
28.18
28.11
28.01
27.90
27.75
27.56
27.31
27.00
26.60

a From reference 10.
b From reference 20.

» Varnell, Arnold, Bendt, and Kerr, preceding paper /phys.
Re&. j&3, 1379 {1959)j.

menturn intervals of 0.02 A '. These energies are given
in Table II, and were stored in the memory of the com-
puter. The computer calculated the energy at. each
momentum for temperature intervals of 0.1'K accord-
ing to an interpolation formula described below.

Interval 4.—(Extends from 2.18 to 3.08 A '.) The ex-
perimental excitation curve, within the accuracy of the
neutron scattering measurements, is consistent with a
linear relation having slope equal to z1. The excitation
energy was fitted with the relation E=vrp —lr, where
values of v1and b are given in Table I.

A matter of some concern was the method to use in
momentum intervals 2 and 3 for interpolation and ex-
trapolation of the temperature dependence of the ex-
citation energy, which was measured only in the region
of the minimum, and only at three temperatures, 1.1,
1.6, and 1.8'K. In momentum intervals 1 and 4 the
temperature dependence of the energy was taken to be
the same as that of first sound velocity.

Experimental measurements of the energy of the
minimum were fitted in the preceding paper" by the
expression 6(T)/k=8. 68—0.0084T' 'K, which passes
through the best values measured at the three tempera-
tures. It was realized that this relation is entirely em-

pirical, and not necessarily exact, due to experimental
uncertainties. After preliminary machine calculations
were made, it was possible to evaluate various interpola-
tion formulas, on the basis of agreement of the calculated

entropy with values obtained from specific heat meas-

urements, over the temperature range 0.2 to 2.1'K.
The following interpolation formulas for the energy at

TAnrEII Val,ues o.f E(p, T) at 1.1 and 1.8'K for
Interval 3 (roton minimum).

B/k at
Momentum 1.1'K

p/8, A-I 'K
E/k at

Momentum 1.1'K
p/h, A ' 'K

E/k at
1.8'K
'K

1.58
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1,88

11.41
11.21
11.01
10.80
10.59
10.38
10.17
9.96
9.75
9.55
9.36
9.18
9.03
8.92
8.82
8.74

10.91
10.71
10.51
10.30
10.09
9.88
9.67
9.46
9.25
9.05
8.86
8.68
8.53
8.42
8.32
8.25

1.90
1.92
1.94
1.96
1.98
2.00
2.02
2.04
2.06
2.08
2.10
2.12
2.14
2.16
2.18

8.68
8.65
8.65
8.70
8.77
8.88
9.03
9.23
9.46
9.72

10.00
10.29
10.60
10.92
11.24

8,20
8.18
8.19
8.23
8.31
8.42
8.56
8.74
8.98
9.28
9.60
9.94

10,29
10,64
10.99

6 (T)/k = 8.70—0.0289T' 'K, (c)

6(T)/k=8. 67—1.564(p„/p) 'K, (d)

A(T)/k=8 68—5.35X10 "IV 'K (e)

( )/: ' 6 S &3X 10 tVgeavy K& (f)

where E is the total number of excitations per unit
volume at temperature T, and Eh„y is the number of
excitations in momentum intervals 2, 3, and 4 per unit.
volume. All the above equations agree with the neutron
measurements at 1.1 and 1.8'K, but Eq. (c) gives an
energy at 1.6'K which is low, outside the experimental
error.

It was found that all the interpolation formulas gave
agreement, within +Slue, with experimental values of
entropy between 0.2 and 1.8'K. The principal differ-
ence between the formulas was in extrapolating to
higher temperatures, where nome of the formulas gave
good agreement. Equations (c) and (d) gave better
agreement with entropy measurements than the other
formulas. The excitation energy computed using Eq. (d)
is in good agreement with neutron scattering measure-
ments at 1.6'K. There are insufhcient neutron scatter-
ing data to justify using an interpolation formula con-
taining more than two terms, though obviously a better
fit to entropy measurements above 1.8'K could be
obtained.

For the results reported here, the computer calculated
the excitation energy throughout interval 3, using an
interpolation formula of the form E(p,T) = c—d(p„/p),
and using the values given in Table II to compute the
parameters c and d at each momentum. Parameters a
and b in the energy expressions for intervals 2 and 4
were chosen to give the same values of the energy at
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TABLE III. Calculated values for thermodynamic properties of liquid helium II.

Temp.
oK

Entropy S
joules/mole-deg

Specific heat
Ca

joules/mole-deg

Normal fiuid
density p&

g/cmg

Second sound
velocity 7j2

using Eq. (16)
m/sec

Second sound
velocity e2

using Eq. (17)
m/sec

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

2.22X10 4

7.49X10 4

1.78X10 '
3.47X10 '
6.12X10 '
0.0105
0.0187
0.0349
0.0654
0.119
0.205
0.336
0.526
0.785
1.13
1.59
2.18
2.95
3.93
5.26

6.65X10 4

2.25X10 '
5.33X10-3
0.0105
0.0199
0.0407
0.0906
0.199
0.404
0.749
1.28
2.05
3.11
4.52
6.42
8.82

12.1
16.3
22.4

2.85X10 8

1.44X10 '
4.59X10 '
1.33X10 '
5.96X10 '
3.11X10 '
1.27X10 4

3.91X10 4

9.74X10 4

2.07X10 '
3.91X10 3

6.72X10 '
0.0108
0.0165
0.0241
0.0342
0.0473
0.0647
0.0874
0.120

1.96X10 '
9.90X10 7

3.15X10 '
9.16X10 6

4.10X10 5

2.14X10 '
8.70X 10-4
2.69X10 '
6.70X10 '
0.0142
0.0268
0.0462
0.0745
0.113
0.166
0.235
0.325
0.443
0.599
0.818

137.4
137.4
136.9
125.0
83.2
47.2
29.9
22.6
19.8
18.9
18.9
19.2
19.7
20.0
20.1
20.0
19.2
17.8
15.2

137.4
137.4
136.9
125.0
83.2
47.2
29.9
22.6
19.9
19.1
19.2
19.7
20.4
21.2
22.0
22.8
23.4
23.9
24.0

a Values of liquid helium density p are given in Table I.

1.58 and 2.18 A ' as were computed by interpolation.
Values of p„/p obtained from specific heat" and second
sound velocity" measurements were used. We claim
no theoretical justification for the use of p /p in the
interpolations. It should be noted, however, that the
agreement of the calculated values of p„using Eq. (12)
with measured values would be approximately as good
using any of the interpolation formulas given above.

An integration mesh was formed by dividing the four
intervals respectively into 100, 50, 30, and 90 sub-
intervals, except that 500 sub-intervals were used in
interval 1 for temperatures &0.7'K. The integrals were
evaluated using the five-interval quadrature formula, "

5g

) ydx=P P cy, ,
288 '

where the y, are equally spaced values of the integrand
at the limits of sub-intervals of width g, and the weight-
ing factors c; have the values 19, 75, 50, 50, 75, and 19,
respectively. The erst summation is over j sets of five
sub-intervals each, and the second summation is over
the six values of y; accompanying each set of sub-
intervals. Errors in the numerical integration are of the
order of 0.01% or less.

The specific heat was calculated by five-point nu-
merical diGerentiation with respect to T of the results
for entropy, using C.= T(dS/dT), ."The formula used

'e Kramers, Wasscher, and Gorter, Physica 18, 329 (1952);
Wiebes, Niels-Hakkenberg, and Kramers, Physica 23, 625 (1957).

's R. D. Mauer and M. A. Herlin, Phys. Rev. 76, 948 (1949);
81, 444 (1951);de Klerk, Hudson, and Pellam, Phys. Rev. 93, 28
(1954).
. "J.B. Scarborough, NNraerical Matttematicai Attalysis (The
John Hopkins Press, Baltimore, 1955), third edition, p. 131.

'5 For T &0.6'K, C, was calculated using Eqs. (3) and (8) with
dE; (T)/dT set equal to zero.

where T is in 'K. The error in differentiation was less
than 0.1% for temperatures &1.8'K, and less than 1%
at higher temperatures.

V. COMPARISON WITH CRYOGENIC
MEASUREMENTS

The contributions of each of the four momentum
intervals to the calculated entropy are shown as func-
tions of temperature in I'ig. 2. This figure shows that
the division of the excitations into phonons (interval 1)
and rotons (interval 3) is natural, as these two intervals
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MOMEN
INTER

l

I I

0 0.2 0.4 0.6 O.B I.O 1.2 I.4 I.6 I.B R.O
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FIG. 2. Contributions of each of the four momentum intervals
to the total entropy of liquid helium II, as functions of
temperature.

was

T
C, (T)= (—S(T+0.2)+8S(T+0.1)

1.2 —8S(T—0.1)+S(T—0.2) }, (19)



1392 BENDY, CO%AN, AN D YARN ELL

IOO

IO

hd
4J
lL
C9

I.O
I

ILI 5
O

LLI

IO'

5

V)

O
IO

IO

5
0.2 0.5 0.5 0.7 0.9 I.I I.5 I.5 I.7 1.9 2.I

TEMPERATURE IN 4K

Fxo. 3. Comparison of calculated and experimental values of
entropy and specific heat of liquid helium II. The dashed line was
calculated disregarding the temperature dependence of the ex-
citation curve.

"' R. W. Hill and O. V. Lounasmaa, Phil. Mag. 2, 143 (1957).
'r G. R. Hercus and J. Wilks, Phil. Mag. 45, 1163 (1954).
'8 The straight-line portion below 0.6'K of the curve in Fig. 4

results from the T' dependence of the specific heat reported by

make the major contributions. This figure also shows
that at temperatures above 0.6'K„ the specific heat
should no longer follow the T' law, which holds when

only phonons are excited.
The results of calculations of entropy 5 and specific

heat C, are tabulated in Table III, and are also shown
as solid lines in Fig. 3. Calorimetric measurements of
these quantities are also shown in Fig. 3. Hill and
Lounasmaa' have stated that the measurements of
Hercus and Wilks, 'r which are about 10% higher than
those of Kramers, Wasscher, and |orter, "are probably
in error.

Calculations of the entropy were also made in which
the temperature dependence of the excitation curve was
neglected. The excitation curve for 1.1'K was used for
all temperatures, and dE(p, T)/dT was set equal to
zero. The values for entropy obtained in this way are
shown as a dashed line in Fig. 3.

Figure 4 shows the deviation in percent of the calcu-
lated entropy from the calorimetric measurements of
Kiebes, Niels-Hakkenberg, and Kramers, "at tempera-
tures below 0.7'K, and from measurements of Kramers,
tA'asscher, and Gorter" at temperatures from 0.7 to
2.1'K. The calculated values agree with the measured
values to within &3% at all temperatures between 0.2
and 1.85'K." The deviation of the specific heat C,

from measurements, not shown in Fig. 4, is &4% be-
tween 0.2 and 1.7'K. If the numerical fit to the excita-
tion curve used in the calculations was shifted to the
limit of the experimental error quoted for the neutron
scattering measurements in the preceding paper"
(+0.1'K energy equivalent in the minimum), the
change in the calculated values of 5 and C, would be
about 5%. The deviation of the entropy curve calcu-
lated by neglecting the temperature dependence of the
excitation curve is also shown in Fig. 4, and displays
strikingly poorer agreement with calorimetric measure-
ments above 1.3'K.

The entropy was also calculated using the excitation
curve of Palevsky, Otnes, Larsson, Pauli, and Stedman"
in the region of the minimum (roton region). They
state the temperature of the helium target for their
measurements was 1.4 to 1.5'K. In order to obtain a
complete excitation curve over the momentum range
used in the calculations, we have used the velocity of
first sound at 1.4'K for the slope in momentum intervals
1 and 4, and have matched the linear relation in in-
terval 4, and our inverted parabola in interval 2, to
join the Stockholm data smoothly. For the energy
minimum between 1.72 &p/5 &2.15 A ', we have used
the parabola for which parameters are given by the
authors. These parameters are 6/0= 8.1'K, ps/)I= 1.90
A ', and p, = 0.16m(He), t nz(He) is the mass of a helium

atom]. The calculated entropy obtained in this way is

shown in Fig. 4, and lies 22% above the calorimetric
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FIG. 4. Deviation of calculated entropies from measurements
by Wiebes, Niels-Hakkenberg, and Kramers ((0.7'K), and from
Kramers, Wasscher, and Gorter ()0.7'K). "Stockholm roton
curve" is based on measurements by Palevsky, Otnes, Larsson,
Pauli, and Stedman. (Svh, +S„q) was calculated using Landau's
equations based on an approximation of the excitation curve by
two functions, one linear and one parabolic.

Wiebes, Niels-Hakkenberg, and Kramers, and from the fact that
only the phonon region makes a contribution to the calculated
entropy. Since the slope of the energy-momentum relation in
interval 1 was determined from the sound velocity measurements,
the 2% deviation below 0.6'K implies nothing about the accuracy
of the neutron scattering measurements, but does indicate con-
sistency between specific heat and sound velocity measurements,
as pointed out by Wiebes, Niels-Hakkenberg, and Kramers.

i Palevsky, Otnes, Larsson, Pauli, and Stedrnan, Phys. Rev.
108, 1346 (1957);Palevsky, Otnes, and Larsson, Phys. Rev. 112,
11 (1958).
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measurement. The reason the Stockholm data gives a
higher value of entropy than the measurements re-
ported in the preceding paper" is that their value of
6/k for the roton minimum is 0.45'K lower than the
value obtained by interpolation to 1.4'K of the Los
Alamos measurements. The Stockholm data gives a
value for the entropy in agreement with Kramers,
Wasscher, and Gorter if calculations are made for 1.8'K.

Parabolic fits to the minimum in the excitation curve
are reported in the preceding paper for each of the three
temperatures at which the curve was measured. The
parameters of the parabolas are: 6/k equals 8.65'K
(for T=1.1), 8.43'K (for T=1.6), and 8.15'K (for
T=1.8'K); Ps/h equals 1.92 A ' for all temperatures
and @=0.16m(He) for all temperatures. We have used
Landau's' formulas and calculated the contribution to
S of phonons and rotons for the three temperatures.
The values of (Spa, +S„~) are plotted in Fig. 4, and
lie below the calorimetric measurements, by 5 to 10%.
This is expected, since the excitation curve in Landau s
phonon and roton analysis lies above the observed
curve in the region of the maximum, and also to the
right of the minimum.

Values of the normal Quid density p„calculated using
Eq. (12) are given in Table III.These have been divided
by experimental values" of p, given in Table I, and are
plotted as a solid line in Fig. 5. Also included in Fig. 5
are values of p„/Io obtained from torsion pendulum
measurements, " and values calculated from Eq. (16)
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FIG. 5. Comparison of calculated and experimental values of p„/p.
Values of p are from reference 20.

"E.C. Kerr, J. Chem. Phys. 26, 511 (1957);K. R. Atkins and
M. H. Edwards, Phys. Rev. 97, 1429 (1955)."E.L. Andronikasvili, J. Exptl. Theoret. Phys. U.S.S.R. 18,
424 (1948);J.G. Dash and R. D. Taylor, Phys. Rev. 105, 7 (1957).
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FIG. 6. Comparison of calculated and experimental values of
second sound velocity. Curves A, 8, C, D show dispersion of heat
pulses at low temperatures.

rs The quantity p„/p was used to interpolate the excitation curve
between temperatures at which the excitation energy was meas-
ured, but since measurements were made at 1.1'K, any reasonable
interpolation to 1.2'K would still yield calculated values of p„/p
in disagreement with torsion pendulum measurements.

using specific heat and entropy data from Kramers,
Wasscher, and Gorter, and from Kiebes, Xiels-
Hakkenberg, and Kramers, " and second sound ve-
locity data from Mauer and Herlin, and from de Klerk,
Hudson, and Pellam. " The agreement between the
calculations and the values of p /p obtained from second
sound measurements is within &8% over the tempera-
ture range 0.7 to 2.0'K, and is within &5% between
1.1 and 1.9'K. The torsion pendulum measurements of
p„/p are systematically lower than the values obtained
from second sound velocity measurements, the diGer-
ence increasing toward the low-temperature limit of the
torsion pendulum measurements. At 1.2'K the dis-
crepancy is 27%."

The velocity of second sound was computed by sub-
stituting calculated values of S, C„and p„ into Eq.
(16). The results are tabulated in Table III, and are
plotted as a solid line in Fig. 6. The calculations agree
with measurements of de Klerk, Hudson, and Pellam,
and of Mauer and Herlin" to within &4% over the
temperature range from 0.8 to 1.8'K, and within &2%
between 1.0 and 1.7'K. Below 0.7'K, the mean free
path of excitations is comparable to the dimensions of
the apparatus which was used to measure second sound
velocity. At these low temperatures, the second sound
heat pulses undergo dispersion in transmission, and
curve A in Fig. 6 represents the velocity of the leading
edge of the pulse, as reported by de Klerk, Hudson, and
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conductivity. "IS
I I I I I I I I I

4or

B(p,T)~o(p) t ~o(p)+1]
3$+2h3+J p p Ip-IT

BE (pST BE)
X—

~

—E—
)
podp. (22)

Bp ( p„Bp)
The thermal conductivity I(: is that which exists when
there is no temperature-induced Aow of normal Quid or
superAuid. K is obtained from measurements of the
attenuation of second sound. The amount of heat trans-
ported. by thermal conductivity (for a given tempera-
ture gradient) is only 10 ' or 10 ' as large as by con-
vection of the normal Quid component.

We have calculated the integrals Eqs. (21) and (22),
without the factors C(p, T) and B(p, T), and the results
are given in Table IV. Sy comparing calculations with
smooth curves drawn through measurements of q and K

by Zinov'eva and by Heikkila and Hollis-Hallet, "we
obtain average values C and B (a negative number) for
the Khalatnikov coefficients, averaged over all mo-
menta. —8 and C are given in Table IV and plotted in
Fig. 8. According to Khalatnikov, these coeKcients,
which have units of seconds, are proportional to the
average time between collisions of "heavy" excitations. "
If the velocity and the cross sections of the excitations
are not strongly temperature dependent, then we would
expect the curves for —B and C to be similar to a plot
of 1/cV&„, , the reciprocal of the number of "heavy"
excitations. The quantity I/&V&„„and also 1/)V, the
reciprocal of the total number of excitations, are plotted
in Fig. 8 for comparison. The order of magnitude of the
calculated coe%cients seems to be correct; to represent
collision times.

' K. N. Zinov'eva, J. Exptl. Theoret. Phys. 31, 31 (1956)
Ltranslation: Soviet Phys. JETP 4, 36 (1957);W. J.Heikkila and
A. C. Hollis-Hallet, Can. J. Phys. 33, 420 (1955)."I.M. Khalatnikov, reference 23, see discussion of Eqs. (14.2)
to (14.6).

I08
CO
hl
lL

CD

~lp9

V)

CO
Cl

O plo
4J
CO

CO
4J

l8—IP

Cl
4J

EO

CI

Ip-19

O
I-
I-

lp-20

X
CD

Ip Ip-2I

The average Khalatnikov coefficients are included in
this paper because they can be calculated from the
measured excitation curve, and because it is hoped that
they may prove useful in evaluating the validity of
Khalatnikov's theory.
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FIG. 8. Average values of the Khalatnikov nonequilibrium
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