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Orientation Dependence of Elastic Waves in Single Crystals*
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A description of the properties of plane elastic waves in single crystals is of interest both from a theoretical
point of view and in the interpretation of high-frequency pulsed ultrasound experiments. The perturbed
eigenvalue problem that arises when nearly pure transverse or compressional modes are propagated is
considered, and the resulting phase velocities and displacement vectors tabulated for a number of cases of
physical interest. A unified approach to the properties of pure modes is provided through a consideration
of individual rotational symmetries of the crystals, and the energy Qux associated with both pure and
nearly pure modes is discussed.

1. INTRODUCTION
' ~N recent years ultrasonics has become an important
- ~ tool in the investigation of properties of solids.
Perhaps the richest applications are realized in the study
of single crystals where the presence of anisotropy, while
of course increasing the complexity of measurement, pro-
vides a coordinate frame in which loss mechanisms will in
general imbed themselves with a preferred orientation.
By probing ultrasonically in different crystalline direc-
tions with the elastic modes available, one may examine
the directional properties of these loss mechariisms.
Phase velocity measurements of accuracy as high as one
part in 10' are also of interest, both to correlate varia-
tions in elastic constants with specimen history and to
observe dispersions associated with anelastic properties.

Using pulsed ultrasound reQection techniques in the
megacycle range, a description of which has been given
by Roderick and Truell, ' it is advantageous to choose
propagation directions in the crystal for which pure
transverse and longitudinal modes can be obtained. The
reasons are as follows. First, using x-cut and AC-cut
quartz transducers, one may excite various modes in-
dividually instead of in proportions depending on the
orientation of the propagation direction. Next, the
computation of elastic constants from measured phase
velocities is less involved. Further, the analysis required
to explain observed losses is usually simplified because
the crystal and hence many of the loss mechanisms will
have a fairly high symmetry in the propagation coor-
dinates. Finally, the direction of energy Qux will almost
always coincide with the propagation direction, so that
pulses reQecting between two parallel crystal faces will
not deteriorate due to impinging on side walls of the
crystal.

In the pulsed reQection technique the propagation
direction is normal to two plane-parallel mechanical
surfaces of the crystal, and in actual practice it is
impossible to cut these faces to exactly the desired
orientation. Presumably extremely careful machining
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techniques can hold misorientation to a matter of
several minutes of arc. In easily damagedspecimens,
however, which cannot be machined, misorientations
incurred in a lapping procedure may easily be of the
order of one or two degrees.

The main purpose of this paper is to develop a
description of the perturbed quasi-pure modes which
result due to these misorientations. Section 2 is devoted
to setting up the solution of the perturbed secular
equation in a general manner. In Sec. 3 the problem is
broken down into various crystal systems, and the
phase velocities and elastic displacement vectors are
tabulated for the modes of interest. Section 4 presents
a tabulation of the numerical parameters involved for
cubic crystals, and in addition to giving an estimate of
the order of magnitude of the eGects being considered
should serve as a useful working table for the experi-
menter. Finally in Sec. 5 the energy Qux associated with
both pure and quasi-pure elastic modes is discussed.
The two cases of internal conical refraction are con-
sidered for the former, and for the latter some numerical
calculations are made to indicate the degree of deviation
of energy Qux in certain cases.

The details of the perturbed eigenvalue problem
leading to the phase velocity are presented perhaps
more thoroughly than is justi6ed by the straightfor-
wardness of the calculation. The reasons for this are
threefold. From the symmetry table of Sec. 3, for
example, a uni6ed picture of the properties of pure
elastic modes is obtained. Thus one may at a glance
pick out many of the directions along which pure elastic
modes may propagate, check for degeneracy of the
transverse modes, determine the displacement vectors
and observe whether the energy Qux deviates from the
propagation direction, all in terms of the individual
rotational (or reflectional) symmetries of the crystal.
In addition, possession of the details of the perturbation
problem enables one to more readily extend the calcu-
lations to obtain higher order terms in the perturbed
phase ve.ocities, treat cases not considered explicitly in
this paper, and compute the components of stress and
energy Qux. Finally, a formalism which builds up results
from individual symmetries of a crystal should be most
convenient for considering the role of new loss mecha-
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nisms which invalidate only a fraction of the symmetry
elements.

The problem of finding the directions in which pure
elastic modes will propagate was considered by Sakadi
in 1941,' and more recently by Borgnis, ' for several
crystal systems.

Gold has given a numerical tabulation of phase
velocities as a function of orientation for certain cubic
and hexagonal metals. 4 Musgrave has carried out
detailed numerical calculations for certain cubic and
hexagonal crystals, presenting his results in the form
of polar plots of phase velocity surfaces and wave
surfaces. ' Approximation techniques for determining
elastic constants from phase velocity measurements in
an arbitrary direction in cubic and hexagonal crystals
have been discussed by Arenberg, ' arid Neighbours and
Smith. ' Neighbours later discussed the application of
this method to additional crystal symmetries. '

0ij ~ij7cl &kl p (2.2)

where 0-i; is the jth component of stress on the plane
of normal x;. The Oi; and ei, are symmetric, and if
existence of an elastic potential is assumed, the F;;I,~

obey the symmetry relations

~'jul=~I &.j=J"ia&j, (2 3)

reducing the total number of independent elastic
constants to 21.

The equations of motion in a medium with no body
forces present are

~ ~o.,;,;=pS;, (2 4)

' Z. Sakadi, Proc. Phys. -Math. Soc. Japan 23, 539 (1941).' F. E. Borgnis, Phys. Rev. 98, 1000 (1955).' L. Gold, J. Appl. Phys. 21, 541 (1950).
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(1954); A226, 356 (1954); G. F. Miller and M. J. P. Musgrave,
Proc. Roy. Soc. (London) A236, 352 (1956).

e D. L. Arenberg, J. Appl. Phys. 21, 941 (1950).
~ J. R. Neighbours and C. S. Smith, J. Appl. Phys. 21, 1338

(1950).
e J. R. Neighbours, J. Acoust. Soc. Am. 26, 865 (1954).' I. S. Snkolniko6, 3fathematecat Theory of Ftasttcr'ty (McGraw-

Hill Book Company, Inc. , New York, 1946), Chap. 1, 2, 3.
'0 A. E. H. Love, 2 Treatise oe the Mathematic/ Theory ofElas-

ticity (Dover Publications, ¹wYork, 1944), Chap. 1, 2, 3, 13.

2. SOLUTION OF THE EIGENVALUE PROBLEM

In an anisotropic elastic medium there are in general
several axes along which two pure transverse elastic
modes and one pure longitudinal can propagate. A pure
mode axis is defined to be any direction in a crystal with
this property. For a review of the basic concepts of
infinitesimal elasticity theory employed in the following
discussion, see SokolnikofP or Love. '

The components e,, of the strain tensor, defined by

(2.1)

where I; is the ith component of displacement, are
related to the components o.ij of the stress tensor by the
generalized Hooke's law

FIG. 1. The transforma-
from the crystal coordinates
(a;} to the coordinates
(y; l, utilizing the Euler
angles. Two pure transverse
and one pure longitudinal
mode may be propagated in
the y3 direction, with re-
spective elastic displace-
ments in the y; directions.
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where p is the density of the medium. Making use of
the preceding equations, Eq. (2.4) may be written in
terms of the displacements as

~ ~

J';jktNI, ti= p+j& (2 5)

providing the medium is homogeneous. If one now
assumes a plane wave

I,& l=A;& & exp{i(cot—k as)}, (2.6)

propagating in the x~ direction with propagation
constant k and frequency co, Eq. (2.5) become

(~s;as—tt &,s)Ast"'=0, (2.7)

where 8;I, is the Kronecker delta and the eigenvalues
have been written as p =pe '. AJ, & ) is the kth com-
ponent of the eigenvector associated with the eigenvalue
tt . In order that Eq. (2.7) have a nontrivial solution,
the eigenvalues must satisfy the secular equation

(2.8)

The propagation direction x3 in the crystal is chosen
normal to the mechanical surface of the crystal by the
usual ultrasound propagation techniques. Hence the
experimenter desiring to propagate pure modes in the
crystal would prepare a surface normal to a pure mode
axis. Due to limitations of orienting and machining
equipment this cannot be done exactly. We suppose
that a small error has been made, so that the angle
between the x3 axis and a pure mode axis is of the
order of one or two degrees. The {x,} shall henceforth
be referred to as the misorieeted coordinates.

The Ii;j&& are the elastic constants of the crystal
referred to the misoriented coordinates. In order to find
the solution of Eq. (2.8) one must first find the form
of the F,j~~ and their relation to the known elastic
constants c,;&t described in the crystal coordinates {a,}.
It is convenient to do this by two coordinate transfor-
mations. The first transformation leading from the
crystal coordinates to a second set of Cartesian coor-
dinates {y,}is performed utilizing the Euler angles. The
{y;}are chosen by the conditions that ys be the pure
mode axis along which waves are to be propagated, and
eigenvector A&" be along the y, axis, for i= 1, 2, 3. The
second transformation leading from the {y,} to the
misoriented coordinates {x;}is then performed, and



1242 P. C. WATERMAN

/

l

X)

FIG. 2. The trans-
formation from the
pure mode coordi-
dinates (y;} to the
misoriented coordi-
nates fxi }, accorn-
plished by means of
a single rotation
through the angle 8
about the axis S.

the J,jj,& are obtained in terms of the cij&& by the usual
tensor algorism.

For the first transformation the elastic constants
D,,z& described in the {y,) coordinates and the direction
cosines are as follows:

D;jI,)=1;„lj,l j,„l),c,„„

~ijkl n~pnj gnkrnrsayqrgq

rtu ——Sin3$+ COS3$ COSg,

@33=COS /+Sill Q COSg,

%33=COSH,

33~3——r33~ ——(cosg —1)(sin2@)/2,

333~= —N&3= sing co+,
n23= slnH slIl@.

(2 11)

The second transformation to the miroriented coor-
dinates {x;)is now performed, and consists of a rotation
in the negative sense through the angle H about an
axis 8 lying in the (y&y3) plane, where 8 has components
(sing, —cosp, 0) in the {y;}coordinates. This is shown
in Fig. 2. The elastic constants F;;I,~ described in the
{x;) coordinates, and the direction cosines of this
transformation are as follows:

The F3;j3 may be expanded in a power series in H,

obtaining
l3,——cosa cosp cosy —sinp sing,

l~3= cosa sinp cosy+ cosp sing,

l~3= —sino. cosy,

l3~= —cosa cosp sing —sinp cosy,

l33
——cosp cosy —cosa sinp sing,

l23= sinn sin+,

l3~= sina cosp,

l33= sina sinp,

l33 = cosa.

(2.12)p . —fligli,
where "k" plays the role of an index on the f;;", an
exponent on 8, and the summation convention applies.
The series (2.12) converge absolutely for all values of g.

Assuming a power series solution for the eigenvalues,
one writes

(2.13)

where the above remarks on the index k apply.
Inserting Eqs. (2.12) and (2.13) in the secular equa-

tion, the result is
It is evident from Eq. (2.9), and also Fig. 1, that the

y3 axis is determined by a and P alone. Hence, by
proper choice of a and P, y3 may be made a pure mode
axis regardless of what value be chosen for y. This is
done as follows: rewriting Eq. (2.7) in the {y,) coor-
dinates, it is seen that the pure longitudinal mode with
displacement components u, =g;3 exp{i(&ut—ky3)) may
propagate providing D3~33= D3~33= 0. Further, the
symmetry of the array ))D3;;3~) guarantees that the
eigenvectors are mutually orthogonal; hence the eigen-
vectors associated with the two other modes are both
normal to the y3 axis, and represent pure transverse
modes.

Having chosen a and P so that D3$33 and D3333 both
vanish independent of y, D~~23 is computed, and y is
chosen so that D3~23=0. This step greatly simplifies the
analysis. The eigenvectors now coincide in direction
with the yi axes. Actually, the form of the transforma-
tion is such that the rotation p is unnecessary in most
of the cases of higher symmetry, and the choice p=0
automatically causes D»» to vanish. In the yi coor-
dinates, the array ~~D3;, 3~~ is diagonalized. At this point
one may determine whether or not the problem is
degenerate. A degeneracy corresponds physically to the
velocities of the two pure transverse modes being
and is described mathematically by

Dsii3= D3223.

i
(f3' 38. ,)g, k

i
0 (2.14)

The compactness of the notation is rather deceptive.
Equation (2.14) represents three equations, one for
each of the three eigenvalues p . The position of each
term in the determinant is given by the indices (ij),
and each term is summed separately over k. Observe
further that f,,"=f, ,", and f,P=O for iW j.

The a ~ may now be determined in terms of the f,,"
by equating the coeScient of each power of H in Eq.
(2.14) to zero. As we are only interested in the ~esults
for H small, we solve for the eigenvalues correct to
quadratic terms in H. In the degenerate case several
coefficients vanish identically, and hence some results
must be listed separately.

The nondegenerate case:

fii i &i =fiii
(2.15)

The degenerate case:equal,

The a & are the same as above, with the four
(2.10) exceptions
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(81 2 (fll +f22 ) 2 [(fll f22 ) +4(f12 ) ]'
(82 2 (fll +f22 )+2[(fll f22 ) +4(f12 )

al 2 11 22

+ 2 [(f»')'+ (f»')']/(f)1' —f»')+ 21if ',

a2 2 ll 22

+ 2 [(f)8')'+ (f»') ']/(f»' —f»') —2~'',
where

1312 2812 2

1'= (f22' —flP)'—+4 (f»')'+
33 11

2
+ {[(f»')' —(f»')']

33 11

(2.16)

where

12
Ã—=

fll f22 [(fll f22 ) +4(f12 ) ]
(f»')' —(f23')'+ (f»' —f12) (f»' —f)P+~')

for f»'&0

2[f»'(f83' —f»') —f13'f23']

for f»'= fll'= f22'=0.

The required f,;" may be obtained in terms of the

D~,„, from Eqs. (2.11) and (2.12). Before doing this,
however, it is convenient to shif t to the more usual
index notation by writing

X[f22 fll] —4f12 f13 f23 }& D;,1,)=D„„ (2.19)

The nondegenerate case:

A, , (') —
y A, (~)—

If f,2' ——0, then

iWj. (2.17)
f(i) (i) f(') (')

18 28 11 38 12
A (1)— g2

88 11 22 ll

13 28 22 88 12
A (2)= 0'

38 22 11 22

The degenerate case:

Al"'=A (2)=[1+1P] '*

A "'= A(') =1V[1+E']—

and al', a2' have been derived on the basis that

f11 f22 f»'= 0. This does not involve any loss for
our purposes, since if these terms do not vanish, the
eigenvalues contain linear terms in 0, and we are no

longer interested in the quadratic terms.
Having found the eigenvalues, the eigenvectors may

be obtained from Eq. (2.7) in the form of power series
expansions in 0. The normalization scheme is as follows:
in the nondegenerate case, set A(;)("=1. In the de-

generate case, take A 3(') = 1, A 1(') and A 2(') as
constants not involving 8, and

[A ")(0=0)]'+[A2("(8=0)]'=1 for i=1, 2.

Under this scheme, taking only the lowest order term
in 8 for each A;(&'), orthogonality and normality are both
preserved to within order of 82. The results, correct to
lowest order terms in 0, are as follows:

where P=i if i =j; P=223+3 if i', with i&mWj
Now Eqs. (2.11) yield, using the fact that D34 D»——
=D45= 0

fll D55

f22'= D44,

f33'=D83,

fll'= 2D15 cosp+2D56 sing&

f22'= 2D46 cosp+2D24 sin&t,

f83'=0,

f»' ——(D14+D56) cosg+ (D25+D46) sing,

f»'= (2D» —D»+D18) cos4+D36 s)n(t»

f23 (2D44 —D33+D23) sin&t&+D36 cosp,

f,)2= (D„+D33—2D, 3
—4D55) cos2&&

+ (D66—D55) sin2&+ (D16—D36) sin2&)&&,

f22 (D22+D83 2D28 4D44)»n'4

+ (D« D44) cos'p+ (D„——D86)»n2p,

f88 = 2(2D44+D28 —D88) sin'&&t&

+2 (2D55+D13—D33) cos2&+2D86 sin2&,

f12 (D16 D36) COS Q+ (D26 D86) Sill Q

+ (2D83+ 2D66+2D12—2D13—2D23
—3D44—3D55) 4 sln2$.

(2.20)

0,=D;,e, ) Z=1) . 6 (2.21)

In order to avoid any confusion, it should be men-

tioned that in the reduced index notation, the stress-
strain law becomes

f18'+&f23'
A, (') = [1+1P] &8,

11 83
(2.18)

f23' —&f)8'
A "'= [1+Ã2] le&—

11 83
0

A, (3)— i/3
83 11

A 8(8) —y

where the 0-, and e; are defined by 01=0», 02=022,
0.3=a88) 04=023) 05=031) 06=012) E-1= 611) 62= f22) 63=683)
~4= 2~28 ~5 2E81, and E6= 2Ej2. Observe that the reduced
index strains e; are no longer components of a tensor,
and hence it is impractical to use the form (2.21) of

the stress-strain law, or for that matter any equation
containing the reduced index strains, in a computation
which involves transformation of coordinates. No dif-

ficulty is encountered in manipulating the D,; alone,
however, provided one keeps in mind that they are the
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TABLE I.The forms of the elastic constant arrays for various rotational or reRectional symmetries of the coordinate axes. S;;indicates
that the ith axis has j-fold rotational symmetry or, if j=2, is either a twofold symmetry axis or is normal to a plane of reflection sym-
metry.

11
12
13

0
. 0

12 13 14 0 0
22 23 24 0 0
23 33 34 0 0
24 34 44 0 0
0 0 0 55 56
0 0 0 56 66.

11
12
13

S2g p
15

. 0

22 13 0 15 0
22 23 0 25 0
23 33 0 35 0
0 0 44 0 46

25 35 0 55 0
0 0 46 0 66.

11
12
13S32..
0.16

12 13 0
22 23 0
23 33 0
0 0 44
0 0 45

26 36 0

0 16
0 26
0 36

45 0
55 0
0 66)

ii 12
12 22

S 0 0
0 25.026

12 0
23 0
22 0
0 —', (22—23)—25 —26—26 25

0 0
25 26—25 —26—26 25
55 0
0 55

11
12
13

S$3 ~

0.26

12 13 14
22 12 0
12 11 —14
0 —14 44
0 0 —16
0 —16 0

0
0
0—16

-', (11—13)
14

16"
0

S
14
44.

11 12 13 14
12 11 13 —14
13 13 33 0
14 —14 0 44—25 25 0 0
0 0 0 25

—25 0
25 0
0 0
0 25

44 14
14 ~s(11—12)q

'11
12
12S14'. 0
0. 0

11
12
12

S16~

p
0
0

12 12 0 0 0
22 23 24 0 0
23 22 —24 0 0
24 —24 44 0 0
0 0 0 55 0
0 0 0 0 55.

12 22 0 0 0'
22 23 0 0 0
23 22 0 0 0
0 0 —,'(22—23) 0 0
0 0 0 55 0
0 0 0 0 55,

'11
12
13S.4.

15. 0

11
12
13

S26: 0
0
0

12 13 0 15 0'
22 12 0 0 0
12 11 0 —15 0
0 0 44 0 0
0 —15 0 55 0
0 0 0 0 44.

12 13 0 0 0
22 12 0 0 0
12 11 0 0 0
0 0 44 0 0
0 0 0 -'. (11—13) 0
0 0 0 0 44.

'21
12
13

S34. 0
0

26

'11
12
13

S&6 ~

p
0. 0

12 13 0 0 16 ~

12 13 0 0 —16
13 33 0 0 0
0 0 44 0 0
0 0 0 44 0—16 0 0 0 66,

12 13 0 0 0
ii 13 0 0 0
13 33 0 0 0
0 0 44 0 0
0 0 0 44 0
0 0 0 0 2(11—12),

components of a fourth-order tensor in a shorthand
notation.

The general solution for the eigenvalues and eigen-
vectors in terms of the D;, is now complete, and
expressed by Eqs. (2.13), (2.15), (2.16), (2.17), (2.18),
and (2.20). It is interesting to note from the sixth of
Eqs. (2.20) that the longitudinal velocities never contain
a linear term in 8.

The general solution could now be written down in
terms of the usual elastic constants c;; of the medium
by invoking Eqs. (2.9). As this would involve a large
number of terms, it is more expedient to break the
analysis down into the various crystal systems at this
point.

3. EXPLICIT SOLUTION FOR SEVERAL
CRYSTAL SYSTEMS

The eigenvalues and eigenvectors will now be tabu-
lated for the cubic, tetragonal, hexagonal and trigonal
crystal systems. For a description of these systems see,
for example, Kittel. " Instead of computing the D,,
entirely from Eqs. (2.9), one may eliminate much of
the computation by invoking the symmetry properties
of the various systems involved. To this end a symmetry
table (Table I) is constructed, based on concepts first
set forth by Voigt" and later summarized by Zener. "
"C. Kittel, Introdttction to Solid State Physics (John Wiley and

Sons, Inc. , New York, 1956), second edition, p. 24.
"W. Voigt, IehrbIsch der It:ristattphysik (B. G. Teuhner,

Leipzig, 1910),p. 583.
"C.Zener, Elasticity and Anelastictty of Metals (University of

Chicago Press, Chicago, 1948), p. 14.

Table I gives the form of the elastic constartts referred to
any Cartesian coordinate system in which one of the axes
possesses rotational symmetry or a normal refIection
plane, and is read as follows: 5;; indicates that the ith
axis has j-fold rotational symmetry or, if j=2, is either
a twofold symmetry axis or is normal to a plane of
reQection symmetry. Notice that the usual crystal nota-
tions will not sufFice here, as we are referring to sym-
metries about specific axes. Each array is obtained by
requiring that it be invariant under the appropriate
coordinate transformation. Those elastic constants which
must vanish are indicated by a zero, and of the remain-
der any interrelations are indicated by appropriate repe-
tition of indices. The usefulness of the table lies in the
fact that various arrays may be simply superposed. The
zeros and interrelations of each of the component arrays
all appear in the superposed one.

Inspection of Table I immediately gives two inter-
esting results:

(1) For xs to be a pure mode axis, it is sufficient that
it be an axis of twofold or higher rotational symmetry,
or normal to a reflection plane, or normal to an axis
of sixfold symmetry.

(2) For xs to be a degenerate pure mode axis, it is
suAicient that it be an axis of threefold or higher
rotational symmetry.

The use of the symmetry table in the computation of
the D;, is indicated by the following example. Consider
propagation near the pure mode axis L101) in a cubic
crystal. cr=rr/4, P=y=0 in Fig. 1, with the result that
the y~ and y3 axes are twofold, and the y2 axis fourfold.
The superposition of symmetry elements S», S», and
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S24 in Table I gives for the array of D,,'s the form

ii 12 13 0 0 0
12 22 12 0 0 0
13 12 ii 0 0 0
0 0 0 44 0 0
0 0 0 0 55 0
0 0 0 0 0 44

(3.1)
C11 C12 C12

C12 C11 C12

Cubic: S14 S24 S34 0 0 0
0 0 0.0 0 0

0 0 0
0 0 0
0 0 0
c44 0 0
0 c44 0
0 0 c44.

TA'BLz II. The form of the crystalline elastic constants cg for
cubic, hexagonal, tetragonal, and trigonal symmetry. The sym-
metry elements S;; are indicated in each case.

hence one needs to compute only D J $ D$2 D]3 D22 D44,
and D44 from Eqs. (2.9).

Using Table I, we may immediately write down the
elastic constants in the crystal coordinates ja,) for any
crystal system. This is done in Table II for the four
systems of interest here, with the symmetry elements
S,, listed for each system.

As velocities rather than elastic moduli are measured
experimentally, it is more appropriate to give results
in terms of fractional changes in velocity, defined by

Hexagonal: S36

Tetragonal:
S12) S22, S34

c11 c12 c13 0 0
C12 c11 c13 0 0
c13 c13 c33 0 0
0 0 0 c44 0
0 0 0 0 c44.0 0 0 0 0

c11 c12 c13 0 0
c12 c11 c13 0 0
c„ c„ c„ 0 0
0 0 0 c44 0
0 0 0 0 c44
0 0 0 0 0

0
0
0
0
0

2(C11 C12)

0
0
0
0
0
c66.

61&,/2&, =Atl, /2t4, = (t4;—a,C)/244, . (3 2)

The resulting velocities, fractional changes in velocity,
and eigenvectors are given below, correct to lowest order
terms in the Polar ntisorientation angle 8.

C11

C12

C13

C14—Cqq

0

C12

C11

C13—C14

C25

C13

C13

C33

C14—C14

0
c44
0
C25

—C25

C25

0
0
C44

C14

0
0
0

C25

C14

2 (Cll C12)~

Define
Cubic System

Eg= egg —cg2 —2c44)

E2 El/(c44 c11)+2,
E2= El/(c12+c44)+ 2,

E4 El/2(cll+c12)+ 2.

ProPagation direction=[001]: ,5,4, 5,4, 5„; 42=it
=y=0

»=»= (c44/p)'; »= (c»/p)',

Avg Eg8'
(E2+[E2'—sin'2y (2E2—1)]'),

vy 4c44

E~8'

(E2—[E2'—sin'21&& (2E2—1)]&),
4c44

—EgE2
g2

)
2cyy

E2(cos21t —sin2&) —[E22—sin22g (2E —1)]&

2 sing cosg(1 —E2)

Ala& =A2 "&= [1+F2] ~,

A, & &= —A, &'&=X[1+X']-~

A2a& = (2—E2)[1+1P] **(cosP+Xsing)8,

A2&2& = (2—E2)[1+1P] '*(sing —N cosp)8,

A 1&2& =8 cosp(E2 —2),

A2 "&=8 sing(E2 —2),

ProPagation direction =[101]:5», S24, 5»,' 42= vr/4,
P=y=0

»= [(c»—c»)/2p]'*; 1&2= (c44/p)'*;

1&,= [(cl,+c12+2c44)/2p]&,
—Eg8'

[2E2 cos2&+ 1],
2&1 2 (cll c12)

El(3—E4)
8' sin2p,

Ava

2c44

61&2 E'l8'[(2E2+ 1) cos'g+ (2E4—5) sin'g]

2 (c»+c»+2c44)
Q (,) ('t) —1

A2&'& =8' co+ sing(E2 —3),
A 1 "&=8' sin2&(15/4 —2E,),
A2 "&= —A&&2& =8 cosp(3 —2E2)/2,
A2"'= —A2&2& =8 sing(2E4 —3).

2&1» [(cl1 c12+c44)/3p]4;

1&2= [(c»+2c»+4c44)/3p]&,
—Eg8

2&1 2(cll c12+c44)

62&4 E'1[2E2+3]8'

2&2 3 (cll+2c12+4c44)

7

2&2 2 (cll c12+c44)

ProPagation direction =[111]:S22, S22, el=tan V2,
&8=2r/4, y=0



P. C. KATE R M AN

A 1
&'& =A 2"' ——cos (p/2),

A2 "&= —A 1&2& = —sin(&p/2),

A3&'& = 13[2E3—378 cos(p/2) [4 sin2(li&/2) —17,

A 3&2& = 13[2K'8—378 sin(p/2) [1—4 cosz(p/2) 7,

A 1&3& = 3[2E8—378 cosp,

A, ~3& =—'[2E',—378 sing,

A (')=1.

Hexagonal System

Tetragonal System

ProPagation, directiozz =[0017: 5», 522, 532,' n=P
=y=0

vl= v2= (c«/P)*; v8= (c88/P)',

3I= cos22& (cl1+c88—c66—2clz —3c44)

2 (2c44—c33+c18)
X cll+ C38 C66 2C18 3C44

C33—C44

+sin'2$(C88+c66+C12 2c18 3c44)

2 (2C44—C88+C18)
X C38+C66+C12 2C18 3C44

Propagatiorz direction =[000&7: 512, S22 586j cl p
=y=0

v, =vz= (c44/P) l; v8 ——(c33/P) ',

c18 +c44(c38+2c»)

8'

'Vl 4C44

C33
—

C44

+ (2c44 —c33+c18)'/ (c88—c44)',

c13'+ (c38—2c,,)c44
C11

—C44+ C66+ +3I**,
C33

—
C44

Cll
Vl 2C44 C ~3

—C44

Av2 02

[cl1
—c12—2c447,

4C44

Avz (2c44+c13 C83) (C33+C18)—02

V3 2c, , (C33
—c44)

A 1 "&=A 2"' ——cosg,

A 2
"&= —A 1&2& = sintt,

A8~'& =8(2c44—c33+C18)/(C44 C38) ~

A8"' ——0(8')

A 1"'=8 cosg(2c44 —c83+c18)/(c88 c44),

A 2 —8 sing (2c44 —c88+C18)/ (C88—C44),

2C44 C44 Cll

Avz 8' coszg
[2C44+C12 C117)

v2 2 (Cl1 C12)

Propagatzorz dzrectiozz rzearly irz base piazze: 5,6,
n=zr/Z, P arbitrary, y= 0

vl (c44/p) v2 [(cll c12)/2p7 j v8 (cll/p)

+vl 8 cos Q c18 + (cll+2c18)c44
C33+

AV2 0'

V2 4C44

C18 + (C33 2C13)C44
Cll C44+C66+ ——M&

C33
—

C44

Avz 8 (C18+C88) (2C44+C18—C88)

2C33 C33
—

C44

x= tan 4o[1+ (cl1—c,z) cos2&/D7,

where

D= (cll c12 c66) sill $+c66 cos Q

+[2c44—c83+C137 /2(c88 —c44)

2 (cll+C33+c66 2c18—7C44) ——',Ml,

A "& =A 2
&2& = [1+&27—'*

A &»= —A &2&=+[1++27—4

A 3o& = (cosp+cV sing) [1+@27—-*

X [(2c44—c33+c18)/(c44 —c„)78,

A 8&2& = (sing —iV cosp) [1+%27—l

X [(2c44—c83+clz)/(c„—c,,)78,

A 1 8 cosp (2c44—c33+c13)/ (c33 c44),

A2 8 s&np(2c44 —C88+C18)/(C88 C44)&

A, ()—j

ProPagati orz direction = [1007:514, S22, S82,. n =a/2,
P=v=0

vl ——(c44/p); v2 ——(c66/p) *; vz ——(c»/p) *,

Avl 8 cos Q c18 + (cll+2clz) c44

Dvz 8 cos Q (cll+c18) (2c44+c18—cll)
Vl 2C44 C44 Cll

2C11 Cll C44

A(')"'= &

A ("=—A "'=——'0'sin2@

A 8
= A l. =8 cosp[cll c18—2c447/(cl 1—c44),

A, &2& =O(8'),

A, ~» =O(8').

0'

V2 2C66

0'

V3 2C11

(C12+C66)
C44 C66+Sln 0 Cll C44+

C66 C11

(2C66+C12 cll) (cll+C12)
sin2$

Cll C66

(2C44+C13 Cll) (Cll+C13)
+coszg

Cl1—C44
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Propagation direction =[110]:S14, S22 S32 &2=zr/2,

P=zr/4, y=0

el= (c44/p); v2= [(cll—cl2)/2p] )

2;= [(c»+C12+2C66)/2p]',

14&el 8' co st

2c44

2 (c„+c44)'
C33 C44+

2c44—cyy egg —2c66

cos'P(2C44+ c12 cll)
2 2 2 (Cl1 C12)

(2C66+C12 Cll) (4C66+3C12 Cll)
+2 sin2$

C12+C66

3(;)(')=1,
8' sln2$[C44 (SC66—cll+ 2c12—3c44)

A, (') = +2c13(2c66—cll+C12) C11C66]

)
4 (cll —c44) (c66—c44)

sln2$[C44 (7C66 3cll+ 2C12)

+2C13 (C12—C11+2C66) +C66 (C11 C12—3C66)]
4 (Cll C66) (C44 C66)

A3&" =—A 1&') =8 cosp(2C44 —cll+C13)/(c44 —cll),

A, &"= —A2&') =8 sing(2C66 —cll+c12)/(c66 cll).

Trigonal System
I

ProPagation direction = [001]:S33,' cz=P=y = 0

»=12= (C44/P); 23= (C33/P) *,

661 8[C14 +C25 ]'
'VI &44

~z'2 8[C14 +C25 ]'
&44

633 (2c44+c13—c33) (C13+C33)—02

83 2c33 (c33—c,4)

c25 cosp —c14 sing —[c14 +C25 ]'
c14 cos(j&+c25 sing

A 1&"=A 2&2) = [1+N2] *',

A2&" = —A 1&2) =Ã[1+1V2] ',
A3&'~ =8(cosp+E sing) [1+N2] '*

X (2c44—c33+C13)/(C44 C33) )

A3&2~=8(sing —X cos&t)[1+%2] 3

X (2C44 C33+C13)/(C44 —C33),

A 1"'——8 cosg (2C44 —c33+c13)/(c33—c44),

A2&" =8 sing(2C44 —c33+C13)/(c33—c44),

(3) —g

4. NUMERICAL RESULTS FOR SEVERAL
CUBIC CRYSTALS

0' (Cll C12 2C66) (Cll+ C12)'
2 sin2&

2'3 2(C11+C12+2C66) C12+C66

—cos2$

A(,)(') =1,

It is appropriate to interrupt the theoretical dis-
cussion at this point to give some numerical results for
fractional velocity changes, in order that the readertell C12 P C13~ C66t
gain insight to the order of magnitude of effects being
discussed.

C11+C12 2C44+ 2c66 The anisotropy factor A for cubic crystals is defined
byl4

g 2(s)—

g, (2)—

8' sing cosg

2(cll+c12+2c66—2c44) (cll C12 2C44)

X[C11(SC13+14C44 Cll) 2C66(C11+SC13+4C44)

+C12 (c12+2c66—6c44—8c13) SC44 ]~

8' sin&t cosg

2 (c12+c66) (2c44—cl1+C12)

A = 2c44/(cll —c12). (4.1)

E|=0. (4 2)

A crystal becomes elastically isotropic when 2 =1, so
that pure transverse and longitudinal modes with fixed
velocities will propagate in any direction. This is borne
out in the preceding tabulation, as all fractional changes
in velocity for cubic crystals are proportional to
E&—=c»—c»—2c44, and the condition for isotropy may
be written as

X [Cll (4C13+Sc44—2cll+3c12+3c66)

(cll+ C12+2c66—4C44 —2C13)
A3&" = —A 1&3' =8 coef

Cl1+C12+2C66 —2C44

The elastic constants for several cubic crystals are
listed in Table III. Zener" has compiled a large share

c, (c, +4C, +4C„3C„) 4C„(2C„+3C„)] of the constants given. From the elastic constants the
E;, as defined in Sec. 3, are computed and tabulated,
and from the E, fractional velocity changes for any
propagation direction may be obtained easily. Specih-

A 3 A 2 8 sing (c12+2c66 cll)/(c12+ c66) ~

'4 Reference 11, p. 95.
"Reference 13, p. 1tt.
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TABLE III. A tabulation of the c;, and E; for severa& cubic crystals. E& and the e;,. are in units of 10'2 dyne cm 2. The last three
columns give the ratios of the maximum fractional difference velocities to the square of the polar misorientation angle 8 for the three
quasi-pure modes which may be propagated nearly along the $001$ direction.

Crystal

Ag'
Al'
Au'

o.-brass~
P-brass"
C (diamond)'

Cu'
CugAud
Fe(n)'
Gee
K'
KBrg
KClg
Na~
NaClg
Pb'
Si&
W'

CII

1.20
1.08
1.86
1.47
1.279

1.70
2.25
2.37
1.30
0.0459
0.35
0.40
0.0555
0 49
0.483
1.67
5.01

C12

0.897
0.622
1.57
1.11
1.091
3.9
1.23
1.73
1.41
0.49
0.0372
0.058
0.062
0.0425
0.124
0.409
0.65
1.98

C44

0.436
0.284
0.420
0.72
0.822
4.3
0.753
0.663
1.16
0.67
0.0263
0.050
0.062
0.0491
0.126
0.144
0.79
1.51

—0.56—0.11—0.55—1.08—1.456—3.3—1.03—0.80—1.36—0.53—0.0439
+0.20
+0.22—0.0852
+0.12—0.214—0.56—0.01

2.73
2.14
2.38
3.44
5.18
2.67
3.08
3.35
3.12
2 84
4.24
1.34
1.36

15.3
1.68
2.63
2.63
1.997

1.08 1.37
1.38 1.18
1.22 1.420
0.910 1.291
0.739 1.193
1.10 1.38
0.979 1.324
1.17 1.40
0.971 1.320
1.05 1.36
0.808 1.236
3.3 1.75
3.3 1.74
0.569 1.065
1.98 1.60
1.113 1.380
1.11 1.38
1.497 1.499

—1.7—0.41—1.5—2,58—4.58—1.0—2.12—2.0—1.83—1.12—3.54
+2.6
+2.4—13.3
+0.80—1.95—0.93—0.006

1 EV2

g2 V2 max

—0.32—0.097—0.32—0.375—0.443—0.19—0.342—0.30—0.293—0.197—0.417
+1.0
+0.88—0.434
+0.23—0.372—0.17—0.001

+0.63
+0.11
+0.35
+1.26
+2.95
+0.48
+0.933
+0.60
+0.895
+0.579
+2.03—0.38—0.37

+10.7—0.17
+0.583
+0.44
+0.002

a E. Schmid and W. Boas, Kristallplastizitat (Verlag Julius Springer, Berlin, 1935), pp. 21, 200.
b D. Lazarus, Phys. Rev. 74, 1726 (1948).
e S. Bhagavantam and J. Bhimasenachar, Nature 154, 546 (1944).
d S. Siegel, Phys. Rev. 57, 537 (1940).
e Bond, Mason, McSkimin, Olsen, and Teal, Phys. Rev. 78, 176 {1950).
f O. Bender, Ann. Physik 34, 359 (1939).
g J. K. Gait, Phys. Rev. 73, 1460 (1948).
h S. L. Quimby and S. Sigel, Phys. Rev. 54, 293 (1938).
' E. Goens and J. Weerts, Physik. Z. 3'7, 321 (1936).
& McSkimin, Bond, Buehler, and Teal, Phys. Rev. 83, 1080 (1951).

cally for propagation nearly in the [001j direction, one for the other quasi-transverse mode. As the quasi-
has longitudinal mode is independent of g, one has

AV1 E10'
{Es+)Es'—sin'2&(2Es —1)j'} (4.3)

81 4C44 2C11
(4.6)

from Sec. 3. For convenience in tabulating, we remove
the dependence on the azimuthal miso~ierstatioe a~zgle g
by choosing g such that Attr/nt is maximum. Since
E2)0.5 for all the crystals considered in Table III,
this maximum occurs when @=0.This choice is made
with an eye to presenting a table of some use to the
experimenter interested in measuring velocities. Lacking
explicit knowledge of the misorientation angles from
x-ray measurements, he may have an order-of-mag-
nitude estimate of the polar rnisorientation angle t) from
the technique employed to orient the specimen faces,
whereas p can be quite arbitrary. Using the estimated
value of 8, he may obtain the maximum resulting
fractional velocity change from Table III, and if this is
not suKciently large to inhuence his measurements, no
correction is necessary.

Setting &=0 and dividing through by 8' gives

The three fractional velocity changes, defined in this
manner, are tabulated in Table III. From the table we

get for silicon, for example,

(Ant/nt) .„=—0.938'. (4 &)

For a polar misorientation angle 8= 1'=0.0174 rad, one
obtains

(hit, /n, ), = —2.8&&10 ', (4.8)

which is significant in a velocity measurement of 0.01%
desired accuracy. The choice confronting the experi-
menter is obvious. He must either orient the specimen
precisely enough that his measurements are not inQu-

enced by fractional velocity changes, or determine the
degree of misorientation by x-ray or other methods
and correct his measurements accordingly.

5. ENERGY FLUX

&i ~ max 44

In like manner one obtains

1 (tInsl Ei
0 ( 'U2 ) max 4c44

(4.4)

(4 5)

The energy Aux vectors associated with plane elastic
modes are of considerable interest both theoretically
and experimentally. Those cases in which internal
conical refraction arises present an intriguing problem
in the nearly virgin field of diRraction eRects in aniso-

tropic media. The incidence of a plane wave on a
stress-free surface gives rise to a rather peculiar law of
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reflection. With regard to pulsed ultrasound experi-
ments, when the specimen cross section is not appre-
ciably larger than the cross section of the excited region
or when for some reason it becomes necessary to excited
the specimen near an edge, deviation of energy from
the propagation direction may cause the wave to
impinge on side walls, giving rise to mode conversion
and deteriorating the echo train. It is hoped that the
discussion to follow will serve the dual purpose of
pointing out such difhculties, at the same time stimu-
lating further experimental investigation of the energy
Aux itself.

The derivation of the energy flux associated with an
arbitrary excitation is discussed by Love. ' Briefly, the
x; component of the energy flux vector is given by the
scalar product —T&'& (Bu/Bt) of the stress vector T&'&

on the surface normal to the x; direction, having com-
ponents T, &*&=o;,, with the particle velocity Bu/R.
The minus sign arises from the convention used in
de6ning the stress tensor. Averaging over one period,
one then obtains for the ith component of the energy
flux vector P&" associated with mode j

(5 1)

Here p is the amplitude of elastic displacement, A"'
the unit displacement vector, and v,. the phase velocity.
The displacement 44&" is as given in Eq. (2.6) but now
multiplied by p. Note that the term propagation
direction, has become somewhat ambiguous. We shall
use it to refer to the normal to surfaces of equal phase.

Consider first the perfectly oriented case; that is, x3
is a pure mode axis and F,;I,~=—D;;I„-~. One finds from
Eq. (5.1) that the energy flux associated with a pure
longitudinal mode may never deviate from the propa-
gation direction —that is, the energy flux vector is
parallel to the x3 axis. The same result holds for a pure
transverse mode, provided the D;, have the form

11 12 13 0 0 16
12 22 23 0 0 26
13 23 33 0 0 36
0 0 0 44 45 0
0 0 0 45 55 0

16 26 36 0 0 66

(5.2)

Inspection of the symmetry table of Sec. 3 reveals that
this form is met if the propagation direction is a twofold,
fourfold, or sixfold symmetry axis, or normal to a plane
of reflection symmetry. If the propagation direction is
not included in these four categories, then one may
expect in general a deviation of energy flux from the
propagation direction.

Specifically for propagation along an axis of threefold
symmetry, this deviation manifests itself in the form
of internal conical refraction. A propagation axis of

"Reference 10, p. 17'tI'.

threefold symmetry is encountered twice in the explicit
solutions considered in Sec. 3:6rst, the L111jdirection
of a cubic crystal, and second the L001$ direction of a
trigonal crystal. As a threefold symmetry propagation
direction is degenerate, there are no preferred directions
of particle vibration for a pure transverse mode and
one may take

A, &"=cosg, A2o&=sin1t, A4~'&=0, (5.3)

as the components of the eigenvector Ao& associated
with eigenvalue t44. Inserting Ao& in Eq. (5.1) gives

~'"&= L(p~)'/»i jCD'n3 cosV
+ (D,&24+D,2~3) sin1t cosp+D, 224 sin'1t ). (5.4)

To obtain the D,; for propagation in the L1117
direction of a cubic crystal, one performs the coordinate
transformation with n=tan 'v2, P=w/4, p=0. Ob-
serving that the x2 and x4 axes (x, —=y,) are, respectively,
twofold and threefold, by superposition of elements S»
and S» of the symmetry table one obtains for the form
of the D,, the array

ii 12 13 0 -25 0
12 ii 13 0 25 0
13 13 33 0 0 0
0 0 0 44 0 25

—25 25 0 0 44 0
0 0 0 25 0 -', (11—12)

From Eq. (2.9) one may obtain

D44= 3 (E&+3c44), D24= (V2/6)E&, (5.6)

where E~ ———c»—c&2—244 as de6ned in Sec. 3. Making
use of these results, Eq. (5.4) gives for the components
of energy flux

2 (p44)'Eg
p~o)— cos2&P,

2 (p40)'E4
P2&'& =+ srn2$, (5.7)

(p~)'(E&+3c44)
p 0& —+

~ J.deKlerk and M. J.P. Musgrave, Proc. Phys. Soc. I'I.ondon)
$68, 81 (1955).

Thus as the plane of particle vibration is rotated about
the L111jdirection through the angle m, the energy flux
vector rotates about the L111]direction in the opposite
sense through the angle 2m, generating a cone of possible
directions for energy Row, as illustrated in Fig. 3. From
Eqs. (5.7) one sees that the semiangle of this cone of
refraction is given by tan '~E&/V2(K&+Bc44) ~. Similar
results have also been given by deKlerk and Musgrave,
omitting calculation of the sense of rotation. '~ Using
the values of Table III the semiangle is given for
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Xs [I I I]:-PROPAGATION
ll DI R ECT ION

KI
N

~J2 (KI+3Cg4) I

x2 [Ilo]

(KI ~O)

FrG. 3. The geom-
etry of the cone of
internal refraction
for propagation of a
pure transverse mode
in the [111) direc-
tion in a cubic crys-
tal. The energy flux
vector P('& associated
with polarization A&')

of the elastic displace-
ment is shown.

several cubic materials as follows: Al, 6 deg; Cu, 31;
Ge, 14; KCl, 21; XaCl, 10; Si, 12.

In the same manner, one obtains for propagation in
the $001] direction of a trigonal crystal

co c]4
Pr &"= — cos(2/+8),

(poI) (C14 +Css )'
Ps &"= sin (2/+8),

2'0 y

(5.8)

Go c44I,(i)—
2vy

'4 Seki, Granato, and Truell, J.Acoust. Soc. Am. 28; 230 (19561.

where tanB=c]4g'c2~. In this case, shown in Fig. 4, the
semiangle of the cone of refraction is given by

Pss +C44 ]'/C44.
The diffraction effects arising due to the finite size

of the source merit brief mention. At first glance one
might guess that excitation is nearly confined to a
cylindrical region with axis along the direction of energy
Aux, energy gradually spreading out of this region in
much the same manner as it does with a sound source
radiating into a semi-infinite perfect Quid. " Such a
picture is probably qualitatively correct for the per-
turbed quasi-pure modes discussed below.

In the internal conical refraction cases, however,
degeneracy of the pure transverse modes introduces
questions of superposition. Assume (in order to sketch
a proof by contradiction) that a circular source generat-
ing a pure transverse mode gives rise to a single beam
of sound energy with axis along the energy Aux direction
appropriate to the elastic displacernents involved. The
necessary threefold symmetry under rotation of the
displacement direction is met, as may be seen from a
study of Fig. 3. Now imagine a second circular source
placed at the same location as the first, but with a
different direction of the associated (transverse) elastic
displacements. Superposition of the sources yields an
equivalent source generating, by assumption, a single
beam of excitation, whereas superposition of the egects
of the two sources gives two beams of excitation, clearly
an impossible situation.

x3 [OO I]= PROPAGATION
DIRECTION

2 2
TAN tcI4 + c2s]

2|A+ B

x2 [OIO]

FIG. 4. The geometry of internal conical refraction occurring
when a pure transverse mode is propagated along the threefold
symmetry axis [001) of a trigonal crystal. The angle 8 is given
by tan8 = cq4/c44.

This dilemma could be avoided if one adopted instead
the assumption that a source capable of producing
transverse waves with a given displacement direction
actually excites a conical region in the medium, various
azimuths having directions of transverse particle dis-
placement in accord with the geometry of Fig. 3 for the
case of propagation in the (111]direction in a cubic
crystal. These remarks of course only apply to points
sufficiently far removed from the source that their
direction cosines relative to all points on the source vary
little.

If the superposition principle is to be satisfied, the
magnitude of transverse particle displacement at various
azimuths must be obtained from the displacernent
vector associated with the source by an operation which
commutes with the operation of (vector) addition of
the displacements associated with two sources. One
suitable operation is that of prjoecfit4g the displacement
vector associated with the source on the line of particle
motion appropriate to each azimuth. Since the sum of
the projections of two vectors in a given direction
equals the projection of the vector sum, the same
resultant excitation is obtained regardless of whether
sources or effects are superposed. The dependence of
transverse amplitude on azimuth has the form
~cos(g/2) ~, with @ measured from the azimuth at
which displacements are parallel to the displacement
vector associated with the source. Threefold rotational
symmetry is also preserved. When the displacernent
vector associated with the source is rotated through
2s./3 about the L111]direction, the azimuth of maxi-
mum response (&=0) rotates through —4w/3, so that
an identical geometry is obtained.

This scheme is illustrated in Fig. 5. In Fig. 5(a) the
source, shown at the center, is beneath the page, with
propagation up out of the page in the L111]direction.
The remaining two crystallographic axes are indicated.
We are interested in the magnitude of transverse dis-
placements on the large circle representing the inter-
section of the cone of refraction with the plane of the
figure. The lines of particle displacement at four azi-
muths of the circle, determined from Fig. 3, are shown
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dashed. In Fig. 5(b) the displacements (solid arrows)
associated with a source polarized in the L112]direction
are obtained by projecting the displacement vector of
the source on the lines of particle motion. The magni-
tude of displacement at each azimuth is given sche-
matically by the radial distance between the two
outermost circles. In Fig. 5(c) the same situation is
indicated for a source polarized in the L110] direction.
Finally, in Fig. 5(d) the displacements associated with
the source resulting from superposition of sources
Figs. 5(b) and 5(c) are obtained in the same manner.
But these displacements are the same as one obtains
by superposing those of the preceding two figures, as
can be seen at a glanc- therefore, superposition holds.

Thus, apart from the detailed diffraction compu-
tations required, the general features of the wave
motion in cases of internal conical refraction appear to
be rather well defined by the three considerations of
symmetry, superposition, and geometrical relation
between energy Aux and direction of particle displace-
ment. Further analysis and experimental work on this
topic is warranted. The same approach also appears
applicable to the analogous problem in optics, discussed
in some detail by Wooster, " but has not been con-
sidered to the author's knowledge.

Consider next the misoriented case. One would expect
the energy flux vector to be perturbed in direction to
the order of the polar misorientation angle 0, and this is

actually what occurs. As a first example, consider

propagation of a quasi-longitudinal mode nearly along
the L001] direction of a cubic crystal. From Sec. 3, one
has for the components of the perturbed eigenvector

Pio]

1

l

&c)

Pro. 5. The geometry of the projection rule for determining the
amplitude of transverse particle displacements at various azimuths
on the cone of internal refraction. Propagation is up out of the
page in the L111j direction. In (a) the directions oi particle
motion appropriate to four azimuths on a cone with vertex at
the center of the source (beneath the page) are shown as dashed
lines. In (b) and (c) solid arrows indicate the displacernents cor-
responding to sources polarized in the $112$ and $110$ directions,
respectively. In (d) the situation is illustrated for a source con-
sisting of the superposition of the previous two. The displacements
here may be obtained either by projection or by superposition of
the displacements of the two preceding cases, thus verifying that
the projection rule satisnes the principle of superposition.

Arts&= (Es—2)8 cosP,

A s"' ——(Es—2)8 sing, (5.9)

(2.20), one gets finally

(pro)s(crr+cis) (Es—2)
P~(3)— 8 cosP,

2'03

Keeping only terms of zeroth and first order in 0 die to
contributions of the A, "' only, Eq. (5.1) becomes

(pro)'(crt+cts) (E,—2)
P,(3)— 0 sing, (5.12)

(p~)'
L(F,isa+a, sis) A i"'

+ (F'sss+F'sss)Asts'+F, sss]. (5.10)

Keeping only terms of zeroth and first order in 0 in
Eqs. (5.10), one obtains

(p~)'
E,t"= L(c,rss+c, fsts)Ai&'l

2'V 3

+ (c;sss+c;sss)As "+b,scss+f fs'8]. (5.11)

Inserting the c,; from Table II and the f;s' from Eqs.

"W.A. Wooster, Crystal P/zysics (Cambridge University Press,
Cambridge, 1938), p. 148.

CO |"]y
P3(3)—

283

Defining d~ and d~ as the angles between the eigen-
vector A"' or the energy Aux vector P&s&, respectively,
and the x3 axis, one obtains correct to lowest order
in 8 from Eqs. (5.9) and (5.12)

dg ——(E,—2)8, dp ——L(c,r+cis) (Es—2)/cr, ]8. (5.13)

From the values of Table III one obtains numerical
results as follows: Ge, d~ =0.848, d~ = 1.168; Cu,
d~=1.080, dp = 1.868. These results are illustrated in
Figs. 6 and 7, with 0 exaggerated for clarity.

As a second example, consider propagation of a quasi-
longitudinal mode nearly along the hexagonal axis of a
hexagonal crystal. From Sec. 3, the components of the
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X3 PROPAGAT ION
DIRECTION

(3&

cr [OIO]

Pro. 6. The dis-
placement A&@ and
energy Qux P&3) asso-
ciated with a nearly
pure longitudinal
wave propagatin
nearly along the $001
direction in germa-
nium.

(P~)'I r = (crs+css)L8 cosg,
2'V3

perturbed eigenvector are given by

A ~&"=L8 cosP, 2 s&si =L8 sing, 3 s&s& = 1, (5.14)

where

L —= (2c44 —css+c$s)/(css c44).

Following the same procedure as above, one obtains
correct to lowest order terms in 8

intact, with no mode conversion taking place. This may
be verified by substituting the appropriate expressions
for elastic displacements in the stress-strain law.

Kith a finite source the role of the energy Aux enters
in. As mentioned above, we assume here that the ex-
citation is reasonably well con6ned to a cylindrical
region with axis along the direction of energy Aux.

Upon striking a stress-free plane surface with angle of
beam incidence equal to the deviation angle of the energy
Aux (and with surfaces of equal phase parallel to the
reflecting surface) the original mode is reflected. Sub-
stituting the appropriately modified expressions for the
displacements in the scalar product form of the energy
Aux vector which precedes Eq. (5.1), the modiled
energy Aux vector is seen to be simply reversed in
direction. Thus, regardless of the angle of incidence, the
beam is seen to be reft ected back on itself.

Concerning the influence of energy Aux on measure-
ment of ultrasound losses, some comments seem appro-
priate. First, no major difhculties should arise due to
deviations of the energy Aux from the propagation
direction. Because of the peculiar law of reQection for
such beams, the signal neglecting diffraction effects

(P~)'
Es&s&= (crs+css)L8 sing,

283

The deviation angles for this case are given by

d~=L8, d~=E(c&s+css)/cssjL0.

(5.15) a &t.oo

e [ziio]

x3-- PROPACATIOg
DIRECTIQN

(3)

a&)ol lo|

FIG. 8. The displacement
A(3& and energy Qux P(3& of
a quasi-longitudinal mode
propagating nearly along
the hexagonal axis [0001j
in zinc. The deviation of
energy flux from the propa-
gation direction x3 is an
order of magnitude larger
than the polar misorienta-
tion angle 8.

dg ——6.30, d~ ——10.48. (5.17)

Th,ese results are shown in Fig. 8.
The situation occurring when a plane wave is refiected

from a stress-free surface (the back face of a specimen
in pulsed ultrasound experiments) is also of interest. It
is easily established that an arbitrary infinite plane wave
incident normally on a stress-free plane is rejected

x3
= PROPAGATION

DIRECTION

3)

g &[olo]

I'rG. 'I. The dis-
placement A&@ and
energy Aux P(3) of a
quasi-longitudinal
mode propagatin
nearly along the I 001
direction in copper.

Using Musgrave's5 values of the elastic constants for
zinc, cg] = 1.430) cg2= 0.170) c]3=0.330) c33=0.500,
C44=0.400X10" dynes/cm', one obtains for the devia-
tion angles

should return exactly to the source, where it is observed,
with no shift in position. Such deviations may, however,
cause the beam to impinge on side walls in specimens
of limited cross section, giving rise to mode conversion
and general deterioration of the pattern.

The propagation of a quasi-longitudinal mode nearly
along the hexagonal axis of a zinc crystal gives a severe
example of this, as from the second of Eqs. (5.17) one
sees that a misorientation of the order of one degree
gives rise to an energy Aux deviation of the order of
ten degrees. However, if the misorientation angles are
known, one may compensate for this deviation by
relocating the source. Figure 9(a) shows in cross section
a slightly misoriented zinc specimen with quartz trans-
ducer cemented on the top surface. The ultrasound beam
thus generated impinges on one of the vertical walls of
the specimen, resulting in mode conversion losses. In
Fig. 9(b) the transducer has been placed so that the

beam does not contact any side walls, thus eliminating

side-wall interference.
Finally, the combination of di8raction and refrac-

tion appears capable of giving rise to severe beam

spread in some crystallographic directions. Thus for
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propagation of a quasi-transverse mode in the neigh-
borhood of a conically refracting direction, for example,
one infers from the previous discussion of conical refrac-
tion and from continuity arguments that the beam
cross section would be crescent-shaped and rapidly
increasing with distance.

The speculative nature of much of the above dis-
cussion is apparent. It is hoped, however, that such
speculations will prove a stimulus to experimental in-
vestigation of some of the points in question, thus
leading in the end to a more complete picture of the
entire situation.

(b)

~ TRANSDU(:ER

~ HEXAGONAL AXIS

ULTRA SOUND
BEAM

FIG. 9. A cross section of a misoriented zinc specimen, showing
the beam geometry for propagation of a quasi-compressional mode
nearly along the $0001$ (hexagonal) axis. In (a) the quartz trans-
ducer is centered on the top face of ".he specimen, and due to
deviation of energy Qux the ultrasound beam impinges on a side
wall of the specimen, giving rise to mode conversion losses. In (h)
the transducer has been moved to one side, thus eliminating this
difficulty. Observe that on striking the bottom face, the beam is
reRected back in the original direction of incidence.

specimen surface, thus facilitating the corrections neces-
sary to obtain accurate values of the constants from
measured phase velocities.

Using the displacements, the components of strain

6. SUMMARY

Starting with the equations of motion, the perturbed
phase velocities and displacement vectors associated
with nearly pure transverse and longitudinal elastic
modes have been computed and tabulated for a large
number of cases of physical interest. The tabulations
are given directly in terms of the conventional crystal
elastic constants and the misorientation angles of the

may then be computed from the defining equations.
The stresses may next be computed from the generalized
Hooke's law, and the components of energy Qux com-
puted in the manner described in Sec. 5. In both the
latter computations the expansion coefficients f,,s of
the misoriented elastic constants, given in Sec. 2, will

be indispensable.
A unified approach to the properties of pure elastic

modes is provided through the consideration of indi-
vidual symmetries as discussed in Sec. 3. Such an
approach appears convenient for application to situ-
ations where lattice defects destroy a part of the crystal
symmetry.

There are other immediate applications to the field
of ultrasonic measurements in solids. A small misorien-
tation from a degenerate propagation direction splits
the transverse phase velocities apart slightly, the vector
nature of the two modes resulting giving rise to easily
observable interference eGects. Such observations have
been reported previously by Teutonico and the author, "
and may prove useful as a technique for 6ne orientation
of specimens,

Finally, the behavior of the energy Qux associated
with various pure and nearly pure modes was discussed.
The inQuence of energy Aux deviations on loss measure-
ments was considered, and some speculations were given
on the probable behavior of diRracted waves when
conical refraction is present.
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