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Under certain conditions the response time of a solid for current transients may be determined by the
properties of the injecting contact rather than of the bulk. In this case it is the time required for readjust-
ment of the space-charge barrier at the contact for delivery of the new steady-state current. The critical
parameter determining the response time of the contact is the total amount of excess charge within one
Debye length of the potential minimum in the space-charge barrier. Trapped, as well as free, excess charge
must be included in the calculation of the Debye length. The product of gain (G) and band width (1/7o) for
a photoconductor whose response time is contact-controlled is derived and expressed in the “universal”
form G/7o= M /7,, where 7, is the dielectric relaxation time under operating conditions.

1. INTRODUCTION

HE ohmic contact is operationally defined as one
that is experimentally ‘“invisible,” that is, as
one that plays no role in electrical measurements on
materials. Actually this operational criterion refers to
steady, dc or low-frequency, measurements. Notwith-
standing our intuitive expectations, there is no a priori
reason why the ohmic contact should be equally in-
visible in transient electrical measurements. Indeed
Van Heerden! has already shown experimentally that
the transient current flow in highly resistive, copper-
doped germanium is markedly sensitive to the nature
of the ohmic contact. In this paper we analyze the
behavior of the ohmic, injecting? contact for transient
currents produced at fixed voltage. Such transients
occur when the free-carrier density in the solid is
changed by some exciting agent such as absorbed light
or impacting particles, that is, in photoconductivity
or bombardment-induced conductivity.?

The response time of the contact for current tran-
sients is the time required for readjustment of the
space-charge barrier at the contact for delivery of the
new steady-state current. We show, in the following
section, that the critical parameter determining this
response time, for current transients at fixed voltage,
is the total amount of excess charge within one Debye
length of the potential minimum in the space-charge
barrier. Trapped, as well as free, excess charge must be
included in the calculation of the Debye length. Because
of this close relationship between the response time of
the contact and the space-charge distribution in the
contact, it should be possible to utilize response-time
measurements to probe the electronic structure of the
contact. Here, of course, it is necessary that the ohmic

1P, J. Van Heerden, Phys. Rev. 108, 230 (1957).

2 A blocking (exhaustion-layer) contact can also function as an
injecting, ohmic contact, via the tunneling mechanism, if it is thin
enough. This type of contact is not studied in this report.

3 Impact ionization transients usually are produced by a change
of voltage across the solid. If a steady, bias voltage is used so that
the field in the solid is just below the breakdown field, then the
additional voltage needed to produce the breakdown is quite small.
The resulting current transient is then of the type analyzed in this
report as regards the role of the ohmic contact.

contact, rather than the bulk, control the over-all
response of the series combination, contact plus bulk.

The analysis of the response time of the contact in
Sec. IT presupposes the existence of a potential mini-
mum (energy maximum) inside the crystal. In the
appendix the analysis is modified to cover the situation,
brought about by a sufficiently high applied voltage,
where there is no minimum inside the crystal. In this
region it is shown that the response time of the contact
is proportional to the applied voltage up to voltages
drawing saturation current from the contact.

In Sec. III the results of this paper are related to
those of the companion paper? in which bulk-controlled
response times are studied. A gain-bandwidth relation
for contact-controlled photoconductivity is derived and
expressed in the “universal” form of Eq. (5) of I:

M
gainXband width=

¢y

dielectric relaxation time

The factor M depends on the properties of the agent
controlling the response time, in the present case the
agent being the contact. The dielectric relaxation time
is evaluated under the conditions of operation. An
important conclusion is that contact control of the
response time is possible only if the value of M in Eq.
(1), corresponding to wvolume conirol of the response
time, exceeds unity. It is only recently that measure-
ments yielding M >1 have been made (see references
16 and 17 of I).

II. RESPONSE TIME OF THE OHMIC,
INJECTING CONTACT

The ohmic, injecting contact is illustrated in a
schematic energy-band diagram in Fig. 1. This contact
is injecting for electrons, which, for the sake of definite-
ness, we assume, throughout this report, are the ma-
jority carriers. In (a) the contact is shown in thermal
and electrical (no applied voltage) equilibrium. Ep,
K., and E, denote the Fermi level, a discrete trap level,
and the bottom of the conduction band, respectively.

4 A. Rose and M. A. Lampert, preceding paper [ Phys. Rev. 113,
1227 (1959)7]. This paper is hereafter referred to in the text as I.
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TRANSIENT BEHAVIOR OF OHMIC CONTACT

In the region of the contact, defined by the downward-
bending portion of the energy bands, there is excess
negative charge, both free and trapped. With a voltage
applied across the solid, the bands are tilted, as illus-
trated, in (b) and there appears the well-known
potential minimum, or maximum in the energy-band
diagram. The analysis, which follows, of the dynamical
relationship of the space charge in the contact, par-
ticularly in the vicinity of the energy maximum, to
current flow elucidates the mechanism of transient
response of the contact.
A closer look is taken, in Fig. 2, of the injecting
contact under current-flow conditions. The upper curve
is the profile of the bottom of the conduction band with
an Ohm’s law current Jo flowing at some steady-state
value of volume excitation. At the maximum-energy
point Py, the electric field intensity vanishes and the
current Jo must be a pure diffusion current.

We first study the case of the rise-time transient.
Let the excitation be increased so as to double, in the
steady state, the density of free electrons in the volume,
the applied voltage being held fixed. Correspondingly,
the current J will double in the steady state. The time
it takes to reach® the new steady-state value is defined
as the rise time 7o, of the contact. Here we assume,
of course, that the bulk-determined rise time is shorter
that that of the contact. In order to deliver the in-
creased diffusion current, the energy maximum must
shift to the left and downwards to a new position P.
Since in this region the current is approximately a pure
diffusion current, the amount of downward shifting
V is readily estimated from the well-known formula
describing forward injection currents:

J/Jo=exp(V/Vu)=2, with Vgu=~kT/e.

This gives V/V gn=1In2.

The important fact to observe for our problem is that
lines of force of excess negative charge lying to the right
of the energy maximum are directed to the right,
terminating on positive charges on the anode. Likewise
the lines of force of excess negative charge lying to the
left of the energy maximum are directed to the left and
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Fi16. 1. Ohmic (injecting) contact, (a) in thermal equilibrium,
and (b) with an applied voltage.

5 Strictly speaking some fixed fraction, such as (1—¢71), of the
final steady-state value of the current should be taken to define
the rise time. In the context of the approximate analyses of this
paper, this contributes a negligible correction.
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F16. 2. Ohmic contact, with an applied voltage, showing the
change in the potential minimum (energy maximum) required for
an increase in current through the solid.

terminate on the cathode. [In the thermal-equilibrium
situation, corresponding to Fig. 1(a), all lines of force
from the excess negative charge in the contact are
directed to the left and terminate on the cathode.] It
is clear that, in the course of doubling the current, the
lines of force of all the excess negative charge in the
cross-hatched region, Fig. 2, between the initial and
final locations of the energy maximum, P, and P,
respectively, must transfer their allegiance from positive
charges lying to the left of Py to positive charges lying
to the right of P. Since this transfer takes place at
fixed anode voltage, the positive charges required to
effect the transfer must be generated by the increased
excitation. The time it takes for the exciting mechanism
to create the required positive charges is the rise time
of the contact.

The amount of excess negative charge in the cross-
hatched region of Fig. 2 is easily calculated. The
Poisson equation ed*V/dx’=eNr, relates the change in
energy of the maximum, eV, to the shift in its location,
x, the total excess charge density (free plus trapped),
eNp, at the energy maximum, and the dielectric
constant e. This gives directly, V=eNra2/2¢, where
N has been taken as constant since we are interested
in small #. Thus the previous requirement V/V y=In2
can be written #?/2A’=1In2 or a~A with A= (¢kT/
eNr):. A will be recognized as a “Debye length,”
corresponding however to Ny rather than just the free
charge. The total number of negative charges whose
lines of force must be transferred is 9y ,=ANA
=A(ekTNr/e?)}t, where A is the cross-sectional area
of the specimen. The manner in which the exciting
mechanism creates the extra positive charges needed to
lower the energy maximum is the following. Through
the increase in excitation there is an increment F in the
total rate of generation of electrons. The extra holes
are either already localized in states out of which the
electrons were excited, or, if initially free, are rapidly
captured in traps or recombination centers. Since the
contact is delivering a diffusion current Jy sufficient to
replenish only the original steady-state number of free
electrons, the extra number made by the increment in
excitation are swept out of the solid to the anode. The
captured holes left behind constitute the positive
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charge needed to lower the contact barrier and permit
a higher diffusion current. We have here assumed,
obviously, that the total number of recombination
centers exceeds Ny, .. We would expect this to be true
in most cases of interest. The time it takes for 9z,
negative charges in the contact to transfer their lines
of force is obviously

Ny, ANrA A fekTNp\?
70, ¢~ = = ) . (2)
F F F e

Strictly speaking, the lowering of the barrier and the
concomitant readjustment of the bulk positive charge
producing the lowering should be described by a
differential equation. In the steady state the bulk is
neutral, the final readjustments of excess charge being
confined to the neighborhood of the contact. Hence,
after a long time £>>ro, . the solution to the differential
equation must yield no positive charge in the bulk.
Since we have defined response time with reference to
current changes of only a factor of two, there is no
significant error made in ignoring the differential equa-
tion and proceeding in the approximate manner de-
scribed above. In this respect, see also reference 5 and
the appendix of I.

The response time of the contact for transient decay
is the same as for the transient rise, 7, .. This is estab-
lished by an argument analogous to that employed
for the rise time. Here the excitation is decreased by
an amount such as to produce a new steady-state
current equal to one-half the original current. The
contact must readjust so that the energy maximum
moves to the right and upwards, namely from P to P,
in Fig. 2. The total number of negative charges in the
contact region whose lines of force must be transferred
is the same as for the rise-time case, namely 9r,,
=ANpA=A(ekTNr/e?)i In order for this transfer to
take place, an equal number of negative charges must
be created, throughout the bulk, to the right of the
energy maximum. Until the contact has readjusted, the
original steady-state current J is maintained unchanged
and so likewise is the free electron density and the
trapped-electron density in quasi-thermal equilibrium
with the free electrons. Therefore the rate of capture of
electrons into the recombination centers is unchanged.
However the rate of generation of electrons is reduced
because of the reduced intensity of excitation. The
unbalanced rates of electron generation and capture
build up the negative charge required to shift the
potential minimum. The net rate at which the excess
electron density is built up in the recombination centers
is (T'/+1)J'. Here J’ is the rate at which excess electrons
are injected past the contact (i.e., the difference be-
tween initial and final currents), and 7'/7; is the
probability that an excess, injected electron is captured
by a recombination center before it completes a transit
across the photoconductor. (7; is the electron lifetime
and 7" its transit time.) Letting F denote the decrement
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in the total rate of generation of electrons due to the
reduction in excitation, and noting that the current
gain G=r1,/T’, we have J'=GF= (r;/T’)F. The decay
time for the contact, 74, .4 is then given by:

m’l‘, ¢

mT, c
a0

(T’/r)J" F

=70, 0 (3)

where the final equality follows from Eq. (2). Because
of the equality of decay and rise times, the one symbol
‘“ro,” suffices to describe the response time of the
contact.

The contact-controlled response-time transient offers
a possible means to explore the space-charge distribu-
tion in the injecting contact. This possibility arises
because the response time depends only on the space
charge in the neighborhood (within a Debye length)
of the energy maximum. But the position of the maxi-
mum within the contact is determined by the steady-
state current which the contact must deliver. At a
fixed level of excitation the current through the solid
can, of course, be varied by changing the anode voltage.
Thus, with all other conditions held fixed, the position
of the maximum can be varied within the contact by
changing the anode voltage. Therefore a measurement
of response time versus voltage is indirectly a measure-
ment of the Jocal space charge in the injecting contact,
provided the response time is contact-controlled. Since
most of the space charge is usually in traps, the measure-
ment of space charge becomes a measurement of trap
density near the contact interface. Conversely, if the
measured response time is found to be voltage-de-
pendent in a range of voltages yielding Ohm’s law
currents in the steady state, one might well take this
as an indication, if not a proof, of a contact-controlled
response time.

III. PHOTOCONDUCTIVE GAIN-BANDWIDTH
PRODUCT WITH CONTACT-CONTROLLED
RESPONSE TIME

If the response time for photoconductivity is con-
trolled by the injecting contact, as described above,
then it is a simple matter to derive the gain-bandwidth
product for the photoconductor. We need simply note
that 7o, as given in Eq. (2) and the bulk-determined
response time 7o as given in reference 14 of I have
identical forms. Therefore, to obtain the gain-band-
width product for the contact-controlled case, we need
only replace 9z by 9z, in Eq. (5) of I:

G(I/TO.C)_‘:Mc/Tr, with Mc=fﬂ«A/9"LT‘c. (4)

Just as in I, 7, is the dielectric relaxation time under
operating conditions and 94 is the total positive charge
on the anode due to the applied voltage. Equation (4)
is valid, of course, only so long as 7 .> 7o(bulk), i.e.,
N7, >N (bulk). Otherwise, the gain-bandwidth product
is determined by the bulk response time and is given
by Eq. (5) if I. An important and immediate conclusion
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from the foregoing analysis is that contact control of
the photoconductive rise time is possible only if the
bulk-determined M value, M, exceeds unity. For
contact control requires M ,<M3. On the other hand,
1<M, since 94 equals the fofal negative charge to the
right of the energy maximum, whereas 9r, . equals the
negative charge within a single Debye length of the
energy maximum.

APPENDIX

The calculation of the response time of the contact
in Sec. IT assumed the existence of a potential minimum
inside the solid. With increasing voltage the minimum
moves closer to the cathode interface and finally, at
some critical voltage V. dependent on the intensity of
excitation, the minimum appears right at the interface.
At some higher voltage, V,, a saturation current,
independent of excitation intensity, is drawn and is
equal to the random thermal current from the electrode
into the solid. (Here we are assuming that breakdown
has not intervened.) At voltages V intermediate
between V. and V,, the current varies with voltage V
and there is no potential minimum inside the solid.
This is the voltage region over which we want to extend
the response-time calculation.

We consider the case, illustrated in Fig. 3(a), where
the excess charge is still localized near the cathode, over
a region of width, w, the remainder of the sample, of
width ¢—w, being neutral, with w<a. (This is the case
of greatest interest. For example, as discussed in I, the
space-charge-limited current region is a difficult one
in which to study or exploit photoconductivity.) There
is a field &7 at the cathode interface. The voltage across
the sample is

€ e
Va= &w—i—%—NTw?—{— ( 51+~NT'10) (a—w). (Al)
€ €

For the sake of simplicity we have taken the total
excess-carrier density Nz (free plus trapped) in the
cathode region to be a constant.

The excitation is now increased, at fixed voltage, so
as to double the current in the steady state. This
doubling of the current required doubling of the field
intensity at the interface. (For currents below satu-
ration, the density of free carriers at the interface
cannot change significantly—it remains equal approxi-
mately to its thermal equilibrium value.) Initially in
the rise-time transient this change in field intensity at
the interface is brought about by positive charges
created by the additional excitation throughout the
volume of the solid. As previously (Sec. IT), the positive
charge is created via sweepout of the additional free
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F16. 3. Behavior at a contact in the Ohm’s-law range when the
potential minimum has moved outside the solid.

(negative) carriers created by the additional excitation,
the original steady-state current being unable to main-
tain an increase in free-carrier concentration. Let A be
that positive-charge density, created by the additional
excitation, which increases the field at the interface to
magnitude 28;. The (unchanged) voltage V, is now
given by:

e e
V.=28w+3i-Nrw*+ (281—|——N7vw) (a—w)
€ €

_ziA(aL-w?)—i-wa(a—W). (A2)

€

We have neglected here a change in Nr due to the
additional excitation, not only because we expect this
change to be small compared to Nz but also because
we assume, in any case, that w<a.

Subtracting (A1) from (A2), and neglecting terms of
order w/a, we obtain

e 2e
Er~—aA , or A~~— &r.
2e ea

(A3)

Since 7o, is proportional to A, and &; is proportional
to V. (Ohm’s law currents), it is concluded that the
response time of the contact is proportional to the applied
voltage in the voltage range (below saturation) over which
there is no potential minimum inside the solid.

By essentially the same line of reasoning as previously
employed in the text, it can'be shown that the decay
time is equal to the rise time for the present case (no
potential minimum in the solid). Hence we have, as
previously, employed a nomenclature without reference
to a rise or decay process.



