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Conductivity of Hasmas to Mierowaves
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Plasma conductivities for electrons with a Maxwellian energy distribution are evaluated for the cases in
which the collision cross section is (i) velocity independent and (ii) inversely proportional to the velocity.
The corresponding distribution functions of relaxation times are discussed.

1. INTRODUCTION

' 'N a recent paper Margeoau' derived the frequency
~ ~ spectra of the complex conductivities of plasmas to
microwaves by considering diGerent statistical energy
distributions of the electrons. In the case where the
energy distribution of electrons is Maxwellian, the
resultant complex conductivity is given in an implicit
form which involves two integrals. Some asymptotic
expansions of these integrals are obtained by the saddle-
point method. In the present paper, explicit calculations
of the complex conductivities are made for a Maxwellian
distribution in which the collision cross section q is
{i) velocity independent, {ii) inversely proportional to
the velocity. The corresponding distribution functions
of the relaxation times are also discussed.

2. CALCULATIONS OF THE SPECTRA OF
COMPLEX CONDUCTIVITIES

functions and the result is

Jt——v/(coo+ vs),

Js——oo/(too+ v')

(«)
(4b)

This has the same form as that for Lorentz dispersion
and is similar to the case of electrons with uniformly
distributed energy, as given by Eq. (21) of Margenau. '

In the second case, the J's can be conveniently
expressed in terms of the function introduced by Dingle
et uL.'

e

(P )I.(x) = exp( —)
0 x+ e

In this way we obtain
8

Jt—— Ss(x),
3(or) &vo

For electrons with Maxwe1han distribution in their
energy, i.e.,

Js=—St.s(x),
vo

(6b)

8 t" vu'
exp( —u') du,

3+or ~o GJ +v
ge coN

J,= ' exp( —u') du,
3g~ 'o oo'+ v'

(3a)

(3b)

where I is the number density of electrons, p=eE/m,
E is the electric field strength of the microwaves, co is
the frequency of this field, v is the collision frequency,
and u=s/uo with so——(2AT/m)&. The asymptotic ex-
pressions of J& and J2 are obtained by Margenau by the
saddle-point method. %e wouM like to evaluate the J's
directly for two special cases: (1) v is a constant, i.e.,
the collision cross section q depends inversely on the
velocity; (2) v=uvo, where vo is a constant, i.e., q is
independent of e.

For the 6rst case the integrals are simply gamma

' H. Margenau, Phys. Rev. 109, 6 (1958).

foo {m/2orhT) & exp( —mv'/2kT), (1)

where mv'/2 is the kinetic energy of the electrons, and
other symbols have their usual meanings, Margenau
gives the current density I:

I= ttey(Jt cosset+ Jo sin~t),

where x= (co/vo)'. This result is simpler for the purpose
of numerical evaluation than that obtained by
Altshuler and Molmud. ' These authors express the J's
in terms of exponential integrals Ei(x) and error
integrals C (x),

4 x&

Jt —— —
t 1—x—x'exp(x) Ei(—x)),

3+% co
(7a)

4xt 1J =—— (-',—x)+ x& e p(x)L1 —C (xi)) . (7b)3.L

'

Complex conductivities for some cases of semicon-
ductors lead also to this form of Eq. (7) and have been
derived by many authors. 4

From the numerical table given by Dingle, vpJ1 and
voJs are calculated as a function of &o/vo. The table of
Dingle et al. gives 5„(x)for values of x from 0.1 to 20.
For x&20, I„(x)can be calculated from formula (19);

o Dingle, Amdt, and Roy, Appl. Sci. Research 86, 144 (1957).
The numerical tables are given in this paper, as well as some
asymptotic forms of expansion.' S. Altshuler and P. Molmud (unpublished results quoted by
H. Margenau').

" See M. Bronstein, Physik. Z. Sowjetunion. 2, 28 (1932), A. H.
Wilson, The Theory of hletats (Cambridge University Press,
Cambridge, 1953), p. 235.
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FIG. 1. The frequency spectrum of v0J~ and vof~.

for x(0.1, Sr.s(x) is calculated from formula (1/), the
formulas referring to the work of Dingle. On the other
hand, it is easier to obtain Ss(a) for x from 0.1 to 0.01
from the mathematics table of Placzek. ' The numerical
results are given in Fig. 1, which shows the logarithmic
frequency spectra of voJ~ and voJ2.

The relation between J~ and J2 can also be repre-
sented by an Argand diagram which is the frequency
trace in the space formed by J& and J2 as coordinates.
This method of representation is very similar to the
so-called Cole and Cole diagram' in the literature of
dielectrics. In the Cole and Cole diagram, the coor-
dinates are formed by the real and imaginary parts of
the complex permittivity, and in the present case, the
coordinates are formed by those of the complex con-
ductivity. The result is shown in Fig. 2, where the solid
curve is for Eqs. (6a) and (6b). This curve is almost
identical to the curve given by the dispersion function
of Cole and Cole with n=4', where o. is the measure-
ment of the depression of the center of a semicircle below
the real axis. An appreciable difference occurs only at
the extreme frequencies where the arc intercepts on the
real-axis; while the intercepts form right angles in the
present case, oblique angles are formed in the case of
Cole and Cole.

Figure 2 also shows a broken curve which is a semi-
circle. This curve is the diagram of Eqs. (4a) and (4b),
and is identical to the Debye dispersion curve in
dielectrics. e

3. DISTRIBUTION FUNCTION OF THE
RELAXATION TIMES

A distribution function of the relaxation times can
be formally introduced in the following way: JI and J2,

56. Placzek, National Bureau of Standards Applied .Math-
ematics Series No. 37 (U. S. Government Printing Otiice, Wash-
ington, D. C.).' K. S. Cole and R. H. Cole, J. Chem. Phys. 2, 341 (1941).

Fio. 2. Argand diagram of the complex conductivity of the
plasma. The solid line is for the case in which the collision cross
section depends inversely on the velocity; the broken line is for
the case in which the collision cross section is velocity independent.

te e'
exp( —I') dN.

3&~ ~p a+s~

This is to be compared with the usual definition of the
distribution function of the relaxation time g(r), r which
is connected to J* in the following way:

I." g(r)

~ p 1+srpr

In the case in which r =k ', a constant, g(r) is a
Dirac 3 function of argument (r fp). —

In the case in which s =Net),

8
g( ) = — -( o/ )' pL —( o/ )'j,

3+m
(10)

where the relaxation time variables are dined at
t= p rp= pp This g(r) ap. proaches zero at both T=0
and v. —+ ~, and has a maximum at ~=0.6337p.

While many distribution functions have been intro-
duced phenomenologically to describe the broadening
effect in the relaxation dispersion, g(r) given by Eq
(10) may be of special interest because this is based on
a physical model.
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as given by Eqs. (3a) and (3b), can be immediately
written in the form of Stieltjes' transform, i.e.,

J*=Jg —iJ2


