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The Fermi interaction is interpreted as a nonlocal interaction resulting from a double Yukawa-type
interaction in which the intervening boson has a definite chirality. The theory is quantizable and renormal-
izable, and in the "local" limit, the results agree with the usual (V—A) theory of the direct Fermi interaction.
The general framework of the theory not only gives a basis for the existence of parity-nonconserving inter-
actions, but also determines the allowed forms of such interactions. The nonlocal eRect of the intervening
boson propagator tends to give an improved agreement with experiments,

1. NATURE OF WEAK INTERACTIONS
' +ARITY nonconservation' is obviously a negative

concept. One can indeed ask: Is there any positive
theoretical reason for the existence of the so-called
parity-nonconserving interactions? Is there any theo-
retical prescription to determine the forms of such
interactions? Partial answers to these questions have
been given by the two-component neutrino theory of
Landau, Salam, Lee, and Yang, ' the chirality invariant
theory of Sudarshan and Marshak, ' the two-component
theory of all fermions of Feynman and Gell-Mann, 4

and the mass-reversal invariant theory of Sakurai. '
These theories, however, have serious shortcomings.

The two-component neutrino theory cannot explain
those parity-nonconserving interactions which do not
involve neutrinos, ' unless one introduces an additional
assumption. 7 The Sudarshan-Marshak theory intro-
duces the chirality invariance as an ad hoc principle to
account for the (V—A) theory which happened to agree
with experimental data of weak interactions, and offers
no justification to strong interactions. The Feynman-
Gell-Mann theory has an inherent di%culty in quan-
tizing the two-component 6eld with a finite mass which

satisfies the Klein-Gordon equation. In Sakurai's

theory, the physical meaning of the mass-reversal
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transformation is not clear. ' Furthermore, all these
theories are invariably unrenormalizable. In spite of
all these objections, however, one has to acknowledge
that the phenomenological Hamiltonian used in these
theories agrees with most of the experimental facts
concerning beta decay, p decay, and p capture. '4'

The theory proposed in the present paper not only
gives essentially the same results as the above-men-
tioned theories in the areas where these are successful,
but also is free from the kind of objections enumerated
in the foregoing paragraph. Namely, it gives a mathe-
matical framework in which the parity-conserving and
parity-nonconserving interactions have equal justifi-
cation, giving a unified theoretical standpoint to deter-
mine the forms of both types of interactions. The theory
is quantizable and renormalizable. Furthermore, the
present theory, due to the nonlocal nature of the
derived four-fermion interaction, seems to provide a
better agreement with experiments in the areas where
the other theories are not quite as successful, in par-
ticular, in relation to the p decay and m decay. The
present theory also incorporates the selection rule
regarding muons proposed by Konopinski and Mah-
moud, and also recently by Nishijima. "On the other
hand, it should be admitted that the present theory is
just as incapable as the other competing theories in
explaining why the parity-conser'ving interactions have
stronger coupling constants than the parity-noncon-
serving interactions.

In the current field theory, the space-time coordinates
are not physical quantities, but parameters labeling
the field strengths. As far as the proper Lorentz trans-
formations (which are connected continuously to the
identity transformation) are concerned, all tensors
behave as the coordinate transformation dictates.
However, once a reflection is involved, different kinds
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of behaviors among tensors appear, which are not
ahvays in conformity with the coordinates. This is the
origin of parity. Thus, parity is not just a property of
parameters, but a physical quantity. If parity is a
physical quantity, it may be quite natural to assume
the existence of a quantity which is complementary"
to it. This leads to the concept of chirality. Once one
admits chirality in one's consideration, the usual full
Lorentz group becomes too narrow a frame to encom-
pass all physical quantities. The tensorial quantities
should then be represented in general by irreducible
representations of the extended algebraic system in-
cluding not only the Lorentz group but also parity and
chirality operations. Some quantities may be in eigen-
states of parity and some others in eigenstates of
chirality. The chirality operation will mix two eigen-
states of parity, and the parity operation will mix
eigenstates of chirality. Whether a quantity is an
eigenstate of parity or an eigenstate of chirality, or
even a mixture of them it returns to its original value

by the combined CTP transformation. In other words,
the extended algebraic system is conceived within the
domain of CTP invariance.

The basic hypotheses of the present formalism are
the following: (1) The elementary interactions are
renormalizable. (2) The Lagrangians are invariant
either for a chirality operator or for the parity operator.
These two alternatives are "complementary" to each
other. " (3) Bosons are either in a chirality eigenstate
or parity eigenstate. This assumption is permissible,
since chirality as well as parity can be a constant of
motion for a boson, u hether or rot i t is massless. (4) The
theory is invariant for time reversal T (of the Wigner
type). This la,st assumption eliminates a certain arbi-
trariness left in the definition of chirality. The theory
can also be made invariant for charge conjugation C,
but we explain only the T-invariant theory here.

Hypothesis (1) immediately excludes the direct four-
fermion interaction. The allowed types are boson-boson
interactions (such as electromagnetic interaction of
pions) and boson —two-fermion (Yucca wa-type) inter-
actions in which the bosons can be a scalar or a vector.
It should, however, be noted that it is rather an
exceptional case that a vector Vukawa-interaction
becomes renormalizable like the electromagnetic inter-
action of a charged fermion. " In fact, inclusion of a
vector boson in the present formalism leads to a theory
for which no guarantee exists for renormalizability.
For this reason, the Vukawa-type interaction con-
sidered in the present paper will be limited only to the
scalar type in the later sections. Hypothesis (3) requires

that the boson be in a parity or chirality eigenstate.
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These considerations delimit the allowed types of
interactions to a relatively small number, and all the
well-established interactions are included in this frame.
For instance, the electromagnetic interaction of a
fermion and the pion-nucleon interaction are of the
renormalizable Yukawa-type invariant for parity oper-
ation. The only types of allowed interactions which are
not usually considered are the Yukawa-type interac-
tions in which the intervening bosons are in chirality
eigenstates. These are exactly the types required to
derive the desired weak interactions of four spinors by
elimination of boson fields. It is true that if a chiral
boson is electrically charged, its electromagnetic inter-
action introduced in the usual fashion will become
invariant for neither parity operation nor chirality
operation, contradicting hypothesis, 2). However, if
there exist two kinds of chiral bosons with the same
charge and opposite chiralities then their total electro-
magnetic interaction can become invariant for parity.
Furthermore, the possibility of a chirality-conserving
electromagnetic interaction seems not to be excludable,
as its eGect on the vacuum polarization can be expected
to be very small. The idea of deriving the Fermi inter-
action from renormalizable Yukawa interactions was
previously proposed by one of the authors (Y.T.)."
The present paper may be considered as a revised
version of the theory, formulated with an explicit use
of the concept of chirality and adapted to the newer
experimental facts. The exposition in the following
sections will follow more or less an inductive, rather
than a deductive, line of thinking; ~is. , we shall first
give the phenomenological Fermi interaction, to which
the theory should reduce in the "local" limit. From
there, we shall infer what kinds of chiral bosons should
exist in nature. %e shall then show conversely that the
existence of such bosons, with the help of the conser-
vation laws of charge, lepton numbers, and baryon
numbers, leads uniquely to the desired forms of the
Fermi interaction and to none other. Some consequences
of this theory will then be discussed. Finally in the
Appendix a detailed explanation of the definition and
properties of chirality operators in tensor analysis will
be given. A new version of the proof of the CTP-
theorem is given, and the reason why the present theory
does not violate this theorem is explained.

2. YUKAWA-TYPE INTERACTION AND ENSUING
NONLOCAL PARITY-NONCONSERVING

FERMI INTERACTION

The parity of a quantity in the present context is
defined as being positive if it transforms purely accord-
ing to the coordinate transformation for the proper
Lorentz group and a space inversion, and as being
negative if it not only transforms according to this
rule but also changes its sign for a space inversion. This

"Y. Tanikawa, Phys. Rev. 108, 1615 (1957), and references
quoted therein.
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definition includes the ordinary definition of the parity
of a field. Chirality is defined as a quantity which
anticommutes with the parity thus defined. "A more
precise definition will be given in the appendix, but it
is not needed for the moment. Hypothesis (2) of the
preceding section, as can be seen in the appendix,
amounts to the requirement that an interaction term
be composed of two factors of the same pari. ty or of the
same chirality. In the case of a Yukawa-type inter-
action, the parity or chirality of the factors will be
determined by that of the boson according to hypothesis
(3). Thus, the nucleon source of the pion-nucleon
interaction (negative parity) is interpreted as reflecting
the negative parity of the pion-6eld. In view of the
important roles played by the Yukawa interactions, it
is only too natural to conjecture the existance of a
boson in a chiral eigenstate giving rise to a Vukawa-type
interaction in which the factor due to the spinors is
also in the corresponding chirality eigenstate.
g Therefore, the experimental fact that the weak inter-
actions of four fermions are parity-nonconserving leads
to an unambiguous conclusion that they have to be
mediated by a Vukawa-type interaction in which the
intervening boson is a scalar or a vector in a chiral
eigenstate, implying that the factor due to spinors is
also in a chiral eigenstate. Although we later limit
ourselves to scalar bosons, we shall first include in our
consideration also vector bosons, since it is of some
interest to investigate the general relationship between
the V—A Fermi-interaction and those Vukawa-
interactions which can reproduce such a Fermi-inter-
action. The basic interaction Hamiltonian will then
have the form":

Ilg gift(1+e' v;)tPsB+gtPs(1+e' vs)$4B+H. c., (2.1)

or

limits this arbitrariness to e' =~1 and e't'=~1. If
the theory should be invariant for charge conjugation,
C, i.e., for TI', then e' =~i and e'&=~i. So as not to
repeat similar deductions, we assume time-reversibility
which seems not to contradict the experimental facts so
far obtained.

(2 3)

The 5 matrix of the second order in the coupling
constants derived from (2.1) is (in the natural units
c= 5=1)

5= (—z)') )fT(E,)(T/B('x)Bt(x') j)sd'xd'x'

+H.c., (2.4)

where E, involves four spinors and depends on x and x'.
T is Wick's chronological operator, and ( )p means the
vacuum expectation value. In the "local" limit:
(TLB (x)Bt (x')])p

—+ —(i/me') 8(x—x'), which is ob-
tained by m& ~ ~, E, will become proportional to the
effective Hamiltonian of four-spinor interaction. m~ is
the mass of the 8 particle. E, in the local limit is
given by

(2.5a)

,gg*gtv„(1&—vs)tPsg4v„(1&v;)6+H.c. (2.5b)

= —-zgg* lt ivan( 1~ v)sA4' s' V.(1~vs)A'+H c (2 5c)

(2.5a) is derived directly from (2.1) by eliminating the
B field. (2.5b) is derived from (2.5a) by the use of the
Pauli-Fierz relations, " whereas (2.5c) is derived from
(2.5b) by expressing it in terms of charge-conjugate
spinors (spinors being assumed to anticommute)

f'=+Cf= —PC, f'=+C 'it= fC ' (2.6)—
with

& =f&tv (1+e'evs)AB
+fgsv„(1+e'f'vs)$4B„+H. c., (2.2)

C 'v.C= v', ( =1,—2, 3, 4),
C~=c ' (2.7)

where B (B„)is a complex scalar (vector) whose chirality
is the same as its multiplier in the Hamiltonian.
tP=lf tv4, where lt t is the Hermitian conjugate of lf. The
abbreviation "H.c."means Hermitian conjugate. From
the sole requirem. ent that chirality is a quantity anti-
commuting with parity, the factor t,' and e'I' are not
determined. A further requirement that the theory
should be invariant for time-reversal, T, i.e., for I'C,

Note that (2.5b) is of the (V+A) type while (2.5c) is
of the (V—A) type. As is well known, a further appli-
cation of the Pauli-Fierz relation on (2.5c) results only
in an interchange of its and i'' in (2.5c) without any
other modi6cation. This can be seen more directly
from (2.1) in which the interchange of fs and i'' means
nothing but writing the same quantity in terms of the
charge conjugate fields.

In the vector boson case, the 5 matrix becomes

'4The parity conjugation operation introduced by Lee and
Vang may be considered as a special chirality operation. However,
the eigenstates of this operator were not considered by them
(T. D. Lee and C. N. Yang, Phys. Rev. 102, 290 (1956)g. For
the concept of chirality, see also S. Watanabe, Phys. Rev. 106,
1306 (1957); S. Watanabe, Nuovo cimento 6, 187 (1957). See
also references 11 and 23.

's The interaction constant g(f) might have different values,
e.g. , gis and g34 (fry and f34) for different pairs of P.:Ogs and
$30/4. We put, however, g&s=g&4 ——g (f&s= f34 f) by a conjecture
that g(f) is a constant for any source of B(8„)as the electric
coupling constant e is a constant for all charged fields.

~= (—')' "T(&., ")(TLB.(*)B'(*')3)od' d'*'

+H.c., (2.8)

where E, will become proportional to the effective
Hamiltonian in the local limit: (T(B„(x)B„t(x)))s —+

's W. Pauli, Zeeman Verhgmdefrcegea (Haag, 1935), p. 31; M.
Fierz, Z. Physik 104, 553 (1957).
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—(z/mzz„')8„. (x —x'), zzz~„being the mass of the B„
particle. In this limit, one has

f—f*4'ivu(1~vz)AAvv(1~v. )A-+H c (2 9a)

= —ff*giy„(1&yz)fzg4y„(1&75)iPz+H. c. (2.9b)

=ff*g,y„(1ap;)iPyPz'y„(1+yn)$4'+H. c. (2.9c)

In this case, (2.9a) and (2.9b) are of the (V—A) type
and (2.9c) is of the (V+A) type.

It can easily be seen from (2.1) and (2.2) that the
charge difference between Pi and f& must be equal to
the charge difference between Pz and P4. Further, if B
is neutral, then this difference must be zero. From the
fact that always two charged fermions and two neutral
fermions are involved in a Fermi-interaction, it follows
that in the case of a neutral B, if P, and Pz are charged
(neutral), then i' and P4 must be neutral (charged).
If B is charged, then one of Pi and Pz (fz and $4) must
be charged and the other neutral.

3. BETA DECAY, p DECAY, p CAPTURE, AND
PROPERTIES OF CHIRAL BOSONS

In the following, the neutral massless particle accom-
panying the negative beta-decay will be called, by
definition, an antineutrino, v'. It is by now fairly well
established that beta decay, p, decay, and p capture are
satisfactorily described by the following Fermi inter-
actions or their equivalent" '.
P decay: Hv ——Gpy„(1+y;)zzey„(1+pe) v+H. c., (3.1)

zi decay: B'v=Gvy„(1+&;)p, ep„(1+hz)v+H. c., (3.2)

zz capture: Hv=G7iy„(1+hz)zzp y„(1+hz)v+H. c. (3.3)

Since these formulas are unchanged by putting
v= (1+y~)v/2, only two components are required to
describe the neutrino field, whose "parti.cle" has a
negative helicity and "antiparticle" has a positive
helicity. As far as the lepton number is concerned, if
one assumes the lepton number of the negative electron
to be positive, (3.1) implies that the neutrino v has a
positive lepton number, and (3.2) requires the negative
muon to have a positive lepton number. According to
this scheme, however, it is difFicult to find any reason
why there should not be such undesired processes as

—+ e +e +e+ and zz +p —+ e +p, for they satisfy
lepton conservation. To forbid these processes, one
need only interchange the lepton numbers of p+ and p—,
and at the same time change accompanying neutrino
to antineutrino, according to the suggestion made by
Konopinski, Mahmoud, and Nishijima. " This means
that v of (3.2) and v of (3.3) should respectively be
written as v' and v'. This type of antineutrino
accompanying the muon will have a negative helicity
and the corresponding neutrino will have a positive
helicity. These two will precisely occupy the components
which are unused by the neutrino and antineutrino
participating in the beta decay.

In accordance with our guiding idea that the helicities
are a consequence of the underlying boson chirality,
we should rather prefer to wri. te simply co for the muon-
accompanying neutrino, and assume co to have a nega-
tive lepton number, which automatically implies that
p, has a negative lepton number. This will serve exactly
the same purpose. Then, a further (equivalent) variant
of interpretation suggests itself. One can deprive the p
and or of the lepton numbers and assign a positive muon
number to p, and co. Then, the muon conservation will
forbid the undesired processes. We shall adopt this
mode of description in the following. (3.2) and (3.3)
will then be written as

iz ~ & +vL+vB l v +p ~ zz+vI j

~+~ y++vr, ~ (e++vr.+viz')+vz,

whereas the latter describes them as

~ ~++vr+~z i v +p ~ zz+~&i

zr+ ~ V++ &or. ~ (e++ vs.+zz') +~r.,

(3.6)

(3 7)

where the sufFices R and J. mean positive and negative
helicities, respectively. The Konopinski-Mahmoud-
Nishijima scheme can be obtained from (3.7) by
replacing co&' and co& by vz and vJ.', respectively. These
three interpretations can hardly be differentiated by
the current experimental methods.

Our next task is to interpret the formulas (3.1),
(3.4), and (3.5) which are all of the (V—A) type as
corresponding to one of the three expressions (2.5c),
(2.9a), and (2.9b) which are also of the (V—A) type
First, with regard to the beta decay, one notices that
if one identifies (3.1) with (2.9a) or (2.9b) it would
imply a charged vector boson for which no renormal-
izability is guaranteed. Identification of (3.1) with
(2.5c) leads to the basic Hamiltonian (2.1) with a
neutral scalar boson:

H, =gp(1 y5)CeB+gn(1 —yz)CvB+H. c., —(3.8)

where G=
~ g ~

'/2zzzii' in the local limit. (3.8) implies

B~~~ +p, B~vr,+zz (3.9)

Next, in the case of iz decay, (2.5c), (2.9a), and (2.9b)
will lead respectively to a charged scalar, a charged
vector, and a neutral vector. In order to adhere to a
renormalizable theory, we shall choose (2.5c). This
implies the basic Hamiltonian:

EI,= g&u(1 —ys)CeB'+gp (1—yz)CvB'+H. c. (3.10)

In the local limit, we have G =
~ g ~

'/2zzz~ '. (3.10)

iz decay: tv=Go&y„(1+ps)zz ey„(1+y;)v+H.c., (3.4)

zi capture: H v ——Gpy„(1+hz)zzp, —y„(1+hz)&u+H. c. (3.5)

The difference between the conventional formulation
and this formulation is that the former describes the
p decay, p, capture, and m decay as



1348 Y. TAN I KANA AN 0 S. WATANABE

TABLE I. Properties of intermediary bosons. The dagger means
the "antiparticle, "as dined in the text.

Electric charge
Lepton number
Muon number
Baryon number
Chirality

0
+1

0
+1
+1

0 —1—1 +1.
0 +1—1 0—1 +1

+1 0—1 0—1 +1
0 +1—1 +1

0
0—1—1

implies the transformation:

B'~~e +(ui„B'~~v, +vr, . (3.11)

Finally for the p capture, the assumption (2.5c) leads
to a neutral scalar, while both (2.9a) and (2.9b) lead
to a charged vector. As before, we have to choose
(2.5c), which corresponds to the basic Hamiltonian:

&.=g"P(1 vs)&p—B"
+g"n(1 —yg)CcoB"+H.c., (3.12)

which implies

B"~~p—+p; B"~~(ui, +n. (3.13)

In the local limit, one has G= ~g" ~'/2m' '. It should
be noted that the nucleon stability can be guaranteed
only by assuming that the 8 particle and 8" particle,
though neutral, are represented by complex fields (thus

differentiating particles from antiparticles) and that
they have masses heavier than the nucleon.

The basic interactions of bosons, (3.9), (3.11), and
(3.12) show that these bosons carry baryon numbers,
muon numbers, and lepton numbers. Their values are
listed in Table I. The "antiparticle" Bt(B't,B"t) of
the boson B(B',B") is to be considered as the quantum
of the Hermitian conjugate field of B(B',B").As can be
inferred from the fact that [ip(1&ps) q]t= g(1Wyg)p,
the Hermitian conjugate of the 8's will have opposite
chiralities.

After having assigned these numbers to the bosons,
one can examine all the possible Vukawa-type inter-
actions allowed by conservation of electric charge,
lepton number, muon number, and baryon number,
assuming that the available fermions are nucleons,
muons, electrons, neutrinos (a& particles), and their
antiparticles. One immediately discovers that there can
be no other interactions than those which have been
already considered in (3.9), (3.11), and (3.13). This is
not a trivial fact, and should be construed as of one
the satisfactory features of the present theory. For
instance, the 8 particle, being neutral and carrying
positive baryon number and positive lepton number,
can create a pair (e,p) or (v,n), but none other,
when it disappears.

The 8 particle bridges over the lepton and baryon
families, the 8' bridges over the muon and lepton
families, and the 8"bridges over the baryon and muon
families. The Konopinski-Mahmoud-Xishijima scheme
can be obtained simply by equating the muon charge to

the negative lepton charge in Table I. In this case also
the conservation laws of electric charge, lepton number,
and baryon number allow only the three basic reactions,
(3.9), (3.11), (3.13), s,nd none other (a&L, being identified
as v'i, ). Thus, the uniqueness of the allowed interaction
types is still upheld. The usual scheme implied by (3.1),
(3.2), (3.3) is obtained by equating the muon charge
to the lepton charge in Table I, and identifying co&

with v~. In the case, 8 and 8" cannot be diGerentiated
from each other, and the undesired processes cannot be
forbidden. The electromagnetic interaction of the 8'
particle is discussed in appendix. The requirement that
the electromagnetic interaction be parity-conserving
leads to the assumption of the existence of a fourth
chiral 8 particle which may play an unknown role in
the Fermi interactions involving strange fermions. One
could avoid this unidentified fourth particle either by
identifying (3.4) with (2.9b) for the p decay or by
assuming a chirality-conserving electromagnetic inter-
action for the 8' particle. In the 6rst of these alter-
natives, the intermediary boson becomes a neutral
vector for which renormalizability is no longer guaran-
teed although it is free from the complication due to
the electromagnetism. As regards the second alter-
native, its possibility cannot be denied although it
requires a further careful justification.

Fv= F~ =-;(m~ —m~ )-
I g I', (4.1)

where terms dependent on particle energy are neglected.
From the conditions that there should be no term
similar to the Fierz factor in the allowed beta decay"
and that the nucleon should be a stable particle, it
follows that m~&2300@x. as a sufBcient condition. To
determine g and m~ separately, one will have to deter-
mine experimentally the nonlocal eGect due to the
factor (r[B(x)Bt(x')])Q.

The assumption m~ 2300m, and the experimental

4. COUPLING CONSTANTS, MASSES OF BOSONS,
MICHEL PARAMETER, (m-e)/(m-y) DECAY

RATIO) HYPERON INTERACTION

All experimental results which support the current
(V—A) theory support also the present theory. ' "' In
this section, we shall brieQy discuss further comparison
of the present theory with the experimental data.

The considerations of the foregoing sections were
based on the local limit: (T[B(x)Bt(x')])o ~ —(i/me')
X8(x—x') which amounts to assuming infinite masses
of the intermediary bosons. Restoration of a 6nite
mass of the boson not only has the eGect of nonlocal-
izing the Fermi interaction but also leads to a diGerent
mass-dependent relation between the basic coupling
constants, g, g', and g", and the phenomenological
Fermi interaction constant. In the case of beta decay,
the unrenormalized Fermi constants, Ey and F~, are
approximately connected to the basic coupling constant
gby
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value, Fv=Fg=1.01X10 (m&) ' give"

~ g ~'/4~= 7.4X 10-7.

For the p, capture, one obtains

(4.2)

sr+ —+ e+1 vt, (4.4)

Except for the nonlocal effect, the present theory differs
from the two-component neutrino theory only in the
name of the neutrino accompanying the m decay, allow-
ing the same kinematical consideration as in the latter
theory. Thus, the ratio of m-e decay to x-p decay is
given by

t (s-e)/(7r-p)] ( m. /m„')[1 —(m„/m. )'j '
—13.6X10 '. (4.5)

The nonlocal effect due to (TLB"(x)B"t(x')$)s and
(TLB(x)B~(x')))s should not. appreciably change this
result insofar as m~"~m~. A more detailed discussion
of this problem is given by Oneda and Tanikawa. "
For the p decay, one has

Fv' ——Fg' ——-', (m~ '—m„') '~g'~'. (4.6)

The experimental value of the p-decay lifetime gives

i
g'

i
'/4x ( i g i

'/4m)(mn' -m„')/—(mn' m~')—(4.7.)

The nonlocal eGect of the present theory tends to
increase the Michel parameter (which is ss in the local
limit) to a value closer to the experimental value.
Adaptation of Lee and Yang's theory about the nonlocal
effect on the p value" to the present case yields

p= 0.75+0.27 (m„/mn )', (4.8)

Fv"——F~"=-,'[ma '—(mv —m.)'j-'I g" I'. (4.3)

If one assumes m~"~m~~2300m„ the experimental
value of the rate of p, capture suggests that one can put
g" g. Concurrently with or+ —+ p++&oq (3.7), there
will also be, due to (3.1), the process

actions. It is, however, to be admitted that the evalu-
ation of the numerical values of the coupling constants

g and g' depends on the evaluation of m~ and m~
which is by no means conclusive as of the present.

The fundamental weak interactions of (3.8) and
(3.12) could be extended to cover also the weak inter-
actions of strange particles. The simplest assumption
is that the interaction terms,

and
gX'(1 y—s)C vB+H c.

g"As (1—ps) CtoB"+H.c.,

(4.11)

(4.12)

should be added in (3.8) and (3.12), respectively. One
can show that these interactions are responsible for the
decay of A' and IC, such as

and
h.' —+ P+s. , e+vr',

E-+ 2x, 3m, etc.

(4.13)

(4.14)

The related problem is discussed in the following paper
by Oneda and Tanikawa. '
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APPENDIX. CHIRALITY IN TENSOR
CALCULUS AND CTP THEOREM

Ke consider the full group G of congruent transfor-
mations in the Minkowski space

x„'=a„„x„, (p, v= 1, 2, 3, 4) (A.i)

which leave x„x„ invariant. Three quantities, o-, o-~, o-„
are defined by
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authors (Y.T.) owes his thanks to Professor R. Oppen-
heimer and the Institute for Advanced Study for their
kind hospitality and a grant-in-aid.

which gives p=0.79 when m~ is about 2.6m„.'" mg is
required by the present theory only to be larger than
m„. The value m~ ~2.6m„and the value of m~ used in
(4.2) give, in virtue of (4.7),

o= det(a„„),

tT~=sign of a44,

o.,= sign of det(a e), (n, P= 1, 2, 3)

(A.2)

Ig'ls/Igls=io-~. (4.9) which satisfy

It is interesting to note that this ratio is approximately
equal to the ratio of the two strong interaction constants
for E production and m. production,

I
g" I/I g'I=g~'/g-'

This may be construed as a kind of fine structure
existing within each family of strong and weak inter-

"We delne the Fermi constants Fv(=Fs)=F by the expres-
sion Fpy„(1+ps)gey„(1+ps) v' S. Oneda and Y, Tanikawa (Phys. Rev. ), followin paper.

'f' T. D. Lee and C. N. Yang, Phys. Rev. 108, 1612 1957).
~ This p value seems to be in agreement with the recent experi-

mental values including the "local" radiative correction. The
"nonlocal" effect on the radiative correction will not be very large.

2 =I, f' or o.=+1, (rotations),

2=Z, for o = —1, (inversions),

P=Z'=I, Z=ZI=IZ)
(A.4)

is a nonfaithful representation of G. In a similar fashion,
one can introduce Z& ——(I,Z~) and Z, =(I,Z,), corre-
sponding to o~= +1 and o-,=+1. However, we limit

(A.3)

Each of the three groups: o= (+1, —1), o&= (+1,
—1), o.,= (+1, —1), is hornomorphic to the group G.
More generally, any representation of the group Z
consisting of two elements, I and Z, satisfying
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our discussion only to Z here, since the entire derivation
which follows can easily be adapted to the other two.
It should, however, be noted that the use of Z& and Z,
in the same way as Z is used in the following will lead
to a formalism which departs from the framework of
CTI' invariance.

Let us write symbolically the transformation rules
of "regular" tensors of any rank r as

3'=At, (A.S)

where 2 is just an r-fold juxtaposition of A„„of (A.1).
There are three other irreducible representations of the
same rank O-A, O-~A, and O,A. The quantities trans-
forming according to these three representations have
been named pseudotensors of the erst, second, and
third kind, respectively. "We shall write

t'=% (A.6)

to express any one of the four transformation rules
considered. A tensor or pseudotensor is said to belong
to the "plus class" or "minus class" according as all of
its components remain unchanged or change their signs
by the total inversion of four coordinates (which is
incidentally a rotation in the present terminology). It
is easy to show" the following rule: regular tensors and
first-kind pseudotensors of ewe ranks and second- and
third-kind pseudotensors of odd ranks belong to the
plus class, while all other alternatives belong to the
minus class. The CTI' theorem of the field theory, as
will presently be shown, is a direct consequence of this
rule. This rule also shows that the regular and first
kinds (as well as the second and third kinds) can be
mixed as far as the class is concerned. As will presently
become clear, this is the reason why the chirality
operators can be defined within the frame of CTI'-
invariant theories.

The chirality operator X is defined as an operator
anticommuting with Z of (A.4)":

LI,Xj =0, LZ,Xj =0, X'=I. (A.7)

If one introduces Y=iXZ, this Y also satisfies (A.7).
Thus,

X'= Y'= Z'= I, XYZ=iI,
LX,Yj =LY,Z$ =[Z,X$ =0. (A.S)

"S,Watanabe, Phys. Rev. 84, 1008 (1951);also S. Watanabe,
Sci. Papers Inst. Phys. Chem. Research (Tokyo) 39, 157 (1941).

ss S. Watanabe, Revs. Modern Phys. 27, 26 (1955)."X and Z were erst introduced in the appendix of S. Watanabe,
Phys. Rev. 84, 1008 (1951).In particular, t and u in (A.51) there
are chiral eigenstates, since they are interchanged by the parity
operation. (A.50) there corresponds to (A,9) oi the present paper.

It should be emphasized that the existence of one
chirality operator implies the existence of two such
operators.

If B of (A.6) is a faithful representation of G, then
ZB is also one. Unless one uses a one-dimensional
representation of 2 which is 0-, the new representation

is a reducible representation as far as G is concerned.
However, it is not reducible for the enlarged algebraic
system including X. Thus, we consider in the following
the transformation of a quantity Q given by

Q —+ Q'=ZBQ=BQ, for rotations,
=ZBQ, for inversions.

(A.9)

YUg= WiUg,

ZU~= Vp,

XVg= &iVg,
YS'g= &iWg,

ZUg= Up.

(A.13)

A chirality change by parity operation and a parity
change by chirality operation are explicitly expressed
in (A.13). If Q in (A.9) is an eigenstate of a chirality,
such as U~ or V~, one can see that the rotations do not
change the chirality whereas the inversions do change
the chirality. For instance,

X(ZBUg) = ZBXUg= W (ZB—Ug). (A.14)

Let us now examine the concepts introduced above
by concrete examples taken from spinor calculus. At
first, we shall assume the mathematical definition of
spinors, i.e., we shall assume that a spinor transforms as

P —+ P'=Sf, with y+„„=Sy„S'. (A.15)

It is well known that Py, if'„y, if'„„q (where 2y„,
—=y„y„—y„y„) are then second-kind pseudotensors, i.e. ,
equivalent to W+ in (A.10) with B= op. On the other

Since Z'=I, there are two eigenvalues, Z=&I, and
correspondingly two eigenvectors 8'~. The transfor-
mation rule (3.9) for them is

8'+ —+ 88'+, 8' —& 0-8W

for all transforrnations, (A.10)

since, for Z= —I, Z is equivalent to 0- as can be seen
from (A.4). Out of the four possibilities, B=A, aA,
o-,A, o,A, the first two (the last two) give the same
transformation in (A.10) except that W+ and W are
interchanged. Note that O-o. ~o.,=1. Thus, without loss
of generality, we can limit B to A and oQ. The choice
of these two is particularly convenient since we have in
either case 5"~~ MAP"+ for space inversion, agreeing
with the usual notion of parity. For A=A, W+ is a
regular tensor and 8' is a first-kind pseudotensor. For
B=g~A, 8'+ is a second-kind pseudotensor and 8' is
a third-kind pseudotensor.

Let us write more generally

ZWg= +Wg, XUg= &Up, YV~= Vg. (A.11)

Further, in order to fix our representation, let us
determine the phase relation between 8'+ and 5' by
the condition ', (X+i Y)W = W—+, as is usually done in
the theory of angular momenta. This allows us to write

Up ——(W+& W )/v2, Vg ——(W~+iW )/v2, (A. 12)
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hand, iPyiw, if'„yi p, and Py„„y5q are third-kind
pseudotensors, i.e., equivalent to W in (A.10) with
B=o-&A. This fact, however, does not determine the
phase relation between 8'+ and 8'; therefore it does
not lead to a unique definition of chiral eigenstates,
although a chiral eigenstate must have a general form
$0(1+e""p&)p, with a yet undetermined n, where 0
is 1, ip„, or ip„„.To eliminate this ambiguity, one will

have to invoke some physically observable fact. For
instance, one can define V+ by the requirement that
the helicity of a p particle be —1 when it is produced
with an extreme relativistic speed through an inter-
action involving V+ (more precisely through its
Hermitian conjugate term). This implies that V~
=$0(1+&&)q, and this automatically determines the
remaining five eigenstates in virtue of (A.12).

V~.
Vp.

i gy5y—,

$(1&175)p,

4(1~75)v,

The present covenant about the eigenstates is such that
in V+ the factor (1+pe) should stand before the
"annihilated particle, " which is p in the expression
(A.16). However, q can be considered also as the
creation operator of a y' particle, and f as the annihi-
lation operator of a P' particle. Therefore, one may
doubt whether the definition thus agreed upon still
holds if the same quantity is written in terms of g' and
P' instead of qr and P as in (A.16). This possible
ambiguity actually does not exist in the cases of a
scalar and a tensor, for P(1&y~)q = g'(1&y~)P' and
fy„„(1&F5)p= —g'y„„(1+F5)P' in virtue of (2.6). In
each case the same factor (1+F5) is standing before an
annihilation operator. However, in the case of a vector,
one has Py„(1+F5)q = —g'y„(1Wyq)P', thus the chi-
rality defined by the helicity of the annihilated particle
changes in the second expression. To eliminate this
ambiguity, one will have to resort to some kind of
"charge, " such as electric charge, lepton number, muon
number, baryon number, etc. If p carries a positive
"charge, " then p' will carry a negative "charge. " In
writing a tensor quantity in a form bilinear in spinors,
one should then require that the positive "charge" be
annihilated instead of the negative "charge" be created,
or vice versa. By this agreement, the chirality value
will be uniquely determined.

The next question pertains to how one should
determine the chiralities of the Hermitian conjugates
of the quantities listed in (A. 16). For instance, the
Hermitian conjugate of f(1&yq)p is p(1&ps)p. In
the first expression, the p charge is annihilated,
while in the second the q charge is created. This
is obviously a different problem from the one con-
sidered in the preceding paragraph. The agreement
here must be so made that if p and P carry the same

charge the agreement would not lead to a self-contra-
diction. (The agreement of the preceding paragraph
does not lead to such a self-contradiction even if p and

P carry the same charge. ) This consideration leads to
a simple rule for determination of the chirality of the
Hermitian conjugates. One needs only compare the
factors (1+y~) and (1+iy5) standing before the
annihilation operator, when comparison is made be-
tween a couple of mutually Hermitian conjugate
quantities. According to this rule, one concludes that
in the scalar and tensor cases, the V-chirality changes

by Hermitian conjugation while the X chirality does
not change. In the vector case, the X chirality changes
while the V chirality remains unchanged.

The above considerations about chirality refer only
to a tensor quantity built from two spinors. The boson
field quantities which appear in our theory are supposed
to transform as one of the six quantities mentioned in

(A. 16), and to have chiralities as defined in these
expressions.

Coming back to the basic definition, (A.g), the
relation XVZ=i shows that any linear combination Q
of W+ and W (U+ and U or V+ and V ) returns to
its original value multiplied by a phase factor i by a
successive application of Z, V, and X. Thus, any
product Qt(1)Q(2) is an invariant (including the phase
factor) for XVZ. Any product of the type Q(1)Q(2)
changes its sign by XVZ but retains its absolute value.
This situation is somewhat analogous to the CTP
theorem. In the well-established parity-conserving
cases, the terms appearing in the Lagrangian are of the
types: W+t(1) W+(1), W t(1)W (1), (free Lagrangian),
W+(1)W+(2), (electromagnetic interaction of the spi-
nor field), W (1)W (2), (pion-nucleon interaction),
(W t(1)B„W (1)—LB„W t(1)jW (1)}W+„(2),(electro-
magnetic interaction of pions). All these terms are
characterized by the fact that they are invariant for the
Z operation (including phase), and noninvariant for the
X and V operations. From the present standpoint of
complete symmetry among the three operations, X, V Z,
the allowed terms must be characterized by their being
invariant for one of the three operations and non-
invariant for each of the remaining two. Thus, the
allowed Yukawa-type interactions must be extended
to include U+(1)U+(2), U (1)U (2), V+(1)V~(2),
V (1)V (2), of which the first two are invariant for X
and noninvariant for V and Z, and the last two are
invariant for Y and noninvariant for Z and X.

If a chiral boson field, say V+, has an electromagnetic
interaction, it will take the form ( V+t (1)B„V+(1)
—[B„V+t(1)$V+ (1)}W+„which is noninvariant for any
one of X, V, Z. However, if there is another 6eld V (1)
which has the opposite chirality to V+(1) but the same
electric charge, then the total current due to V+(1) and
V (1) will have a positive parity, since V~(1) passes
to V+(1) by parity operation, see (A.13). Thus, in

order to make the electromagnetic interaction of the
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Q ~ Q'=e'»P, Q. (A.19)

Combining (A.17), (A.18), and (A.19), one obtains

CTP: Q
—+ Q'= e'&&&+&~»&TpPpQ, (A.20)

by virtue of the commutability of C and To and C'=1.
Formulas (A.17) through (A.20) are general rules
applicable to any tensor quantities of any given rank
and any given kind. '4

Now according to the theorem mentioned before re-

garding plus and minus classes, we have TpPp (—1)~'——
for second and third kinds, and TpPp= (—1)"for regular
and first kinds, where r is the rank of the tensor Q."
The "kind" here means the one defined by the "mathe-

24S. Watanabe, Revs. Modern Phys. 27, 40 (1955). See, in
particular, Sec. 4.

8'-field parity-conserving, one is led to assume another
chiral boson field, say 8"' which forms a chiral doublet
with 8'. We cannot determine what leptonic, muonic,
and baryonic charges (for that matter any charge other
than electric charge) the P'" should carry. It is not
excluded that such a chiral boson may have some role
to play in a Fermi-interaction involving strange
fermions. Another possibility is that the electromagnetic
field can be decomposed into a pair of chiral fields, U+
and U, and the U+ part only may interact with the
charged chiral 8 particle.

It is of interest to consider again the analogy of Z/2
to the s component of the spin of an electron. The
four spin eigenstates of a two-electron system have then
the following analogs:

W+(1)W~(2), W (1)W (2),
W~(1)W (2)+W (1)W+(2),
Wp(1)W (2)—W (1)W~(2).

The first two which are allowed in the present sense are
characterized by the nonvanishing total z spin: $Z(1)
+Z(2) j/2. The last two which are forbidden exhibit a
spherical symmetry. The extension of this consideration
to the x and y direction leads to the present criterion.

So far, we have not considered charge conjugation,
which necessarily involves Hermitian conjugation.
Time reversal of the Wigner type in field-theoretical
definition also involves Hermitian conjugation. Let us
write symbolically the operation of charge conjugation
as

Q Q'= e'"'CQ. (A.17)

although CQ is not a linear operation. This C is different
from the C of (2.6). Then, the field-theoretically
redefined time reversal is given by

T: Q ~ Q'= e"'»CTpQ, (A. 18)

where To is the operator of time reversal defined from
the mathematical point of view. The field-theoretical
space inversion P is the same as its mathematical
counterpart, Po.

matical" transformation. From this one obtains
immediately the CTP theorem"

CTP Q ~ Q'= e'(pc+»+sr ) (—1)~tQ
for second and third kinds

= er(pc+»+p ) (—1)(Q
(A.21)

for regular and first kinds.

It can easily be seen that this rule is internally consistent
for multiplication of two tensor quantities of any ranks
and any kinds with or without contraction. A scalar
quantity, such as a term in the Lagrangian, obeys this
rule with r=o. The eigenstates of X and I' are a
mixture of second and third kinds or a mixture of
regular and first kinds. Therefore the rule (A.21) still
holds for them. It is now obvious that the use of Z~ and
2, would violate the CTP theorem, since the chirality
operators defined by them would mix the two lines of
(A.21).

Let us observe more closely the transformations
(A.17), (A.18), and (A.19) in the special cases where Q
is bilinear in spinors, i.e., of the form 1(Oir=gty40p.
Let us understand in (A.17) that CQ means the quantity
which is directly obtained by pp~ q' and P —+i/'
where ip' and lt' are defined by (2.6). (This implies
e'&'=1 for pp=P. ) Then, in general, CQ=&Qt if 0 is
one of the well-known six operators. We can add or
eliminate the imaginary unit to or from 0 so that
CQ=+Qt. W~ and W in (A.16) turn out to satisfy
precisely this condition, i.e., CS'~= H/'~t. Disregarding
in (A.17) the factor e'&' which can be considered as an
arbitrary gauge transformation for g and pp and which
is a common factor to all the quantities, one then
obtains

C: Wg —+ Wgt, Ug~ Ugt, V~~ Vpt. (A.22)

As we have seen before, the Hermitian conjugation
itself entails the X-chirality change in the vector case,
and I'-chirality change in the scalar and tensor cases.
(A.22) means that in addition to this, charge conjuga-
tion entails the F'-chirality change. The results (A.22)
are obtained in the case where Q is bilinear in spinors,
but our basic assumption is that any boson field
quantity that appears in our theory behaves like one
of those Q's which are bilinear in spinors.

The results (A.22) lead to a useful conclusion. First,
one has to note that if a quantity Q appears in a
Lagrangian, it is necessary that its Hermitian conjugate
Qt also appears in the Lagrangian. If the chiral boson
is in an X eigenstate, U~, then U~ as well as U~~ will

appear in a Lagrangian. The same is true for the
quantity that multiplies U+ in the Lagrangian. Now
(A.22) shows that U~ will pass to U~t by charge

"For special case where P is bilinear in spinors, see Table III
in the paper quoted in reference 24. If the two spinors are the
same, then e'&'1&+») = —1, e'"P = 1.pcpzp~ of the table is equal to—(—1)"+' which agrees with the jrst line of (A.21).

~6W. Pauli, in X7'els Bohr and the Development of I'hysics,
edited by W. Pauli (Pergamon Press, Inc., London, 1955).
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conjugation. Consequently, a theory that uses U+ is a
C-invariant (therefore TP-invariant) theory. Next, To
and Po defined by mathematical de6nition change both
X chirality and I' chirality. (Incidentally, CTP= ToPo
thus conserves both chiralities. ) Now, (A.22) shows
that C results in Hermitian conjugation accompanied
by Y-chirality change. Consequently CPO=CP and
CTO= T will result in a simple passage from V~ to its
Hermitian conjugate V~t. Thence, one concludes that
a theory that uses V~ is a T-invariant (therefore
CP-invariant) theory. Obviously, it is possible to
define a chirality so that its eigenstate has the form
$0(1&e' ») p with an arbitrary real n. Such a theory
in general will be only CTP invariant.

There are two apparently diferent prescriptions to
perform T. One alternative, adopted by Pauli" and
one of the authors (S.W.)," is as follows. When Q
=gfOy is given, one first takes (gPOp)r=gg~OriP,
and then applies q

r—&e' ~47sC and pr ~ e "'t'C '7s74$.
Thus,

KNOT ~ge" "@7475(C 'OC)'7s740 (A 23)

Another alternative, adopted by Luders, "Lee, Oehme,
and Yang, "can be derived from the first alternative in the
following way. If there is Q=gPOp in the Lagrangian,
then there will also be its Hermitian conjugate Qt

"See paper quoted in references 21 and 24.
's G. Luders, Kgl. Danske Videnskab. Selskab. Mat. -fys. Medd.

28, No. 5 (1954).
"Lee, Oehme, and Yang, Phys. Rev. 106, 340 (195'l).

=g*~40t74$ in it. Applying (A.23) on Qt, one obtains
g e" ~ $747s(C '740t74C) ~7s74rp L. iiders proposes to
compare this not to Qt but to Q. Thus

ggOp ~ g 8 1t747s(C 740 74C) 7s74p. (A.24)

Now, if one uses the representation in which (7 t)r
(a=1, 2, 3), (741)r= —74 and (7st)~= —7s, then

(C '740174C)r can be obtained from 0 by replacing
each 7; (i=1, 2, 3, 4, 5) involved in 0 by (7;t)r.
Thus, (A.24) can be formally expressed as y —+ e '~7s74p,
P —+e'~g747s, 7,~ (7,t)r, g

—+ g*. The transformation
rule (A.24) leads to a conclusion apparently contradic-
tory to the result obtained in the foregoing with regard
to the effect of T on the chirality eigenstate. For in-
stance, we obtain

0(1+7s)v ~ v (1—7s)A
present formulation (A.25)

y(1+7s) q ~ y(1+7s) p, I.uders.

The present formalism implies a chirality change by T,
while the Luders formalism implies no chirality change
by T. However, this paradox is obviously only a matter
of convention. Indeed, if there is g(1+7s)p in the
Lagrangian, there will also be p(1 —7s)p in it. The
difference lies only in pairing of two quantities when
comparison is made. The physically observable results,
of course, do not depend on this difference in interpre-
tation. It is needless to say that our previous statement
regarding the T invariance of the theory is independent
of this diGerence in convention.


